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Expectation and Maximization Algorithm
for Estimating Parameters of a Simple
Partial Erasure Model

Tsai-Sheng Kao and Mu-Huo Cheng

Abstract—The identification of the model parameters of a In this paper, we focus on the simple partial erasure model
high-density recording channel generally requires solution of and apply the expectation and maximization (EM) algorithm
nonl!ngartgquaé&ns.lln t.':'hs p.ta\per, ‘l’."e a;ﬁply the expelc_tkatll_?]n adnd [12]-[14] for estimating the model parameters, including the
?S?i)ﬂqrglﬂz;n'%? ghe z;:rg?nr:aterps gfrgaslizrﬁpleeprgﬁﬂn;rgsbrg Im%%lel, reduction parameters .and samples of the isolated transition re-
including the reduction parameters and the isolated transiton SPonse. The EM algorithm ensures the convergence and obtains
response. The algorithm that results from this approach iteratively the maximume-likelihood (ML) estimates of the channel parame-
solves two least-squares problems and, thus, realization is simple.ters [15]. At each iteration, the EM algorithm is required to solve
Computer simulations verify the feasibility of the EM algorithm, ./ least-squares problems. Thus, the EM algorithm for this
?hned rséhsmﬁgategﬁngigf(?:egsimggg|Tyase;fia§2ﬁf nvergence and problem has simple realization. Simulation results also de.mon.—

strate that fast convergence speed of the proposed algorithm is
obtained.

The rest of paperis arranged as follows. In Section Il, a simple
partial erasure model is reviewed and the sampled output in
terms of the model parameters is formulated. In Section lll, the
. INTRODUCTION problem is first formulated as the joint ML estimation of the

S RECORDING densities grow in magnetic storagdnodel parameters. Then, the EM algorithm is applied to solve
A nonlinear distortions become the primary factors to limfhe joint ML estimation iteratively. In Section IV, the feasibility
the detector performance. Nonlinear distortions in magneé the EM algorithm is verified by computer simulations. Fi-
storage are mainly the nonlinear transition shift and the partRlly. & conclusion is given in Section V.
erasure. A magnetic recording channel model that represents
nonlinear distortions accurately enables one to design an im- |l SIMPLE PARTIAL ERASURE CHANNEL MODEL

proved detector [1]-{3]. Several models have been presentethssume that the nonlinear transition shift has been elimi-
to characterize the nonlinear distortions [4]-[6]. It is knowRated by the precompensation technique [16]. In terms of the
that if the channel model is more complicated, the complexi§ymple partial erasure model, the playback signal of a high-den-

of detector for the model may be pr0h|b|t|Ve|y hlghel’ %ny recording channel can be expressed as
simple partial erasure model [7], which is simplified from the

transition-width-reduction model in [4], is shown to preserve y(t) = Zrkbkh(t —kT) 4+ n(t) 1)

sufficient accuracy and is much simpler than the other models, k

and, thus, is often .adopted to design the dgtector.. ., where the effective transition-width ratig. is determined by
Accurate estimation of model parameters is crucial in d?ﬁe neighboring transitions and is given by

signing a detector of high performance such that high recording

Index Terms—Expectation and maximization algorithm, least-
squares methods, maximume-likelihood estimation, Monte Carlo
methods, simple partial erasure model.

density can be achieved. Techniques widely used for identifying 1, by 1=0bry1=0
nonlinear distortions are the echo extraction method using pseu- e =< 71, |br—1|# |bk+1] (2)
dorandom binary sequence input [8], the autocorrelation method Yo, |bk—1] = |bkr1| = 2.

[9], the frequency domain nonlinear measurement method [10], . _ .
and an adaptive technique using the stochastic gradient [L1]€ honreturn-to-zero-inverted (NRZI) modulated injutvith

These methods, however, either require the input with a spedi3f Periodl” may be of valueg+2, 0, —2}. The termh(¢) rep-
pattern, or have to compute the gradient vector and determ[§sents the |so_lated transmon response, which is often modeled
the step size: thus, the complexity is often high and the conv&? the Lorentzian function

gence is not assured h(t) =

- 2
2t
. . . 1+ (Pw50>
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National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C. (e-mail; . . .
mhcheng@ce.nctu.edu.tw). density. Note that here we assufie) is unknown and its sam-
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measurement noise. The simple partial erasure model characgplication of the EM algorithm. In (6), the reduction parame-

izes the channel nonlinearity by the reduction parameteasid tersA are buried in the data vectdy,, while in (7), the isolated

~v2; wheny; = v = 1, the model is reduced to a linear modeltransition responsk are buried in the coefficient vectey,.

The simple partial erasure model commonly sgts- v7. Here, The problem considered here is to estimate the isolated tran-

we use two independent variables to represent the model; thsiipn responsé and the reduction parameter$rom the given

the modeling flexibility is enhanced. N samplesyy, . .., yn under the assumption that all concerned
The sampled output,, = y(m1") can be obtained from (1) bs are known. In Section I, we shall derive how the EM algo-

rithm is applied to obtain the estimatesmandA.

Ym = Z Tm_kbm_kh(kT) + n(mT) (4)
k Ill. JOINT ML ESTIMATION OF MODEL PARAMETERS
L VIA EM ALGORITHM
= > Tm-kbmkhi + nm (5) , , o :
Pty In this section, the ML estimation of the model parameters is

_ first formulated. Then, the direct solution using this formulation
whereh;, = h(kT), n,, = n(mT), andL is chosen such that js shown to require for solving highly nonlinear and intractable

h(kT) for k > L are small enough to be neglected. equations. Finally, the EM algorithm for realizing the estimator
Denoteh = [h_g,...,ho,...,hr]", dn = rmbm, and is derived and discussed.
dp = [dpmir, o dm,. .., dm_1]F, where the subscrifft rep-
resents the transpose operation; then, the sampled output (5)&aML Estimator
be rewritten as follows: Using the representation (6) to express thesample data in
v = d" b+ 1. ©) a matrix form, we obtain
i o : y=Dh+n (14)
This formulation illustrates the relation between the outpit
and the isolated transition resporfseWe can obtain another where the sample data vectpr = [y1,...,y~]?, the noise
expression emphasizing the effect of reduction parametersvétorn = [n4,...,ny]%, and the matrix® = [d;,...,dx]%.
represent the sampled output as Assume that the noise sample data are identically independent
. Gaussian distribution with zero-mean and of varianéeThe
Ym = Tm + €A + N (7)  likelihood function is thus derived
whereX = [v1,72]", em = [@m, Bm]”, and N <—_1 _ 2>
i p(y | h)‘> (\/%O')N exXp 202 ”y Dh||2 (15)
Tm = Y bmkfi(bmr—1: bmkr1) b (8) where|jz||, = VzTz. The ML estimates oh and A can be
k=-L obtained directly by solving the equations derived by setting the
where derivatives of the logarithm of the likelihood function (15) with
respect tch and to zeros. Note that the reduction parameters
F1(bm—k—1,bm_1y1) A are buried in the data matrii, so this approach is required
1, byt = bpeipr =0 to solve nonlinear and intractable equations. Therefore, a better
=494 - (9)  algorithm should be developed.
{ 0, otherwise 9 p
L . . .
o, = Z b fo(Brn 1 b ) (10) B. EM Algorlthr.n for Estimating 'Model Paran?eters
) The EM algorithm, developed in 1976 [12], is well known for
its power to solve nonlinear intractable ML problems via itera-
where tions of two simple steps: the expectation step (E-step), and the

maximization step (M-step). Besides the ensured convergence,
Fo(bm—ri=1,bm—k41) the EM algorithm often demands low realization complexity.
- { L, |bm—k—_1| # [bm—k+1] (11) Here, we apply the EM algorithm for finding the ML estimates
0, otherwise of h and\. The E-step is formulated for estimating the reduc-
L tion parameter, then the M-step is used to obtain the estimate
/Bm = Z bm—ka(bm—k—lvbm—k+l)hk (12) of h.
k=—L Using the terminology in [12], we set the reduction parame-
where ters as the hidden data; the measurement gasancomplete
because we cannot obtain the ML estimatéiofia y without
Falb b ) = { L, |bm-r-1| = |bm—r+1]=2  knowing the hidden datA. The main theme of the EM algo-
Smh= b Bm=k 17 0, otherwise. ithm is on the following auxiliary function:
; (1) ri g y
Note that the formulation (7) expresses the relation between the Q(h|fz) =FE[logp(y,A | h) |y, fz] (16)
outputy,, and the reduction parameteks The two different .
expressions (6) and (7) of the output sample will be used in the = //\ log p(y, A [ h)p(A | y, h)dA a7
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where E(-) denotes the expectation operator. Given an initia
estimateh of the parameteh, the E-step in the EM algorithm
evaluates the auxiliary functia(k|h), yielding the byproduct
), the estimate oA. The M-step then finds the estimate fof
for maximizing the auxiliary functio®(h|h). This estimate of
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Initialize h

E-step:

h in the M-step is used again in the E-stephafor evaluating

A=(C"C)"'Cy-%)

the auxiliary function; then the M-step follows. Such iteration
continues until the estimates converge. The convergence val
of the estimaté in the M-step and the byproduitin the E-step

are the desired results. It is shown in [15] that at each iteratio
in the EM algorithm, these estimated parameters are obtained
that the likelihood function in (15) is nondecreasing, and, thus

the convergence is guaranteed.

As seen from (17), different realization algorithms of the EM
algorithm emerged when different distributions of the hidder
data are assumed. Here, we assumeXlimtin unknown, deter-
ministic vector, then the detailed algorithm and its derivation o
using the EM algorithm for our problem are briefly discussea

as follows.

Step 1. Initialization:

Given an initial estimate k.
Step 2. E-step (Expectation):
Using the representation
can express the

(7) and the estimate k&, we
N measurements in the matrix form

y=i+Cr+tn (18)
where € = [e,....en]", & = [#1,...,8n]7, and &., &, are
obtained using (9) —(13) with &, replaced by hi. Then
the estimate of A is derived by the least-squares
method, yielding

A=(CTe)C (y—9). (19)
Since A is assumed deterministic and the noise
sample data are independent normal distributed,
using the representation (6) and replacing A by A we
obtain the @ function a7
Q(hlk) = K(y"y — 2y" D" h + k" D" Dh) (20)
where K is a constant and D is obtained using ) ,
(6) and (14) with A replaced by A
Step 3. M-step (Maximization):
Once the (@ is obtained, the M-step is to find the
estimate  h for maximizing the function, resulting in
h=(D"D)"'D"y. (21)

M-step:
h=®D™D)"'Dy

Joint ML estimates of
channel parameters.

N

h and &

Converges?

Fig. 1. Computational flowchart of the EM algorithm.
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Averaged output square error versus iterations of a simulation run.

IV. COMPUTER SIMULATIONS

In this section, the EM algorithm is demonstrated to ac-
curately estimate the parameters of a simple partial erasure
model by computer simulations. Assume that the model has a
Lorentzian isolated transition response withV;, = 2 and
the reduction parametets = 0.7 and~, = 0.49. The number
of samples for modeling the isolated transition response is set
to be 21, i.e.,.L. = 10. The datab,s are obtained by NRZI
encoding of a random signal of equal probability on two values
{1, —1}. The number of the sample dataé = 1000. The

The EM-algorithm iteratively executes the E-step and M-stegignal power, given the model settings, can be analytically
until convergence. The convergence is often checked by ewvalbtained to be 0.5921. The signal-to-noise ratio (SNR), defined
uating the measure of the difference between the estimatexiiOlog (E[(yr — nx)?]/E [n}]), is set to be 20 dB; hence,
parameters of successive iterations. When the measure is tegsnoise variance is equal to 0.005921.
than a predetermined value, the iteration terminates. The comThe EM algorithm discussed above with zeros as the initial
putational flow chart of the EM algorithm for estimating theestimate is simulated. The simulation results of one typical run
parameters of a simple partial erasure model is depictedare shown in Figs. 2—4. Fig. 2 depicts the average square output

Fig. 1.

error, defined as = fo:l(yk—g}k)?/N, wheregy, is the output
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O actual samples
* _estimated samples

TABLE |

CRAMER-RAO BOUND UNDER VARIOUS SNRS

611

J ESTIMATED ERRORVARIANCE OF EACH REDUCTION PARAMETER AND ITS

SNR

estimated variance(7;)

CR-bound(v,)

estimated variance(7y,)

CR-bound(7,)

10 dB

2.20 x 107*

1.55 x 1074

6.92 x 1077

4.90 x 1077

20 dB

221 x 1075

1.55 x 1075

7.17x 1075

4.90 x 107°

30 dB

2.36 x 10°5

1.55 x 1075

8.32x 10°S

4,90 x 1075

0.6 -

* estimated variance (71)
o CR-bound (71)

04 B

*
05 [e] 5
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Fig. 3. Samples of the actual isolated transition response and its estima ok o CR-bound (v,

obtained at the eighth iteration of a simulation run.
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We also demonstrate by simulation that the joint ML esti-
mator of the model parameters is asymptotically efficient. For
simplicity, we shall only show the error variance of each re-

_ duction parameter, obtained by Monte Carlo simulations using
I the average of 100 independent runs. The simulation results

041 - J

osl P | under various SNRs are listed in Table I. As shown in the table,

ol | each error variance is in the same order as the Crameér-Rao
ol | bound. Also shown in Fig. 5, under SNR of 20 dB increasing the
o number of data samples decreases the discrepancy between the
obtained error variance and the Cramér-Rao bound. When the
data sample number equals 5000, the error variances afid

~2 are nearly equal to their corresponding Cramér-Rao bounds,
respectively. These results show that the proposed algorithm for
estimating the parameters of a simple partial erasure model is

asymptotically efficient.

05k

=3

iterations

Fig. 4. (a)4: versus iterations of a simulation run () versus iterations of
a simulation run.

of the identified model versus the iteration. Note thattlaeis is
in log-scale and the noise power is also shown in a dashed line.
This result indicates that the algorithm converges rapidly in a
few iterations, and the convergent average square error is clos&€he EM algorithm has been successfully applied for es-
to the noise variance. The algorithm terminates at the eighiimating the parameters of a simple partial erasure model,
iteration when the predetermined error measure, defined as ithduding the reduction parameters and the isolated transition
2-norm of the difference between the present and the previagesponse. This approach not only avoids solving the nonlinear
estimates oh, is setto 10°. The samples of the actual isolatecequations but provides an effective way to identify accurately
transition responsk and its estimateB, obtained at the eighth the model parameters. The resulting algorithm is an iteration
iteration, are shown i@ and in*, respectively, in Fig. 3. The of solving two least-squares problems; hence, its realization
estimated reduction parametérsandy. at each iteration are is simple. Simulation results also show that the convergence
also depicted irf in Fig. 4(a) and (b). From these simulationsis fast and the resulting estimator is asymptotically efficient.
the estimated samples of the isolated transition response dihis algorithm can estimate the model parameters rapidly and
the reduction parameters are very close to the true ones, whiciturately and, thus, is expected to improve the performance
verifies the proposed method. of high-density magnetic recording.

V. CONCLUSION
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