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Abstract

The �rst-known Williams-type singularities caused by homogeneous boundary conditions in the �rst-order
shear deformation plate theory (FSDPT) are thoroughly examined. An eigenfunction expansion method is
used to solve the three equilibrium equations in terms of displacement components. Asymptotic solutions for
both moment singularity and shear-force singularity are developed. The characteristic equations for moment
singularity and shear-force singularity and the corresponding corner functions due to ten di4erent combinations
of boundary conditions are explicated in this study. The validity of the present solution is con�rmed by
comparing with the singularities in the exact solution for free vibrations of Mindlin sector plates with simply
supported radial edges, and with the singularities in the three-dimensional elasticity solution for a completely
free wedge. The singularity orders of moments and shear forces caused by various boundary conditions are
also thoroughly discussed. The singularity orders of moments and shear forces are compared according to
FSDPT and classic plate theory.
? 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Stress singularities; First-order shear deformation plate theory (FSDPT); Eigenfunction expansion

1. Introduction

Stress singularities in elastic plates frequently arise due to boundary conditions along the plate
edges and the geometry of the plates. As well known, stress singularities exist at sharp corners in
plates with V-notches or with irregular shapes of holes. Analytically determining the stress singularity
behavior at a sharp corner is important not only for fracture mechanics [1] but also for numerical
analysis of any complex problem involving such a sharp corner [2,3].
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Nomenclature

D Cexural rigidity
E modulus of elasticity
G shear modulus
h thickness of plate
Mr;M�;Mr� moments
Qr; Q� shear forces
r radial coordinate
W transverse displacement of the mid-plane
�r bending rotation of the mid-plane in the radial direction
�� bending rotation of the mid-plane in the circumferential direction
� vertex angle
� circular coordinate
 Poisson’s ratio
�2 shear correction factor

Some studies on stress singularities in plates have been undertaken according to classical plate
theory or the plane stress assumption. Williams [4,5] pioneered the investigation of stress singular-
ities of homogeneous, isotropic sector plates under bending and in-plane extension, due to various
homogeneous boundary conditions. Williams and Chapkis [6] further considered the stress singulari-
ties for polarly orthotropic thin plates. Dempsey and Sinclair [7] proposed a new form of Airy stress
function to reexamine the stress singularities in isotropic elastic plates under extension. Hein and
Erdogan [8] and Bogy and Wang [9] used the Mellin transformation to study the stress singularities
for bimaterial wedges, while Dempsey and Sinclair [10] used an Airy stress function for the same
purpose. Meanwhile, Ting and Chou [11] applied Stroh’s approach [12] to examine the stress sin-
gularities at the vertex of anisotropic wedges under extension. Applying classical lamination theory,
Ojikutu et al. [13] considered stress singularities at the apex of a laminated composite wedge with
simply supported radial edges.

The stress singularities at the corners of moderately thick plates have seldom been addressed.
Burton and Sinclair [14] considered the singularities due to six di4erent combinations of homoge-
neous boundary conditions around a corner, for Reissner’s theory. The authors reduced the three �eld
equations of Reissner’s theory to two Cauchy–Riemann equations by introducing a stress potential.
Williams’ procedure was then applied to �nd equations characterizing the stress singularity behaviors.
However, moment singularities but no shear-force singularities were found in their solution. Based
on the Mindlin plate theory, Huang et al. [15] investigated the stress singularities at the vertex of a
sector plate with simply supported radial edges by �nding the exact solution for free vibrations of
such a plate. That solution yielded both the moment singularity and the shear-force singularity. The
great similarity between Reissner’s theory [16] and Mindlin’s theory [17] leads one to expect very
similar singular behaviors according to these two theories. Consequently, the singularity behaviors in
thick plate theories require further study to resolve the conCicts between the conclusions of Burton
and Sinclair [14] and those of Huang et al. [15].
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This study thoroughly investigates the Williams type stress singularities in �rst-order shear defor-
mation plate theory (FSDPT) due to ten di4erent combinations of homogeneous boundary conditions.
The three �eld equations in the FSDPT are directly solved by adopting the eigenfunction expan-
sion method recently proposed by Xie and Chaudhuri [18,19] for studying stress singularities in a
three-dimensional problem. Notably, the method proposed by Xie and Chaudhuri [18,19] provides
the same three-dimensional asymptotic stress �elds in the vicinity of the front of crack as those
obtained by Hartranft and Sih [20], even though the solution methodology used by Hartranft and Sih
[20] is more complex than Xie and Chaudhuri’s [18,19]. This study explicates not only the equations
characterizing the moment and shear-force singularities, but also the corresponding asymptotic dis-
placement �elds for stress singularities. The singularity orders of moments and shear-force variations
with the corner angles are graphically depicted for the various homogeneous boundary conditions.
The obtained stress singularity orders are compared with those published in di4erent theories or
approaches, and especially in Williams’ solution [4] for a thin plate.

2. Basic formulation

The equilibrium equations with no external loading, in terms of stress resultants in polar coordi-
nates in the FSDPT are given (cf. [21]),

Mr;r +
1
r
Mr�;� +

Mr −M�

r
− Qr = 0;

Mr�; r +
1
r
M�;� +

2Mr�

r
− Q� = 0;

Qr; r +
Qr

r
+

1
r
Q�;� = 0;

(1)

where the subscript, “j” refers to a partial di4erential with respect to independent variable j. The
stress resultants are related to the transverse displacement and bending rotations by

Mr =−D[�r;r + r−1(�r +��;�)];

M� =−D[r−1(�r +��;�) + �r;r];

Mr� =−(1− )D
2

[r−1(�r;� −��) +��;r];

Qr = �2Gh(−�r +W;r);

Q� = �2Gh(−�� + r−1W;�);

(2)

where W is the transverse displacement of the midplane; �r and �� are the bending rotation of the
mid-plane normal in the radial and circumferential directions, respectively, h is the thickness of the
plate; D=Eh3=12(1− 2) is the Cexural rigidity; E is the modulus of elasticity;  is Poisson’s ratio;
�2 is the shear correction factor, and G is the shear modulus. Reissner [16] took 5

6 as the value of
�2, while Mindlin [17] employed �2=12.
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Substituting Eq. (2) into Eq. (1) yields the equilibrium equation in terms of displacement com-
ponents:

D
2
{(1− )(�r;rr + r−1�r;r + r−2�r;�� − r−2�r − 2r−2��;�)

+(1 + )(�r;rr − r−2�r + r−1�r;r − r−2��;� + r−1��;�r)}
+ �2Gh(−�r +W;r) = 0; (3a)

D
2
{(1− )(��;rr + r−1��;r + r−2��;�� − r−2�� + 2r−2�r;�)

+ (1 + )(r−2��;�� + r−2�r;� + r−1�r;�r)}
+ �2Gh(−�� + r−1W;�) = 0; (3b)

�2Gh(W;rr + r−1W;r + r−2W;�� −�r;r − r−1�r − r−1��;�) = 0: (3c)

On the basis of separation of variables, the displacement components are assumed to take the
following form:

�r(r; �) = ep� r(r); ��(r; �) = ep� �(r) and W (r; �) = ep�w(r); (4)

where p is commonly a complex number. Substituting Eq. (4) into Eqs. (3) with careful arrangement
yields

D
2
{(1− )( ′′

r + r−1 ′
r − (1 + p2)r−2 r + 2pr−2 �)

+ (1 + )( ′′
r − r−2 r + r−1 ′

r − pr−2 � + pr−1 ′
� )}+ �2Gh(− r + w′) = 0; (5a)

D
2
{(1− )( ′′

� + r−1 ′
� + (p2 − 1)r−2 � + 2pr−2 r)

+ (1 + )(p2r−2 � + pr−2 r + pr−1 ′
r )}+ �2Gh(− � + pr−1w) = 0; (5b)

�2Gh(w′′ + r−1w′ + p2r−2w −  ′
r − r−1 r − pr−1 �) = 0; (5c)

where the primes denote di4erentials with respect to r. The coupled ordinary di4erential equations
(Eqs. (5)) are solved using the Frobenius method.

3. Singularity of bending moments

Let

 r(r) =
∑
m=0

a2mr�+2m;  �(r) =
∑
m=0

b2mr�+2m and w(r) =
∑
m=0

c2mr�+2m+1; (6)

where � can be a complex number. Obviously, the real part of � must be larger than zero to satisfy
the regularity condition for the displacement components, as r approaches zero. Consequently, the
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series given in Eq. (6) can lead to singular moments in the vicinity of r equal to zero, but no
singularity for shear forces. Substituting Eq. (6) into Eqs. (5) gives

D
2

{∑
m=0

[(−2 + 2(2m+ �)2 + p2(1− ))a2m + p((�+ 2m)(1 + )− 3 + )b2m]r�+2m−2

}

+
∑
m=0

�2Gh[− a2m + (�+ 2m+ 1)c2m]r�+2m = 0; (7a)

D
2

{∑
m=0

[(3−+(1+)(�+2m))pa2m+((1−)((�+2m)2+p2−1)+(1+)p2)b2m]r�+2m−2

}

+
∑
m=0

�2Gh[− b2m + pc2m]r�+2m = 0; (7b)

∑
m=0

[((�+ 2m+ 1)2 + p2)c2m − (�+ 2m+ 1)a2m − pb2m]r�+2m−1 = 0: (7c)

Satisfying Eqs. (7) results in coeNcients of r with di4erent orders equal to zero. Consequently, a
set of recurrent relationships among the coeNcients can be attained from the following equations:

D
2
{[− 2 + 2(2m+ 2 + �)2 + p2(1− )]a2m+2 + p[(�+ 2m+ 2)(1 + )− 3 + ]b2m+2}

= − �2Gh[− a2m + (�+ 2m+ 1)c2m]; (8a)

D
2
{[3−+(1+)(�+2m+2)]pa2m+2+[(1−)((�+2m+2)2+p2−1)+(1+)p2]b2m+2}

= − �2Gh[− b2m + pc2m]; (8b)

− (�+ 2m+ 3)a2m+2 − pb2m+2 + [(�+ 2m+ 3)2 + p2]c2m+2 = 0: (8c)

The following three equations can also be established from the coeNcients of the lowest order of r
in Eqs. (7):

[(1− )p2 + 2�2 − 2]a0 + p[(1 + )�− 3 + )]b0 = 0; (9a)

p[3− + (1 + )�]a0 + [(1− )(�2 + p2 − 1) + (1 + )p2]b0 = 0; (9b)

− (�+ 1)a0 − pb0 + [(�+ 1)2 + p2]c0 = 0: (9c)

Eqs. (9) are a set of linear homogeneous algebraic equations for a0; b0, and c0. Nontrivial solution
results in four distinct roots for p, and they are

p=±i(�− 1) and p=±i(�+ 1): (10)

When p=±i(�+ 1); b0 =±ia0, and c0 is undetermined. When p=±i(�− 1),

b0 =±k1a0 and c0 = �1a0; (11)
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where

k1 =− i[2(1− ) + (1 + )(�+ 1)]
[2(1− )− (1 + )(�− 1)]

; (12a)

�1 =
− 1

−3 + �+ + �
: (12b)

Consequently, we can express the solution of Eqs. (3) in the following form:

�r =ei(�+1)�
∑
m=0

a2m;1r�+2m + e−i(�+1)�
∑
m=0

a2m;2r�+2m + ei(�−1)�
∑
m=0

a2m;3r�+2m

+e−i(�−1)�
∑
m=0

a2m;4r�+2m; (13a)

�� =ei(�+1)�
∑
m=0

b2m;1r�+2m + e−i(�+1)�
∑
m=0

b2m;2r�+2m + ei(�−1)�
∑
m=0

b2m;3r�+2m

+e−i(�−1)�
∑
m=0

b2m;4r�+2m; (13b)

W =ei(�+1)�
∑
m=0

c2m;1r�+2m+1 + e−i(�+1)�
∑
m=0

c2m;2r�+2m+1 + ei(�−1)�
∑
m=0

c2m;3r�+2m+1

+ e−i(�−1)�
∑
m=0

c2m;4r�+2m+1 (13c)

where b0;1 = ia0;1; b0;2 = −ia0;2; b0;3 = k1a0;3; b0;4 = −k1a0;4; c0;3 = �1a0;3; c0;4 = �1a0;4; and
a0;1; a0;2; a0;3; a0;4; c0;1, and c0;2 are undetermined. The other coeNcients in Eqs. (13) can be
determined from Eqs. (8).

To determine the singularity at a corner of a plate, one needs the asymptotic form for the stress
resultants. The general asymptotic form for the displacement components can be simply written from
Eqs. (13) as follows:

�r(r; �) = (A1 cos(�+ 1)�+ A2 sin(�+ 1)�+ A3 cos(�− 1)�+ A4 sin(�− 1)�)r� + O(r�+2);

��(r; �) = (A2 cos(�+1)�−A1 sin(�+1)�+k2A4 cos(�−1)�−k2A3 sin(�−1)�)r�+O(r�+2);

W (r; �) = (C1 cos(�+ 1)�+ C2 sin(�+ 1)�+ �1A3 cos(�− 1)�+ �1A4 sin(�− 1)�)r�+1

+O(r�+3); (14)

where A1 = a0;1 + a0;2; A2 = i(a0;1 − a0;2); A3 = a0;3 + a0;4; A4 = i(a0;3 − a0;4); C1 = c0;1 + c0;2;
C2 = i(c0;1 − c0;2), and k2 =−ik1. These coeNcients are speci�ed by the boundary conditions.
As well known, the stress singularities at the vertex of a sector plate are determined by the radial

boundary conditions along the vertex only. In FSDPT, four types of boundary conditions along a
radial edge, say �= �0, can be present:

clamped W (r; �0) =�r(r; �0) =��(r; �0) = 0; (15a)
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free M�(r; �0) =Mr�(r; �0) = Q�(r; �0) = 0; (15b)

type I simply supported W (r; �0) =�r(r; �0) =M�(r; �0) = 0; (15c)

type II simply supported W (r; �0) =M�(r; �0) =Mr�(r; �0) = 0: (15d)

We will describe the procedure for obtaining the characteristic equation for �, and the correspond-
ing displacement �elds in the vicinity of the vertex for the simply supported radial edges, for the
sake of demonstration.

Consider a sector plate with vertex angle equal to �. Taking advantage of the symmetry of
the problem, substitution of Eq. (14) into Eq. (15c) yields the following equations for symmetric
deformation:

C1 cos(�+ 1)�=2 + �1A3 cos(�− 1)�=2 = 0; (16a)

A1 cos(�+ 1)�=2 + A3 cos(�− 1)�=2 = 0; (16b)

A1�(1− ) cos(�+ 1)�=2 + A3(k2(�− 1)− �− 1) cos(�− 1)�=2 = 0: (16c)

Ensuring nontrivial solution results in the characteristic equation for �,

(cos(�− 1)�=2)(cos(�+ 1)�=2)2 = 0; (17a)

which, without loss of any roots, can be simply written as

(cos(�− 1)�=2)(cos(�+ 1)�=2) = 0: (17b)

When cos(� − 1)�=2 = 0, the coeNcients A1 and C1 are found equal to zero. Accordingly, the
resultant asymptotic displacement �elds in the vicinity of the vertex of the sector plate (r → 0) are
given by

�r(r; �) = A3�� cos(�− 1)�; ��(r; �) =−k2r�A3 sin(�− 1)�;

W (r; �) = �1A3r�+1 cos(�− 1)�: (18)

Similarly, cos(�+1)�=2=0 results in A3 equal to zero. The corresponding asymptotic displacement
�elds are

�r(r; �) = A1�� cos(�+ 1)�; ��(r; �) =−r�A1 sin(�+ 1)�;

W (r; �) = C1r�+1 cos(�+ 1)�: (19)

These asymptotic displacement �elds will be called as “corner functions” below.
By following a procedure similar to that described above, the characteristic equation of � for

anti-symmetric deformation for type I simply-supported radial edges can be determined. The corre-
sponding corner functions are thus obtained. Tables 1 and 2, respectively, summarize the charac-
teristic equations of � for di4erent combinations of boundary conditions along the radial edges and
the corresponding corner functions. In Table 2, the corner functions associated with identical bound-
ary conditions along two radial edges were determined by considering the range, −�=26 �6 �=2
and taking advantage of the problems’ symmetry. The other corner functions were determined by
considering 06 �6 �.
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Table 1
Comparison of characteristic equations for FSDPT and classical plate theory (CPT)

Case No. Boundary conditions Characteristic equations

FSDPT CPT

1 Simply supported (I)–simply (cos(� − 1)�=2)(cos(� + 1)�=2) = 0 (S∗) cos �� =−cos � (S∗)

supported (I) (sin(� − 1)�=2)(sin(� + 1)�=2) = 0 (A∗) cos �� =+cos � (A∗)

2 Clamped-free sin2 �� = 4−�2(1+)2 sin2 �
(3−)(1+) sin2 �� = 4−�2(1−)2 sin2 �

(3+)(1−)

3 Simply supported (I)–free sin 2�� = � sin 2� sin 2�� = �(1−)
−3− sin 2�

4 Simply supported (I)–clamped sin 2�� = �(1+)
−3+ sin 2� sin 2�� = � sin 2�

5 Free–free sin �� =−� sin � (S∗) sin �� =− �(1−)
−3− sin � (S∗)

sin �� = � sin � (A∗) sin �� = �(1−)
−3− sin � (A∗)

6 Clamped–Clamped sin �� =− �(1+)
−3+ sin � (S∗) sin �� =−� sin � (S∗)

sin �� = �(1+)
−3+ sin � (A∗) sin �� = � sin � (A∗)

7 Simply supported (II)–simply sin �� =−� sin � (S∗)
supported (II) sin � � = � sin � (A∗)

8 Clamped–simply supported (II) sin2 �� = 4−�2(1+)2

(3−)(1+) sin
2 �

9 Simply supported (I)–simply sin 2�� = � sin 2�
supported (II)

10 Simply supported (II)–free sin �� =±� sin �

Note: ∗S—symmetric case, A—anti-symmetric case.

Interestingly, Table 1 reveals that the characteristic equations resulting from the free radial edge
are the same as those relevant to the type II simply supported boundary conditions. This �nding
indicates that these characteristic equations are independent of the boundary conditions for W and
Q�. However, these two types of boundary conditions produced di4erent corner functions for w (see
Table 2).

For simplicity, C and F are used to denote the clamped and free boundary conditions, respectively,
while S(I) and S(II) denote types I and II simply supported boundary conditions.

As stated before, the real part of � (Re(�)) must exceed zero to satisfy the regularity condition
for the displacement components, as r approaches zero. Under this restriction, the minimum values
of Re(�) versus the vertex angle (�) for various boundary conditions are shown in Fig. 1. Numerical
results were obtained for a Poisson’s ratio of 0.3. The relationships between the moments and bending
rotations show that the stress singularities occur at the vertex when Re(�) is below one. The cusps
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Table 2
Corner functions corresponding to various boundary conditions

Case no. Boundary conditions Corner functions

1 Simply supported (I)–simply
supported (I)

(1) �r(r; �) = A3�� cos(� − 1)�;��(r; �) =−k2A3r� sin(� − 1)�

W (r; �) = �1A3r�+1 cos(� − 1)� (for cos(� − 1)�=2 = 0)

(2) �r(r; �) = A1�� cos(� + 1)�;��(r; �) =−A1r� sin(� + 1)�

W (r; �) = C1r�+1 cos(� + 1)� (for cos(� + 1)�=2 = 0)

(3) �r(r; �) = A4�� sin(� − 1)�;��(r; �) = k2A4r� cos(� − 1)�

W (r; �) = �1A4r�+1 sin(� − 1)� (for sin(� − 1)�=2 = 0)

(4) �r(r; �) = A2�� sin(� + 1)�;��(r; �) = A2r� cos(� + 1)�

W (r; �) = C2r�+1 sin(� + 1)� (for sin(� + 1)�=2 = 0)

2 Clamped–free �r(r; �) = A1r
�{cos(� + 1)� − k2!1 sin(� + 1)� − cos(� − 1)�

+!1 sin(� − 1)�}
��(r; �) = A1r

�{−sin(� + 1)� − k2!1 cos(� + 1)� + k2 sin(� − 1)�

+ k2!1 cos(� − 1)�}
W (r; �) = A1r

�+1{�1 cos(� + 1)� + !2 sin(� + 1)� − �1 cos(� − 1)�

+ �1!1 sin(� − 1)�}
!1 =− �(1−) cos(�+1)�−(k2(�−1)−�−1) cos(�−1)�

(k2(�−1)−�−1) sin(�−1)�−k2�(1−) sin(�+1)�

!2 = ((�+1)�1−1) sin(�+1)�−(��1−k2−�1)(sin(�−1)�+!1 cos(�−1)�)
(1+�) cos(�+1)� − k2!1

1+�

3 Simply supported
(I)–free

�r(r; �) = A4r�{!3 sin(� + 1)� + sin(� − 1)�}
��(r; �) = A4r�{!3 cos(� + 1)� + k2 cos(� − 1)�}
W (r; �) = A4r�+1{!4 sin(� + 1)� + �1 sin(� − 1)�}

!3 =− (1+�)(1+)
−3+�++�

sin(�−1)�
sin(�+1)�

!4 = !3 cos(�+1)�+(��1−k2−�1) cos(�−1)�
(�+1) cos(�+1)�

4 Simply supported
(I)–clamped

�r(r; �) = A4r�
{
− sin(�−1)�

sin(�+1)� sin(� + 1)� + sin(� − 1)�
}

��(r; �) = A4r�
{
− sin(�−1)�

sin(�+1)� cos(� + 1)� + k2 cos(� − 1)�
}

W (r; �) = A4�1r�+1
{
− sin(�−1)�

sin(�+1)� sin(� + 1)� + sin(� − 1)�
}

5 Free–free (1) Symmetric case

�r(r; �) = A3r�{!5 cos(� + 1)� + cos(� − 1)�}
��(r; �) = A3r�{−!5 sin(� + 1)� − k2 sin(� − 1)�}
W (r; �) = A3r�+1{!6 cos(� + 1)� + �1 cos(� − 1)�}

!5 =− k2(�−1)−�−1
�(1−)

cos(�−1)�=2
cos(�+1)�=2

!6 = !5
1+� − (��1−k2−�1) sin(�−1)�=2

(1+�) sin(�+1)�=2
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Table 2 (continued)

Case no. Boundary conditions Corner functions

(2) Anti-symmetric case

�r(r; �) = A4r�{!7 sin(� + 1)� + sin(� − 1)�}
��(r; �) = A4r�{!7 cos(� + 1)� + k2 cos(� − 1)�}
W (r; �) = A4r�+1{!8 sin(� + 1)� + �1 sin(� − 1)�}
!7 =− k2(�−1)−�−1

�(1−)
sin(�−1)�=2
sin(�+1)�=2

!8 = !7
1+� − (��1−k2−�1) cos(�−1)�=2

(1+�) cos(�+1)�=2

6 Clamped-Clamped (1) Symmetric case

�r(r; �) = A1r�{cos(� + 1)� − (cos(� + 1)�=2=cos(� − 1)�=2)cos(� − 1)�}
��(r; �) = A1r�{−sin(� + 1)� + k2(cos(� + 1)�=2=cos(� − 1)�=2) sin(� − 1)�}
W (r; �) = A1�1r�+1{cos(� + 1)� − (cos(� + 1)�=2=cos(� − 1)�=2) cos(� − 1)�}
(2) Anti-symmetric case

�r(r; �) = A2r�{sin(� + 1)� − (sin(� + 1)�=2=sin(� − 1)�=2) sin(� − 1)�}
��(r; �) = A2r�{cos(� + 1)� − k2(sin(� + 1)�=2=sin(� − 1)�=2) cos(� − 1)�}
W (r; �) = A2�1r�+1{sin(� + 1)� − (sin(� + 1)�=2=sin(� − 1)�=2) sin(� − 1)�}

7 Simply supported
(II)–simply supported (II)

(1) symmetric case

�r(r; �) = A3r�{!9 cos(� + 1)� + cos(� − 1)�}
��(r; �) = A3r�{−!9 sin(� + 1)� − k2 sin(� − 1)�}
W (r; �) = A3�1r�+1{!10 cos(� + 1)� + cos(� − 1)�}
!9 =− (1+k2)(�−1) sin(�−1)�=2

2� sin(�+1)�=2 ; !10 =− cos(�−1)�=2
cos(�+1)�=2

(2) anti-symmetric case

�r(r; �) = A4r�{!11 sin(� + 1)� + sin(� − 1)�}
��(r; �) = A4r�{!11 cos(� + 1)� + k2 cos(� − 1)�}
W (r; �) = A4�1r�+1{!12 sin(� + 1)� + sin(� − 1)�}
!11 =− (1+k2)(�−1) cos(�−1)�=2

2� cos(�+1)�=2 ; !12 =− sin(�−1)�=2
sin(�+1)�=2

8 Clamped–simply
supported (II)

�r(r; �) = A1r
�{cos(� + 1)� − k2!1 sin(� + 1)� − cos(� − 1)�

+ !1 sin(� − 1)�}
��(r; �) = A1r

�{−sin(� + 1)� − k2!1 cos(� + 1)� + k2 sin(� − 1)�

+ k2!1 cos(� − 1)�}
W (r; �) = A1r

�+1{�1 cos(� + 1)� + !13 sin(� + 1)� − �1 cos(� − 1)�

+ �1!1 sin(� − 1)�}
!13 =− �1

sin(�+1)� (cos(� + 1)� − cos(� − 1)� + !1 sin(� − 1)�)

9 Simply supported
(I)–simply supported (II)

�r(r; �) = A2r�{sin(� + 1)� + 1
!3
sin(� − 1)�}

��(r; �) = A2r�{cos(� + 1)� + (k2=!3) cos(� − 1)�}
W (r; �) = A2r�+1{ −1

1+�++� sin(� + 1)� + (�1=!3) sin(� − 1)�}
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Table 2 (continued)

Case no. Boundary conditions Corner functions

10 Simply supported
(II)–free

�r(r; �) = A1r
�{cos(� + 1)� + !14 sin(� + 1)� + !15 cos(� − 1)�

+ !16 sin(� − 1)�}
��(r; �) = A1r

�{−sin(� + 1)� + !14 cos(� + 1)� − k2!15 sin(� − 1)�

+ k2!16 cos(� − 1)�}
W (r; �) = A1r

�+1{−�1!15 cos(� + 1)� + !17 sin(� + 1)� + �1!15 cos(� − 1)�

+ �1!16 sin(� − 1)�}
!14 =− (1+k2)(�−1)

2� !16; !15 =−−3+�++�
(1+�)(1+)

!16 =− �(1−) cos(�+1)�+!15(k2(�−1)−�−1) cos(�−1)�
(−(1+k2)(�−1)=2)(1−) sin(�+1)�+(k2(�−1)−�−1) sin(�−1)�

!17 = −(1+(1+�)�1!15) sin(1+�)�+!15(��1−k2−�1) sin(�−1)�
(1+�) cos(1+�)�

+ −(1+k2)(�−1)=(2�) cos(1+�)�−(��1−k2−�1) cos(�−1)�
(1+�) cos(1+�)� !16

Fig. 1. Variation of minimum positive Re(�) with vertex angle � for FSDPT.
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in curves 1 and 6 arise from curve crossing. For example, when the vertex angle is below 180◦,
the minimum value of Re(�) for curve 6 is determined by the characteristic equation for symmetric
deformation. It is determined by the anti-symmetric case for �¿ 180◦. The nonsmooth parts of
curves 2 and 5 where the vertex angle is around 130◦ for curve 2 and 145◦ for curve 5 are not due
to curve crossing, but to the roots’ changing from real to complex numbers.

Fig. 1 indicates that, regardless of the boundary conditions around the corner, no moment singu-
larities are present if � is less than 60◦, while such singularities always occur if �¿�. A corner
with C F and C S(II) boundary conditions exhibits the strongest moment singularities for � less
than approximately 105◦, while the S(I) S(I) boundary condition leads to the strongest moment sin-
gularities for other vertex angles. A corner with S(I) S(I) and S(I) C boundary conditions exhibits
moment singularities for �¿�=2, while S(I) F, S(I) S(II), and S(II) F boundary conditions result
in moment singularities for � above around 128◦. For boundary conditions F F, S(II) S(II), and
C C, moment singularities surface at �¿�. The strength of the singularity at the vertex increases
with increasing the vertex angle, except under S(I) S(I), C F, and C S(II) boundary conditions. The
results for �=2� (a sharp crack) under F F, S(II) S(II), and C C boundary conditions yield an order
of the moment singularity at the crack tip of r−1=2. When �= 2�, the S(I) S(I) boundary condition
yields an order of r−1 for, and other boundary conditions, an order of r−3=4.

4. Singularity of shear forces

Notably, the coupled ordinary di4erential equations (Eqs. (5)) can also be solved by assuming
the following expansions into in�nite series:

 r =
∑
n=0

Qa2nr
Q�+2n+1;  � =

∑
n=0

Qb2nr
Q�+2n+1 and w =

∑
2n=0

Qc2nr
Q�+2n; (20)

where Q� can be a complex number with a positive real part to satisfy the regularity conditions for
displacement components as r approaches zero. In Eq. (20), the starting order of r in w is one less
than that for r in both  r and  �, such that the singularity of shear forces occurs in the vicinity of r
equal to zero when Re( Q�) is below unity. No moment singularity occurs. The procedure described
in the previous section requires that the coeNcients in Eq. (20) satisfy

D
2
{[− 2 + 2(2m+ 3 + Q�)2 + p2(1− )] Qa2m+2 − p[( Q�+ 2m+ 3)(1 + )− 3 + ] Qb2m+2}

+ �2Gh( Q�+ 2m+ 2) Qc2m+2 = �2Gh Qa2m; (21a)

D
2
{[3− + (1 + )( Q�+ 2m+ 3)]p Qa2m+2 + [(1− )(( Q�+ 2m+ 3)2 + p2 − 1)

+ (1 + )p2] Qb2m+2}+ �2Gh(p Qc2m+2) = �2Gh Qb2m; (21b)

[( Q�+ 2m+ 2)2 + p2] Qc2m+2 = ( Q�+ 2m+ 2) Qa2m + p Qb2m (21c)

and
D
2
{[− 2 + 2(1 + Q�)2 + p2(1− )] Qa0 + p[(1 + Q�)(1 + )− 3 + ] Qb0}+ �2Gh Q� Qc0 = 0; (22a)
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D
2
{[3−+(1+)( Q�+1)]p Qa0+[(1−)(p2−1+(1+ Q�)2)+(1+)p2] Qb0+�2Ghp Qc0=0; (22b)

( Q�2 + p2) Qc0 = 0: (22c)

To establish a nontrivial solution for the coeNcients Qa0; Qb0, and Qc0 in Eqs. (22), p must be related
to Q� by, p=± Q�i or p=±(2 + Q�)i. When p=± Q�i,

Qc0 =− D
2�2Gh

{[3− + (1 + )(1 + Q�)] Qa0 ∓ i[2(1− )− (1 + ) Q�] Qb0}; (23)

and Qa0 and Qb0 are undetermined. When p=±(2 + Q�)i; Qc0 = 0 and Qb0 =±i Qa0.
Consequently, the general asymptotic form for the displacement components near the vertex can

be expressed as

�r(r; �) = [ QA1 cos Q��+ QA2 sin Q��+ QA3 cos(2 + Q�)�+ QA4 sin(2 + Q�)�]r
Q�+1 + O(r

Q�+3); (24a)

��(r; �) = [ QB1 cos Q��+ QB2 sin Q��+ QA4 cos(2 + Q�)�− QA3 sin(2 + Q�)�]r
Q�+1 + O(r

Q�+3); (24b)

W (r; �) = [Ql1( QA1 cos Q��+ QA2 sin Q��) + Ql2( QB2 cos Q��− QB1 sin Q��)]r
Q� + O(r

Q�+2); (24c)

where

Ql1 =
−D

2�2Gh
(3− + (1 + )(1 + Q�)) and Ql2 =

D
2�2Gh

(2(1− )− (1 + ) Q�):

The coeNcients QA1; QA2; QA3; QA4; QB1, and QB2 are determined from the boundary conditions.
Let us consider a sector plate with type I simply supported (Eq. (15c)) radial edges, to demon-

strate �nding the characteristic equation for Q�, and determining the corresponding corner functions.
By symmetry, substituting Eqs. (24) into Eq. (15c) yields the following equations for symmetric
deformation:

Ql1 QA1 cos Q��=2 + Ql2 QB2 cos Q��=2 = 0; (25a)

QA1 cos Q��=2 + QA3 cos Q��=2 = 0; (25b)

(1 + +  Q�) QA1 cos Q��=2 + (1 + Q�)(− 1) QA3 cos( Q�+ 2)�=2 + QB2
Q� cos Q��=2 = 0: (25c)

The following characteristic equation ensures a nontrivial solution for QA1; QA3, and QB2:

(cos Q��=2)2 cos( Q�+ 2)�=2 = 0: (26)

When cos Q��=2=0, Eqs. (25) result in QA3=0, and leave QA1 and QB2 undetermined. The corresponding
corner functions are

�r(r; �) = QA1�
Q�+1 cos Q��; ��(r; �) = QB2r

Q�+1 sin Q��; W (r; �) = r
Q�(Ql1 QA1 + Ql2 QB2) cos Q��: (27)

When cos ( Q�+ 2)�=2 = 0, Eqs. (25) result in QA1 = QB2 = 0 and leave QA3 undetermined, so that the
coeNcient of r Q� in Eq. (24c) equals zero. The solution obtained from Eqs. (20) degenerates to the
form of Eq. (6), yielding no singularities of shear forces. Consequently, cos( Q�+ 2)�=2 = 0 is not a
characteristic equation for the shear-force singularity.
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Similarly, Q� must satisfy the following equation to ensure a nontrivial solution for anti-symmetric
deformation:

(sin Q��=2)2 sin( Q�+ 2)�=2 = 0: (28)

Again, sin( Q� + 2)�=2 = 0 yields QA2 = QB1 = 0, such that the solution given by Eq. (20) degenerates
into the form of Eq. (6). When sin Q��=2 = 0, the corresponding corner functions are

�r(r; �) = QA2�
Q�+1 sin Q��; ��(r; �) = QB1r

Q�+1 cos Q��; W (r; �) = r
Q�(Ql1 QA2 − Ql2 QB1) sin Q��: (29)

The characteristic equations of Q� and the corresponding corner functions for various boundary
conditions can be derived by following the procedure given above. Table 3 collates the characteristic
equations for Q�, resulting in singularities of shear forces, and the corresponding corner functions for
various boundary conditions. Notably, for example, neither the corner functions given by Eq. (29)
nor the corresponding characteristic equation of Q� are listed in Table 3, because the positive roots
of that characteristic equation, sin Q��=2 = 0, exceed one and do not lead to a singularity of shear
forces.

Notably, the characteristic equations for Q� corresponding to the boundary conditions C C and
S(I) C result in the leading order of �� in Eq. (24b) vanish.
The positive roots of the characteristic equations in Table 3 are easily determined. The positive

roots of cos Q��=2 = 0 are Q� = (2n + 1)�=� and n = 0; 1; 2; : : : ; such that a shear-force singularity is
produced when �¿�. The positive roots of cos Q�� = 0 and sin Q�� = 0 are Q� = (2n + 1)�=2� and
Q� = (n + 1)�=�, respectively, with n = 0; 1; 2; : : : : Consequently, these roots result in a shear-force
singularity when �¿�=2 and when �¿�, respectively. Fig. 2 presents the smallest positive roots
for each characteristic equation as � is varied.

Positive roots of characteristic equations, smaller than unity, lead to singularities of shear forces
with the singular order of Q� − 1. Fig. 2 reveals that if the boundary conditions around the vertex
produce shear-force singularities, those singularities are stronger for a larger �. Of all the various
boundary conditions, C F, S(I) F, and S(II) F cause the strongest singularities for shear forces at
the vertex.

5. Comparisons

The singularity behaviors of moments and shear forces from type I simply supported boundary
conditions are compared with those obtained by Huang et al. [15], to verify the derivation in this
study. Those authors developed an exact solution in terms of Bessel functions for the free vibrations
of Mindlin sectorial plates with simply supported radial edges. Their results indicated that when
�=2¡�¡�, the singularity order of moments is �=�− 2, and no shear-force singularity is present.
When �¡�6 3�=2 and 3�=26 �¡ 2�, the singularity orders of moments are −�=� and 2�=�− 2,
respectively. When �¡�¡ 2�, the singularity order of shear forces is �=�− 1.
According to curve 6 in Fig. 1, which presents the smallest positive Re(�) for S(I) S(I); the

minimum Re(�) for �6 � is obtained from the roots of cos(�+1)�=2=0 and is equal to �=�=�−1,
while for �¡�6 3�=2, the minimum Re(�) is obtained from the roots of cos(� − 1)�=2 = 0 and
is equal to �=−�=�+ 1. Furthermore, for 3�=26 �¡ 2�, the minimum Re(�) is determined from
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Table 3
Characteristic equations and the corresponding corner functions for the singularities of shear forces

Case Boundary Characteristic Corner functions
no. conditions equations

1 S(I)–S(I) cos Q��=2 = 0 (S∗) �r(r; �) = QA1�
Q�+1 cos Q��; ��(r; �) = QB2r

Q�+1 sin Q��

W (r; �) = r
Q�( Ql1 QA1 + Ql2 QB2) cos Q� �

2 C–F cos Q�� = 0 �r(r; �) = QA1r
Q�+1{cos Q�� + Q!1 sin Q�� − cos(2 + Q�)� + Q!2 sin(2 + Q�)�}

��(r; �) = QA1r
Q�+1{− Q!2 cos Q�� − Ql1

Ql2
sin Q�� + Q!2 cos(2 + Q�)� + sin(2 + Q�)�}

W (r; �) = QA1( Ql1 Q!1 + Ql2 Q!2)r
Q� sin Q��

Q!1 =−−(1+ Q�)(−1) cos( Q�+2)�+ Q!2((1+ Q�)(−1) sin( Q�+2)�+ Q� sin Q� �)
(1++ Q�) sin Q��

Q!2 = (1+ Ql1= Ql2) Q� sin Q��−2(1+ Q�) sin( Q�+2)�

2(1+ Q�)cos( Q� +2)�

3 S(I)–F cos Q�� = 0 �r(r; �) = QA2r
Q�+1 sin Q��; ��(r; �) =

(1++ Q�)
Q�

QA2r
Q�+1 cos Q� �

W (r; �) = QA2

(
Ql1 − Ql2(1++ Q�)

Q�

)
r
Q� sin Q��

4 S(I)–C sin Q�� = 0 �r(r; �) = QA2r
Q�+1 sin Q��; W (r; �) = QA2 Ql1r

Q� sin Q��

5 F–F cos Q��=2 = 0 (A∗) �r(r; �) = QA2r
Q�+1 sin Q��; ��(r; �) =

(1++ Q�)
Q�

QA2r
Q� +1 cos Q��

W (r; �) = QA2

(
Ql1 − Ql2(1++ Q�)

Q�

)
r
Q� sin Q��

6 C–C cos Q��=2 = 0 (S∗) �r(r; �) = QA1�
Q�+1 cos Q��; W (r; �) = QA1 Ql1r

Q� cos Q��

7 S(II)–S(II) cos Q��=2 = 0 (S∗) �r(r; �) = QA1�
Q�+1 cos Q��; ��(r; �) = QA1r

Q�+1 sin Q��

W (r; �) = QA1( Ql1 + Ql2)r
Q� cos Q��

8 C–S(II) sin Q�� = 0 �r(r; �) = QA1r
Q�+1{cos Q�� + Q!3 sin Q�� − cos(2 + Q�)� + Q!4 sin(2 + Q�)�}

��(r; �) = QA1r
Q�+1

{
− Q!4 cos Q�� − Ql1

Ql2
sin Q�� + Q!4 cos(2 + Q�)� + sin(2 + Q�)�

}
W (r; �) = QA1( Ql1 Q!3 + Ql2 Q!4)r

Q� sin Q��

Q!3 =− 2(1+ Q�) sin( Q�+2)�+ Q!4(2(1+ Q�) cos( Q�+2)�− Q� cos Q��)
Q� cos Q� �

Q!4 =− (1++ Q�) cos Q��−(1+ Q�)(−1) cos(2+ Q�)�−( Ql1= Ql2) Q� cos Q��

(1+ Q�)(−1) sin(2+ Q� )�

9 S(I)–S(II) sin Q�� = 0 �r(r; �) = QA2r
Q�+1 sin Q��

��(r; �) =− QA2r
Q�+1 cos Q��

W (r; �) = QA2( Ql1 + Ql2)r
Q� sin Q��

10 S(II)–F cos Q�� = 0 �r(r; �) = QA1r
Q�+1{cos Q�� + Q!5 sin Q�� + Q!6 cos(2 + Q�)� + Q!7 sin(2 + Q�)�}

��(r; �) = QA1r
Q�+1

{
Q!8 cos Q�� − Ql1

Ql2
sin Q�� + Q!7 cos(2 + Q�)� − Q!6 sin(2 + Q�)�

}
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Table 3 (continued)

Case Boundary Characteristic Corner functions
no. conditions equations

W (r; �) = QA1( Ql1 Q!5 − Ql2 Q!8)r
Q� sin Q��

Q!5 =− Q!6(1+ Q�)(−1) cos( Q�+2)�+ Q!7(1+ Q�)(−1) sin( Q�+2)�+2(1+ Q�) Q!7 sin Q��

(1++ Q�+ Q�) sin Q� �

Q!6 =− 1++ Q�−( Ql1= Ql2) Q�

(1+ Q� )(−1)

Q!7 = (1+ Ql1= Ql2) Q� sin Q��+2 Q!6(1+ Q�) sin(2+ Q�)�

2(1+ Q�) cos(2+ Q� )�

Q!8 =−
(
Q!5 + 2(1+ Q�) Q!7

Q�

)
Note: ∗S—symmetric case, A—anti-symmetric case.

Fig. 2. Variation of minimum positive Q� with vertex angle � for FSDPT.

the roots of sin(� + 1)�=2 = 0 and is equal to � = 2�=� − 1. Consequently, our results display the
exactly same singularity behaviors of moments as did those of Huang et al. [15].

Fig. 2 indicates that, for the shear-force singularities, the smallest positive Q� under S(I) S(I)
boundary conditions is equal to �=�, corresponding exactly to the same shear-force singularities as
found by Huang et al. [15].
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The characteristic equations from FSDPT can be interestingly compared with those from three-
dimensional elasticity theory. Hartranft and Sih [20] obtained the following characteristic equations
for a complete free wedge, according to a three-dimensional elasticity approach:

sin ��= � sin �; (30a)

sin ��= � sin �; (30b)

�= 2n�=� (30c)

or �= (2n+ 1)�=�; (30d)

where n=0; 1; 2; 3 : : : : Notably, Eq. (30c) results in no stress singularities because � exceeds unity.
The characteristic equations (30a) and (30b), and the values of � speci�ed by Eq. (30d) are exactly
the same as those obtained in the present study for F F boundary conditions (see Tables 1 and 3).

Table 1 also presents the characteristic equations of CPT for various boundary conditions given
by Williams [4], to compare the singularity behaviors from the FSDPT with those from CPT. At
�rst sight, one might conclude that with the same boundary conditions the characteristic equations
for FSDPT are completely di4erent from those for CPT. However, carefully investigating the case
for S(I) S(I) boundary conditions, reveals that both theories give the same characteristic equations
for this case. Using trigonometric identities, (cos(� − 1)�=2)(cos(� + 1)�=2) = 0 can be reduced
to cos �� = −cos �, and (sin(� − 1)�=2)(sin(� + 1)�=2) = 0 can be reduced to cos �� = +cos �.
Interestingly, some of the characteristic equations for CPT have appeared in FSDPT, but with di4erent
boundary conditions. For example, the characteristic equation for S(I) C boundary conditions in CPT
is equivalent to that for S(I) F boundary conditions in FSDPT. Fig. 3 plots the minimum positive
values of Re(�) for di4erent � from the characteristic equations for CPT, not shown in FSDPT, to
compare the singularity orders under the same boundary conditions.

Fig. 3 shows that for C F boundary conditions, FSDPT exhibits stronger moment singularity than
the classical plate theory exhibits for � less than approximately 130◦, while for � larger than 130◦, the
opposite is observed. For S(I) F boundary conditions, FSDPT presents stronger moment singularity
than does CPT for 180◦ ¡�¡ 270◦, while the opposite holds for other value of �. Fig. 3 also
shows that FSDPT has stronger moment singularity than has CPT under F F boundary conditions.
Furthermore, comparing curves 4 and 3 of Fig. 1 reveals that for S(I) C boundary conditions, CPT
has stronger moment singularity than has FSDPT for 180◦ ¡�¡ 270◦, while the opposite holds for
other values of �. Comparing curves 6 and 5 in Fig. 1 shows that for C C boundary conditions,
CPT has stronger moment singularity than has FSDPT.

CPT does not account for shear deformation so the shear forces are determined from the equi-
librium equations. The shear-force singularity is always stronger than the moment singularity. The
singularity order of shear forces is one below that for moments. Subsequently, the shear-force sin-
gularity for CPT is stronger than that for FSDPT.

The characteristic equations for cases 1–6 in Table 1 are exactly the same as the results ob-
tained by Burton and Sinclair [14] for Reissner’s theory, but with somewhat di4erent expressions.
However, these authors did not consider the boundary conditions in cases 7–10 in Table 1 in this
paper. Moreover, no shear-force singularity is contained in their solution, exposing their solution’s
incompleteness.
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Fig. 3. Comparison of minimum positive Re(�) for FSDPT and CPT.

Finally, the characteristic equations for C C, C F, and F F given in Table 1 obtained in this work,
are exactly the same as those for plates under extension with the same boundary conditions, as were
obtained by Williams [5].

6. Concluding remarks

This investigation has presented the Williams-type asymptotic solution at a corner of a thick
plate with various boundary conditions using an eigenfunction expansion technique to solve the
three partial di4erential equations for displacement components in FSDPT. The characteristic equa-
tions for determining the singularity orders for moments and shear forces at the corner, with
corresponding corner functions for various boundary conditions, were also fully developed. No-
tably, under identical boundary conditions, the equations characterizing the singularity behaviors
of moments are totally di4erent from those characterizing the singularity behaviors of shear
forces.
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The validity of the solution was con�rmed by comparing the moment and shear-force singularity
behaviors for type I simply supported conditions with those from the exact solution of free vibrations
of a sector plate with the same boundary conditions along radial edges. Furthermore, the obtained
characteristic equations for a free–free boundary condition were consistent with those for a completely
free wedge from three-dimensional elasticity solution.

The characteristic equations for FSDPT are completely di4erent from those for the classical thin
plate theory, except in the case of simply supported (S(I)) radial edges. The boundary conditions and
the vertex angle determine which theory, FSDPT or CPT, produces a stronger moment singularity.
Nevertheless, the classical theory always leads to a stronger shear-force singularity than does the
FSDPT because the former does not consider the shear deformation.

The obtained characteristic equations demonstrate that the free boundary condition and the type II
simply supported boundary condition a4ect the moment singularity in the same way. The presented
results also show that the radial boundary conditions generate no moment singularity when the
vertex angle is below approximately 60◦, while moment singularity always occurs when the vertex
angle exceeds 180◦. C F boundary conditions produce the strongest moment singularity among the
various boundary conditions when the vertex angle is less than approximately 105◦, while S(I)-S(I)
boundary conditions lead to the strongest singularity for other angles. The �xed radial edges generate
the weakest moment singularity.

The shear-force singularity generated by various boundary conditions occurs only when the ver-
tex angle exceeds 90◦. The radial C F, S(I) F, or S(II) F boundary conditions result in the same
shear-force singularity as occurs when the vertex angle is larger than 90◦.

The corner functions corresponding to various boundary conditions presented here can be applied
to numerical analysis for the complex problems of moderately thick plates with corner singularities.
McGee et al. [22] and Leissa et al. [3] applied the Ritz method using the corner functions for
classical plate theory as admissible functions to examine the free vibrations of skewed plates and
sectorial plates.
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