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Expectation and Maximization Algorithm
for Estimating Parameters of a Simple

Partial Erasure Model
Tsai-Sheng Kao and Mu-Huo Cheng

Abstract—The identification of the model parameters of a
high-density recording channel generally requires solution of
nonlinear equations. In this paper, we apply the expectation and
maximization (EM) algorithm to realize the maximum likelihood
estimation of the parameters of a simple partial erasure model,
including the reduction parameters and the isolated transition
response. The algorithm that results from this approach iteratively
solves two least-squares problems and, thus, realization is simple.
Computer simulations verify the feasibility of the EM algorithm,
and show that the proposed algorithm has fast convergence and
the resulting estimator is asymptotically efficient.

Index Terms—Expectation and maximization algorithm, least-
squares methods, maximum-likelihood estimation, Monte Carlo
methods, simple partial erasure model.

I. INTRODUCTION

A S RECORDING densities grow in magnetic storage,
nonlinear distortions become the primary factors to limit

the detector performance. Nonlinear distortions in magnetic
storage are mainly the nonlinear transition shift and the partial
erasure. A magnetic recording channel model that represents
nonlinear distortions accurately enables one to design an im-
proved detector [1]–[3]. Several models have been presented
to characterize the nonlinear distortions [4]–[6]. It is known
that if the channel model is more complicated, the complexity
of detector for the model may be prohibitively higher. A
simple partial erasure model [7], which is simplified from the
transition-width-reduction model in [4], is shown to preserve
sufficient accuracy and is much simpler than the other models,
and, thus, is often adopted to design the detector.

Accurate estimation of model parameters is crucial in de-
signing a detector of high performance such that high recording
density can be achieved. Techniques widely used for identifying
nonlinear distortions are the echo extraction method using pseu-
dorandom binary sequence input [8], the autocorrelation method
[9], the frequency domain nonlinear measurement method [10],
and an adaptive technique using the stochastic gradient [11].
These methods, however, either require the input with a special
pattern, or have to compute the gradient vector and determine
the step size; thus, the complexity is often high and the conver-
gence is not assured.
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In this paper, we focus on the simple partial erasure model
and apply the expectation and maximization (EM) algorithm
[12]–[14] for estimating the model parameters, including the
reduction parameters and samples of the isolated transition re-
sponse. The EM algorithm ensures the convergence and obtains
the maximum-likelihood (ML) estimates of the channel parame-
ters [15]. At each iteration, the EM algorithm is required to solve
two least-squares problems. Thus, the EM algorithm for this
problem has simple realization. Simulation results also demon-
strate that fast convergence speed of the proposed algorithm is
obtained.

The rest of paper is arranged as follows. In Section II, a simple
partial erasure model is reviewed and the sampled output in
terms of the model parameters is formulated. In Section III, the
problem is first formulated as the joint ML estimation of the
model parameters. Then, the EM algorithm is applied to solve
the joint ML estimation iteratively. In Section IV, the feasibility
of the EM algorithm is verified by computer simulations. Fi-
nally, a conclusion is given in Section V.

II. SIMPLE PARTIAL ERASURECHANNEL MODEL

Assume that the nonlinear transition shift has been elimi-
nated by the precompensation technique [16]. In terms of the
simple partial erasure model, the playback signal of a high-den-
sity recording channel can be expressed as

(1)

where the effective transition-width ratio is determined by
the neighboring transitions and is given by

(2)

The nonreturn-to-zero-inverted (NRZI) modulated inputwith
the period may be of values . The term rep-
resents the isolated transition response, which is often modeled
as the Lorentzian function

(3)

where the normalized density quantifies the recorded bit
density. Note that here we assume is unknown and its sam-
ples are to be estimated. The last term in (1) represents the
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measurement noise. The simple partial erasure model character-
izes the channel nonlinearity by the reduction parametersand

; when , the model is reduced to a linear model.
The simple partial erasure model commonly sets . Here,
we use two independent variables to represent the model; thus,
the modeling flexibility is enhanced.

The sampled output can be obtained from (1)

(4)

(5)

where , , and is chosen such that
for are small enough to be neglected.

Denote , , and
, where the subscript rep-

resents the transpose operation; then, the sampled output (5) can
be rewritten as follows:

(6)

This formulation illustrates the relation between the output
and the isolated transition response. We can obtain another
expression emphasizing the effect of reduction parameters to
represent the sampled output as

(7)

where , , and

(8)

where

otherwise
(9)

(10)

where

otherwise
(11)

(12)

where

otherwise.
(13)

Note that the formulation (7) expresses the relation between the
output and the reduction parameters. The two different
expressions (6) and (7) of the output sample will be used in the

application of the EM algorithm. In (6), the reduction parame-
ters are buried in the data vector , while in (7), the isolated
transition response are buried in the coefficient vector .

The problem considered here is to estimate the isolated tran-
sition response and the reduction parametersfrom the given

samples under the assumption that all concerned
s are known. In Section III, we shall derive how the EM algo-

rithm is applied to obtain the estimates ofand .

III. JOINT ML ESTIMATION OF MODEL PARAMETERS

VIA EM ALGORITHM

In this section, the ML estimation of the model parameters is
first formulated. Then, the direct solution using this formulation
is shown to require for solving highly nonlinear and intractable
equations. Finally, the EM algorithm for realizing the estimator
is derived and discussed.

A. ML Estimator

Using the representation (6) to express thesample data in
a matrix form, we obtain

(14)

where the sample data vector , the noise
vector , and the matrix .
Assume that the noise sample data are identically independent
Gaussian distribution with zero-mean and of variance. The
likelihood function is thus derived

(15)

where . The ML estimates of and can be
obtained directly by solving the equations derived by setting the
derivatives of the logarithm of the likelihood function (15) with
respect to and to zeros. Note that the reduction parameters

are buried in the data matrix , so this approach is required
to solve nonlinear and intractable equations. Therefore, a better
algorithm should be developed.

B. EM Algorithm for Estimating Model Parameters

The EM algorithm, developed in 1976 [12], is well known for
its power to solve nonlinear intractable ML problems via itera-
tions of two simple steps: the expectation step (E-step), and the
maximization step (M-step). Besides the ensured convergence,
the EM algorithm often demands low realization complexity.
Here, we apply the EM algorithm for finding the ML estimates
of and . The E-step is formulated for estimating the reduc-
tion parameters, then the M-step is used to obtain the estimate
of .

Using the terminology in [12], we set the reduction parame-
ters as the hidden data; the measurement datais incomplete
because we cannot obtain the ML estimate ofvia without
knowing the hidden data. The main theme of the EM algo-
rithm is on the following auxiliary function:

(16)

(17)
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where denotes the expectation operator. Given an initial
estimate of the parameter , the E-step in the EM algorithm
evaluates the auxiliary function , yielding the byproduct

, the estimate of . The M-step then finds the estimate of
for maximizing the auxiliary function . This estimate of

in the M-step is used again in the E-step asfor evaluating
the auxiliary function; then the M-step follows. Such iteration
continues until the estimates converge. The convergence value
of the estimate in the M-step and the byproductin the E-step
are the desired results. It is shown in [15] that at each iteration
in the EM algorithm, these estimated parameters are obtained so
that the likelihood function in (15) is nondecreasing, and, thus,
the convergence is guaranteed.

As seen from (17), different realization algorithms of the EM
algorithm emerged when different distributions of the hidden
data are assumed. Here, we assume thatis an unknown, deter-
ministic vector, then the detailed algorithm and its derivation of
using the EM algorithm for our problem are briefly discussed
as follows.

Step 1. Initialization:

Given an initial estimate ĥhh.

Step 2. E-step (Expectation):

Using the representation (7) and the estimate ĥhh, we

can express the N measurements in the matrix form

yyy = x̂xx+ ĈCC���+ nnn (18)

where ĈCC = [ĉcc ; . . . ; ĉcc ] , x̂xx = [x̂ ; . . . ; x̂ ] , and ĉcc , x̂ are

obtained using (9) –(13) with h replaced by ĥ . Then

the estimate of ��� is derived by the least-squares

method, yielding

�̂�� = (ĈCC ĈCC) ĈCC (yyy � x̂xx): (19)

Since ��� is assumed deterministic and the noise

sample data are independent normal distributed,

using the representation (6) and replacing ��� by �̂�� we

obtain the Q function (17)

Q(hhhjĥhh) = K(yyy yyy � 2yyy D̂DD hhh+ hhh D̂DD D̂DDhhh) (20)

where K is a constant and D̂DD is obtained using (5) ,

(6) and (14) with ��� replaced by �̂��.

Step 3. M-step (Maximization):

Once the Q is obtained, the M-step is to find the

estimate hhh for maximizing the function, resulting in

ĥhh = (D̂DD D̂DD) D̂DD yyy: (21)

The EM-algorithm iteratively executes the E-step and M-step
until convergence. The convergence is often checked by eval-
uating the measure of the difference between the estimated
parameters of successive iterations. When the measure is less
than a predetermined value, the iteration terminates. The com-
putational flow chart of the EM algorithm for estimating the
parameters of a simple partial erasure model is depicted in
Fig. 1.

Fig. 1. Computational flowchart of the EM algorithm.

Fig. 2. Averaged output square error versus iterations of a simulation run.

IV. COMPUTERSIMULATIONS

In this section, the EM algorithm is demonstrated to ac-
curately estimate the parameters of a simple partial erasure
model by computer simulations. Assume that the model has a
Lorentzian isolated transition response with and
the reduction parameters and . The number
of samples for modeling the isolated transition response is set
to be 21, i.e., . The data s are obtained by NRZI
encoding of a random signal of equal probability on two values

. The number of the sample data is . The
signal power, given the model settings, can be analytically
obtained to be 0.5921. The signal-to-noise ratio (SNR), defined
as , is set to be 20 dB; hence,
the noise variance is equal to 0.005 921.

The EM algorithm discussed above with zeros as the initial
estimate is simulated. The simulation results of one typical run
are shown in Figs. 2–4. Fig. 2 depicts the average square output
error, defined as , where is the output
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Fig. 3. Samples of the actual isolated transition response and its estimates
obtained at the eighth iteration of a simulation run.

Fig. 4. (a)
̂ versus iterations of a simulation run (b)
̂ versus iterations of
a simulation run.

of the identified model versus the iteration. Note that theaxis is
in log-scale and the noise power is also shown in a dashed line.
This result indicates that the algorithm converges rapidly in a
few iterations, and the convergent average square error is close
to the noise variance. The algorithm terminates at the eighth
iteration when the predetermined error measure, defined as the
2-norm of the difference between the present and the previous
estimates of , is set to 10 . The samples of the actual isolated
transition response and its estimates, obtained at the eighth
iteration, are shown in and in , respectively, in Fig. 3. The
estimated reduction parametersand at each iteration are
also depicted in in Fig. 4(a) and (b). From these simulations,
the estimated samples of the isolated transition response and
the reduction parameters are very close to the true ones, which
verifies the proposed method.

TABLE I
ESTIMATED ERRORVARIANCE OF EACH REDUCTION PARAMETER AND ITS

CRAMÉR-RAO BOUND UNDER VARIOUS SNRS

Fig. 5. (a) Estimated error variance of
 versus the number of data samples.
(b) Estimated error variance of
 versus the number of data samples.

We also demonstrate by simulation that the joint ML esti-
mator of the model parameters is asymptotically efficient. For
simplicity, we shall only show the error variance of each re-
duction parameter, obtained by Monte Carlo simulations using
the average of 100 independent runs. The simulation results
under various SNRs are listed in Table I. As shown in the table,
each error variance is in the same order as the Cramér-Rao
bound. Also shown in Fig. 5, under SNR of 20 dB increasing the
number of data samples decreases the discrepancy between the
obtained error variance and the Cramér-Rao bound. When the
data sample number equals 5000, the error variances ofand

are nearly equal to their corresponding Cramér-Rao bounds,
respectively. These results show that the proposed algorithm for
estimating the parameters of a simple partial erasure model is
asymptotically efficient.

V. CONCLUSION

The EM algorithm has been successfully applied for es-
timating the parameters of a simple partial erasure model,
including the reduction parameters and the isolated transition
response. This approach not only avoids solving the nonlinear
equations but provides an effective way to identify accurately
the model parameters. The resulting algorithm is an iteration
of solving two least-squares problems; hence, its realization
is simple. Simulation results also show that the convergence
is fast and the resulting estimator is asymptotically efficient.
This algorithm can estimate the model parameters rapidly and
accurately and, thus, is expected to improve the performance
of high-density magnetic recording.
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