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Abstract

The inverted file is the most popular indexing mechanism for document search in an information retrieval
system. Compressing an inverted file can greatly improve document search rate. Traditionally, the d-gap
technique is used in the inverted file compression by replacing document identifiers with usually much
smaller gap values. However, fluctuating gap values cannot be efficiently compressed by some well-known
prefix-free codes. To smoothen and reduce the gap values, we propose a document-identifier reassignment
algorithm. This reassignment is based on a similarity factor between documents. We generate a reassignment
order for all documents according to the similarity to reassign closer identifiers to the documents having
closer relationships. Simulation results show that the average gap values of sample inverted files can be reduced
by 30%, and the compression rate of d-gapped inverted file with prefix-free codes can be improved by 15%.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To help users find useful information from a large-scale information cyberspace, informa-
tion retrieval systems (IRSs) are widely developed recently. The large-scale information space
requires a specialized indexing mechanism for efficient retrieval. Most indexing mechanisms can
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be categorized into two types: inverted files and signature files (Faloutsos & Oard, 1995). But, the
inverted file has been the most popular indexing mechanism used along the years. Rillof and
Hollaar (1996) pointed out that most IRSs use inverted files as indexing mechanisms. Zobel,
Moffat, and Ramamohanarao (1998) further showed that in terms of querying time, used space
and functionality, inverted files perform better than signature files. However, the inverted files
themselves require much storage space. We believe this space requirement can be alleviated to
some extent, and this paper presents our study in this aspect.

1.1. Current methods and problems

In an inverted file-based IRS, a user sends a request containing some query terms to the system.
The system searches these query terms in the inverted file to see which documents satisfy the
request, and returns these documents’ identifiers to the user. Thus, for each distinct term ¢, there is
a corresponding list (called the inverted list) of the form

(t: f:D1,D,,Ds,...,Dy,)

in the inverted file, where identifier D; indicates the document that contains ¢, and frequency f;
indicates the total number of documents in which ¢ appears.

When the number of collected documents in an IRS increases, the number of terms and the
length of each inverted list in the inverted file increase accordingly. The increase in the term
number slows down the search speed while the increases in the inverted list lengths slow down for
Boolean query operations. Additionally, a large inverted file cannot fit into the main memory and
usually has to be stored in the disk device whose access time is in the order of milliseconds.
Compression is a common practice to reduce the size of an inverted file. A popular compression
technique is to sort the document identifiers of each inverted list in increasing order, and then
replace each document identifier with the difference between it and its predecessor to form a list of
d-gaps (Witten, Moffat, & Bell, 1999; Zobel & Doffat, 1995; Moffat & Zobel, 1996). For example,
the inverted list (term; 7; 15, 43, 90, 8, 51, 130, 61) can be sorted to (term; 7; 8, 15, 43, 51, 61, 90,
130) and transformed into d-gap representation as (term; 7; 8, 7, 28, 8, 10, 29, 40). This sequence
of smaller numbers can be further effectively encoded by some prefix-free codes such as the
gamma code, the delta code, and the Golomb code (Witten et al., 1999). The common nature of
these codes is their variable-length representations in which smaller numbers are encoded more
economically than larger ones.

Unfortunately, the gap values in an inverted file usually fluctuate a lot. A large gap value may
potentially be as large as a document identifier, and the saving in space by the encoding techniques
cannot be achieved easily (Witten et al., 1999). Most studies have focused on the improvement in
encoding technique for d-gaps. To the best of our knowledge, none have emphasized on the re-
assignment of document identifiers to reduce the gap values.

1.2. Research goal
We observed that if two documents deal with similar topics or belong to a specific domain, their

contents usually share a large number of common terms. In this case, their document-identifiers
will both appear in many inverted lists corresponding to their common terms. If we reassign new



W.-Y. Shieh et al. | Information Processing and Management 39 (2003) 117-131 119

closer identifiers to these documents, their gap values appearing in the inverted lists will likely be
reduced.

In this paper, we propose a document identifier reassignment method to reduce the average gap
values in an inverted file. This reassignment is based on a similarity factor between documents. We
define the similarity between two documents as the number of common terms in their contents.
All documents hence form a similarity-graph in which a vertex represents a document and an edge
between two vertices represents their similarity. The reassignment order can be generated by
traversing all vertices in this graph with a gap-reduction strategy. We transform this problem to
the traveling salesman problem (TSP) and modify some heuristic algorithms for the TSP to
generate such reassignment order.

This paper is organized as follows. In Section 2, we present the document similarity in detail. In
Section 3, we present the document identifier reassignment method. Then we show the simulation
results in Section 4. Finally, Section 5 presents our conclusions.

2. How document similarity can be used

In this section we define the document similarity which operates in our document identifier
reassignment method.

2.1. Definition of document similarity

We define the similarity between two documents as the number of common terms both ap-
pearing in the documents’ contents. If two documents have large similarities, their identifiers will
both appear in many inverted lists. Therefore, it is worth reassigning new closer identifiers to these
documents. We use this similarity factor to measure how closer identifiers should be reassigned to
the documents.

Table 1 shows an example inverted-file with four inverted lists. Document similarities can be
extracted from these inverted lists. For example, the first inverted list includes three documents
having the term “cold”. Thus each of three document pairs (1, 3), (1, 5), and (3, 5) has one
similarity due to the common term “cold”. If we traverse the inverted file term by term in one
pass, the similarities among documents can be scored.

2.2. Maintaining document similarity with a graph

Given that a vertex represents a document identifier and the weight on the edge between two
vertices represents the number of common terms in two corresponding documents, the similarities

Table 1
An example inverted file with four inverted lists

Number Term fi Document identifiers
1 Cold 3 1,3,5

2 Collect 4 2,3,4,5

3 Company 4 1,2,3,5

4 Computer 3 1,4,5
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Fig. 1. Document similarity graph for Table 1.

1 2 3 4

Fig. 2. Similarity matrix derived from Fig. 1.

among all documents can be expressed as a graph, called the document similarity graph (DSG).
The DSG for the inverted file of Table 1 is shown in Fig. 1.

A DSG can be represented by a similarity matrix in which an element S;; represents the sim-
ilarity between two documents i and j. For example, Fig. 2 shows the similarity matrix derived
from Fig. 1. We use this data structure in our document identifier reassignment method. However,
there are some design challenges for constructing such a matrix. First, a typical similarity matrix
may be too large to be stored in the main memory. Second, while generating such a matrix, each
update to it may need to access the disk twice—read from the disk, increment, and write back to
the disk, and, thus, incur large delays. Finally, the number of such disk accesses increases as a
square of the document count. We describe a matrix partitioning technique to solve these prob-
lems later.

3. Document identifier reassignment method
We present a gap-reduction strategy in our reassignment method and transform this problem to

the TSP. Then we use some heuristic algorithms to generate the identifier reassignment order for
all documents.
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3.1. Gap reduction

Because all documents and the similarities among them can be presented by a DSG, an
identifier reassignment order for all documents can be thought of as a new permutation for all
vertices in the DSG. We traverse the vertices in the DSG one by one to generate a permutation
order by a gap-reduction strategy. This strategy is based on the similarity factor between docu-
ments. That is, when we traverse to a node, say v;, and look for a next node v; to be the successor
of v;, we hope the similarity between v; and v, is maximal.

This problem can be transformed to the TSP. Given a graph containing a set of vertices and
distances among the vertices, the TSP is to find a global path such that the total distance a
salesman travels is minimum (Lawler, Lenstra, Rinnooy, & Shmoys, 1985; Manber, 1989; Cor-
men, Leiserson, & Rivest, 1990). If the “complement” of the similarity in the DSG is represented
by the distance in the TSP, then the global path found by the TSP algorithm is the path of the
maximal total similarity in the DSG. (Here the total similarity denotes the sum of similarities on
the path.) Hence, when we follow this path to reassign document identifiers, the total gap value of
these reassigned document identifiers in the inverted file can be minimized. Formal descriptions
and proof of theory are ignored in this paper for clarity.

However, the TSP is an NP-complete problem and it seems unlikely there exists an optimal
algorithm to find the minimum-distance path in a polynomial time when the number of vertices is
large. Therefore, we modify some heuristic algorithms for the TSP to the algorithms for the
document identifier reassignment problem.

3.2. Heuristic algorithms for generating identifier reassignment order

The algorithms can be classified into two categories: the greedy algorithm and the spanning tree
(ST)-based algorithm (Lawler et al., 1985).

3.2.1. Greedy algorithms

A greedy algorithm for the document identifier reassignment problem is to expand the path by
adding a vertex which is not on but is closest to the current path, i.e., with the largest similarity,
one at a time. Each vertex-selection during the algorithm is in the sense of “maximizing the
similarity” to get the new permutation. There are two alternatives for such a selection. First, we
can select the vertex that is closest to the tail of the current path, i.e., expand the path from the
tail. Second, the path expansion is not limited to the tail but open to all vertices in the current
path. We call the first case Greedy-NN (Nearest Neighbor) algorithm and the second case
Greedy-NA (Nearest Addition) algorithm.

Suppose that G = (V,E) is a DSG with n vertices, and ¥ and E are the sets of vertices and
weighted edges in G, respectively. The Greedy-NN and Greedy-NA algorithms are listed in Figs. 3
and 4.

The Greedy-NN and the Greedy-NA algorithms are very simple to implement, but they involve
higher time complexity. In the Greedy-NN algorithm, each vertex is inserted into path P exactly
once, and expanding the path from the tail involves selecting a vertex from remain ones (Step 3 in
Fig. 3). The overall complexity of the Greedy-NN algorithm is therefore O(n?). In the Greedy-NA
algorithm, we need to check, for every pair of v, ¢ P and v; € P, whether the similarity of (v, v;) is
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Input: G V E
Output: global path P that the total similarity is maximal
Begin
Step 1: Choose the edge (v;,v ;)€ E whose similarity is the largest in G
Step 2: Start with a partial path consisting of a single vertex v;, i.e., P < v;.
Step 3: Suppose that the current partial path P is vy,...,v;, where/ <n.
Find vertices v; ¢ P such that the similarity of (v;,v;) is maximal.
Connect (vg,v;) and put v, into the current path P just after v;.
Step 4: Repeat Step 3 and halt when the current path P contains all vertices in V.

End.

Fig. 3. Greedy-NN algorithm.
Input: G V E
Output: global path P that the total similarity is maximal
Begin

Step 1: Choose the edge (v;,v ;)€ E whose similarity is the largest in G

Step 2: Start with a partial path consisting of a single vertex v;, i.e., P < v;.
Step 3: Find vertices v; ¢ P and v; € P such that the similarity of (vg,v;) is
maximal.
Connect (v ,v;) and put v; into the current path P just after v;.

Step 4: Repeat Step 3 and halt when the current path P contains all vertices in V.
End.

Fig. 4. Greedy-NA algorithm.

maximal (Step 3 in Fig. 4). This step leads to a worst-case running time of O(n?) for the path
expansion. Thus, the overall complexity of the Greedy-NA algorithm is O(n?). The other algo-
rithms with lower complexity are described in the next subsection.

3.2.2. ST-based algorithms

A ST-based algorithm for the TSP first finds the minimum spanning tree (MinST) of a graph
and then traverses the MinST to generate a global path. Manber (1989) showed that all edges in
the MinST would be a near-optimal path for the TSP. This is so because a TSP path is a cycle
containing all vertices; therefore, removing any edge from a TSP path makes it a spanning tree,
whose total distance is thus at least that of the MinST.

Similarly, for the document identifier reassignment problem, because we want to find the path
of the maximal total similarity among all vertices, we can transform a ST-based algorithm to first
find a DSG’s maximum spanning tree (MaxST), whose total similarity of edges is maximal in the
graph, and then traverse the MaxST by breadth first search (BFS) or depth first search (DFS) to
generate a global path. Without ambiguity, we call the former MaxST-BFS algorithm and the
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Input: GV E
Output: global path P that the total similarity is maximal
Begin
Step 1: Find the maximum spanning tree T of G
Step 2: Choose the edge (v;,v ;)€ T whose similarity is the largest in T.

Step 3: Start with v;,i.e., P < v;.
Step 4: Perform BES (or DES) of T from vertex v; and put the vertices

during traversal into P.
Step 5: Halt when the current path P contains all vertices.
End.

Fig. 5. MaxST-BFS (DFS) algorithm for document identifier reassignment problem.

latter MaxST-DFS algorithm; both are shown in Fig. 5. Consequently, all edges in the MaxST
will be a near-optimal path that forms a new reassignment order of document identifiers.

An obvious fact about performing DFS on a spanning tree is that when we traverse to a leaf
vertex without adjacencies, we have to backtrack to an already-visited vertex, as shown in Fig.
6(a). This will cause the path to be discontinuous. In order to avoid such a discontinuous path,
Lawler et al. (1985) introduced the idea of “shortcut™ that does not increase the complexity of
DFS too much. The shortcut occurs when we traverse to a leaf vertex of a spanning tree, instead
of going back to an already-visited vertex, we go directly to an as-yet-unvisited vertex which is
closest to the leaf vertex and then continually traverse the remaining vertices, as shown in Fig.
6(b). This step will greatly reduce the extra cost of backtracking. Without lost of generality, we
implement the shortcut idea into the MaxST-DFS algorithm as described in Fig. 7.

All ST-based algorithms described above involve the spanning tree construction and tree tra-
versal. The running time of the spanning tree construction is O((|V| 4+ |E|) log|V|), and that of the
tree traversal is O(|V]|+ |E|). Thus the overall running time of each ST-based algorithm is
(7] + |E]) log |V]).

3.3. Matrix partitioning

As described in Section 2.2, constructing a similarity matrix from an inverted file to represent a
DSG needs many disk accesses. It is desirable to transform as many disk read/write accesses to

(a) DFS without shortcut  (b) DFS with shortcut

Fig. 6. The concept of the shortcut. The dashed-line illustrates the traversal sequence and the solid vertex illustrates the
vertices already visited.
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Input: G V E
Output: global path P that the total similarity is maximal
Begin
Step 1: Find the maximum spanning tree 7 of G
Step 2: Choose the edge (v;,v;) € T whose similarity is the largest in 7.

Step 3: Start with v;, i.e., P < v;.
Step 4: Perform DFS of T from vertex v; and put the vertices during traversal into P,

If a leaf vertex v ; is visited, go directly to the closest unvisited vertex

viof v j» where v, € T (i.e., the similarity between v, andv j is maximal).

Repeat Step 4 from vertex vy .

Step 5: Halt when the current path P contains all the vertices.
End.

Fig. 7. MaxST-DFS with shortcut algorithm for the document identifier reassignment problem.

memory read/write accesses as possible. A matrix partitioning technique that stores a smaller
block of the matrix in the memory for construction is adopted.

The key idea of the matrix partitioning technique is to divide the matrix into several inde-
pendent and contiguous blocks of the maximal memory size. These blocks can then be moved to
the memory to be processed, one at a time. In this case, when the inverted file is traversed, if a
document pair falls in the range of the current block, its similarity is updated as necessary. When a
matrix block finishes updating, it is written back to the disk (in one disk write), and the next block
is loaded into the memory. Although each block update involves traversing the whole inverted file
once, such construction time is much less than the time for updating the matrix globally in the
disk.

4. Performance evaluation

In this section, we present the simulation model and compression results for the document
identifier reassignment method.

4.1. Simulation environment

To allow experimental comparisons of various algorithms, simulations have been performed on
three benchmark collections: paper collection (PC), Foreign Broadcast Information Service
(FBIS), and Los Angeles Times (LATimes). The “PC”, which represents a small-scale collection,
is a set of papers collected from various proceedings and journals of computer science domain.
The “FBIS” and “LATimes”, which represent two large-scale collections, are contained in the
fifth disk of Text REtrieval Coference (TREC). The TREC is a very large document collection
distributed worldwide for comparative information retrieval experiments (Witten et al., 1999).
Both of “FBIS” and “LATimes” are composed by full text of various newspapers and news-
wire articles plus government proceedings, and each has about 130,000 documents. The short
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Table 2

Statistics of three uncompressed inverted files used in our experiments
Collection PC7 FBIS LATimes
Number of documents 7794 130,471 131,896
Number of distinct terms 286,738 209,782 167,805
Size of inverted file (MB) 43 263 297

document inverted d-gap prefix-free
collections file technique codes
1
document
identificr d-gap prefix-free
reassignment .
method technique codes

Fig. 8. Simulation model.

descriptions of these inverted files without d-gap encoding and compression are given in Table 2.
Because we focus on reducing gap values in the inverted file, we store only document identifiers
and frequency for each term; other augmented information such as word location in text or
morphological data is not included.

Fig. 8 shows the simulation model with the proposed document identifier reassignment method.
The inverted files are constructed from the document collections first. Then, the document
identifier reassignment method and the d-gap technique are applied to the inverted files. Finally,
the d-gapped inverted files are encoding through the gamma code, delta code, and Golomb code
for the compression performance comparison. All experiments are performed on a PC with a 700
MHz CPU, a 128 MB SDRAM, and a 20 GB disk.

4.2. Simulation results

The simulation results include two parts. First, we show the document identifier reassignment
effect on the change of gap-value distribution. Second, we show that this effect results in inverted
file compression.

4.2.1. Reassignment effect on gap-value distribution

Fig. 9 shows the gap-value distribution changes after the document identifier reassignment.
Note that the amounts of gap values decrease exponentially as the gap value increases. Thus we
show only gap values 1-10. Here the Greedy-NN algorithm is used to generate the identifier
reassignment path in the DSG. For every tested inverted file, we found that the number of gap
value 1’s after reassignment is about 1.5 times more than that before reassignment, and the
numbers of other gap values all decrease. The average gap value can be reduced by about 30%.
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Fig. 9. Numbers of gap values 1-10 before and after document identifier reassignment.

This shows that documents with larger similarities are reassigned closer identifiers, and the gap
values in the inverted file can be effectively reduced. These gap-value distributions after reas-
signment are more suitable for the prefix-free-code encoding.

4.2.2. Effect of the reassignment on the “PC” inverted file compression

Fig. 10 shows the compression performance of the heuristic algorithms to generate the identifier
reassignment order for the “PC” inverted file under different prefix-free codes. Here, compression
is shown in bits per gap value, which is the average number of bits used to represent each gap
value in the inverted file. The Greedy-NN algorithm performs best on average while the Greedy-
NA algorithm does not perform well. It is because that, in the Greedy-NA algorithm, the ex-
tension of the global reassignment path is from any vertex in the existing path; therefore, when a
new vertex v, is inserted into the path after vertex v;, the gaps between vertex v; and its original
successors will be enlarged by v;. This may cause a negative impact from identifier reassignment.

On the other hand, the Greedy-NN algorithm gives better compression than the ST-based
algorithms. The reason is that performing BFS or DFS in the ST-based algorithms may also cause
the similar negative impact from identifier reassignment. Consider the case of BFS shown in Fig.
11(a), where vertex v; is visited after v; but before v;. The gap between v; and vy, which both belong
to the same subtree, will be enlarged because the global path extension of BFS is from any al-
ready-visited node. Whereas for the case of DFS shown in Fig. 11(b), the gap between v; and vy,
which belong to different subtrees, will be enlarged because the global path extension of DFS is
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Fig. 10. Compression performance of different heuristic algorithms to generate the identifier reassignment order for the
“PC” inverted file, measured in bits per gap value.
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(a) BFS case (b) DFS case

Fig. 11. Two cases of negative impacts from identifier reassignment.

from the most recently visited node. However, the ““shortcut” will make up these drawbacks. That
is why the MaxST-DFS with shortcut algorithm performs better than the MaxST-BFS and
MaxST-DFS algorithms, and almost as well as the Greedy-NN algorithm.

In Fig. 10, the compression performance of the gamma code or the delta code is much better
than the Golomb code. In fact, only when many terms appear with very high frequency does the
optimality of the Golomb code lead to a significant improvement. These results are consistent
with those derived in (Witten et al., 1999). Thus, we adopt the gamma code and the delta code to
encode the inverted file in the following experiments.

4.2.3. Effect of the reassignment on the “FBIS" and the “LATimes” inverted file compression

Figs. 12 and 13 show the similar results for the “FBIS” and the “LATimes” inverted files,
respectively. Although the document number of the “FBIS” or the “LATimes” inverted file is in
the order of magnitude larger than that of the “PC” inverted file, the average number of bits to
encode each gap value in the “FBIS” or the “LATimes” inverted file is only slightly larger than
that in the “PC” inverted file. The reason we supposed is that the distributions of gap values in
these inverted files are similar (as shown in Fig. 9) though the contents of these collections are
different. Thus we conclude that the Greedy-NN algorithm (or the MaxST-DFS with shortcut
algorithm) and the delta code are the best choices for the document identifier reassignment and d-
gapped inverted file encoding, respectively, since they yield much better compression performance
and lower complexity.
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Fig. 12. Compression performance of different heuristic algorithms to generate the identifier reassignment order for the
“FBIS” inverted file, measured in bits per gap value.
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Fig. 13. Compression performance of different heuristic algorithms to generate the identifier reassignment order for the
“LATimes” inverted file, measured in bits per gap value.

4.2.4. Time and space costs

We present the time and space costs involved in running the compression procedures for
the PC, FBIS, and LATimes inverted files. The compression procedures include constructing the
similarity matrix, reassigning identifiers by the Greedy-NN algorithm, and encoding d-gaps by the
delta code. The space cost is principally the size of the similarity matrix in a compression form.

Table 3 shows that for each inverted file, the time of constructing the similarity matrix occupies
a large part in the whole time. This is because that each inverted file is stored in the disk and
constructing the matrix involves the most disk accesses to the inverted file in the compression
procedures. Table 3 also shows that as the inverted file size increases from 43 MB (PC) to 297 MB
(LATimes), the time cost goes up from 1.31 to 23.28 h and the space cost goes up from 9.2 MB to
2.17 GB. Such increase may be unacceptable for large-size database. However, improvements
in processing and storage capacity and the introduction of efficient parallelism algorithms for
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Table 3
Time and space costs of the compression procedures
Time cost (h) Space cost
Similarity matrix Greedy-NN Delta code Total
construction reassignment encoding
PC 1.12 0.11 0.08 1.31 9.2 MB
FBIS 15.24 4.14 0.25 19.63 2.10 GB
LATimes 17.73 5.29 0.26 23.28 2.17 GB

analyzing document similarities (Salton & Bergmark, 1981; Witten & Rasmussen, 1990) have
made it feasible to deal with an increasingly large data set.

5. Conclusions

The goal of this paper is to reduce gap values in a d-gapped inverted file by the document
identifier reassignment method. This method uses the similarity between documents to measure
how closer identifier should be reassigned. We transform this problem to the TSP and modify
some heuristic algorithms to generate the identifier reassignment order. Simulation results show
that this reassignment method can reduce the average gap values by 30%, and a d-gapped inverted
file with prefix-free code encoding can be compressed to 85% of its original size.

The contribution of the algorithms proposed in this paper is not limited to the inverted file
compression. In fact, using the number of common terms as the similarity between two documents
has been considered a useful and effective measurement in limiting the amount of computation
required to calculate inter-document relevance (Frakes & Baeza-Yates, 1992). If we reassign
identifiers to documents according to their similarities, the range in retrieving relevant documents
can be limited to a small data set (i.e., neighbors) instead of the whole database. This would be
helpful for those algorithms which need enhanced relevance assessments for information retrieval.

One issue requires further investigation. The DSG construction time in our reassignment algo-
rithm depends greatly on the number of documents in the database collection. The processing time
and the storage cost will be intolerable for collections commonly seen in modern search engines.
Partitioning large database into smaller pieces can reduce processing time in searching local doc-
ument similarities. However, without a global view, the similarities between documents may not be
fully exploited. How to partition the database without this negative effect is under our investigation.

Acknowledgements

This work was supported by National Science Council, ROC: NSC-89-2213-E-009-062.

References

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. Cambridge, MA: MIT Press.
Frakes, W. B., & Baeza-Yates, R. (1992). Information Retrieval: Data Structures and Algorithms. Englewood Cliffs,
NJ: Prentice Hall.



130 W.-Y. Shieh et al. | Information Processing and Management 39 (2003) 117-131

Faloutsos, C., & Oard, D. W. (1995). A Survey of Information Retrieval and Filtering Methods. Technical Report CS-
TR-3514, Department of Computer Science, University of Maryland.

Lawler, E. L., Lenstra, J. K., Rinnooy, A. H. G., & Shmoys, D. B. (1985). The Traveling Salesman Problem—A Guided
Tour of Combinatorial Optimization. New York: Wiley-Interscience Publication.

Manber, U. (1989). Introduction to Algorithms a Creative Approach. Addision-Wesley.

Moffat, A., & Zobel, J. (1996). Self-indexing inverted files for fast text retrieval. ACM Trans. Information Syst., 14(4),
249-279.

Rillof, E., & Hollaar, L. (1996). Text database and information retrieval. ACM Comput. Surveys., 28(1),
133-135.

Salton, G., & Bergmark, D. (1981). Parallel computations in information retrieval. Lecture Notes in Computer Science,
111, 328-342.

Willett, P., & Rasmussen, E. M. (1990). Parallel Database Processing. London: Pitman (Research Monographs in
Parallel and Distributed Computing).

Witten, 1. H., Moffat, A., & Bell, T. C. (1999). Managing Gigabytes—Compressing and Indexing Documents and Images
(second ed.). Morgan Kaufmann Publishers, Inc.: Los Altos, CA.

Zobel, J., & Moffat, A. (1995). Adding compression to a full-text retrieval system. Software Practice and Experience, 25,
891-903.

Zobel, J., Moffat, A., & Ramamohanarao, K. (1998). Inverted files versus signature files for text indexing. ACM
Transactions on Database Systems, 23(4), 453-490.

Wann-Yun Shieh received the B.S. degree in Computer Science and Information Engineering from the National Chiao-
Tung University, Hsinchu, Taiwan, Republic of China in 1996. Currently he is pursuing the Ph.D. degree in com-
puter science and information engineering at the National Chiao-Tung University, Hsinchu, Taiwan, Republic
of China. His research interests include computer architecture, parallel and distributed systems, and information
retrieval.

Tien-Fu Chen received the B.S. degree in Computer Science from National Taiwan University in 1983. After completing
his military services, he joined Wang Computer Ltd., Taiwan as a software engineer for three years. From 1988 to 1993
he attended the University of Washington, receiving the M.S. degree and Ph.D. degrees in Computer Science and
Engineering in 1991 and 1993 respectively. He is currently an Associate Professor in the Department of Computer
Science and Information Engineering at the National Chung Cheng University, Chiayi, Taiwan. In recent years, he has
published several widely-cited papers on dynamic hardware prefetching algorithms and designs. His current research
interests are computer architectures, distributed operating systems, parallel and distributed systems, and performance
evaluation.

Jean Jyh-Jiun Shann received the B.S. degree in Electronic Engineering from Feng-Chia University, Taichung,
Taiwan, Republic of China in 1981. She attended the University of Texas at Austin from 1982 to 1985, where she
received the M.S.E. degree in Electrical and Computer Engineering in 1984. She was a lecturer in the Department
of Computer Science and Information Engineering, National Chiao-Tung University, Hsinchu, Taiwan, ROC,
while working towards the Ph.D. degree. She received the degree in 1994 and is currently an Associate Professor in
the department. Her current research interests include computer architecture, parallel processing, and information
retrieval.

Chung-Ping Chung received the B.E. degree from the National Cheng-Kung University, Tainan, Taiwan, Republic of
China in 1976, and the M.E. and Ph.D. degrees from the Texas A & M University in 1981 and 1986, respectively, all in
Electrical Engineering. He was a lecturer in electrical engineering at the Texas A & M University while working towards
the Ph.D. degree. Since 1986 he has been with the Department of Computer Science and Information Engineering at the



W.-Y. Shieh et al. | Information Processing and Management 39 (2003) 117-131 131

National Chiao-Tung University, Hsinchu, Taiwan, Republic of China, where he is a professor. From 1991 to 1992, he
was a visiting associate professor of computer science at the Michigan State University. From 1998, he joined the
Computer and Communications Laboratories, Industrial Technology Research Institute, ROC as the Director of the
Advanced Technology Center, and then the Consultant to the General Director. He is expected to return to his teaching

position after this three-year assignment. His research interests include computer architecture, parallel processing, and
parallelizing compiler.



	Inverted file compression through document identifier reassignment
	Introduction
	Current methods and problems
	Research goal

	How document similarity can be used
	Definition of document similarity
	Maintaining document similarity with a graph

	Document identifier reassignment method
	Gap reduction
	Heuristic algorithms for generating identifier reassignment order
	Greedy algorithms
	ST-based algorithms

	Matrix partitioning

	Performance evaluation
	Simulation environment
	Simulation results
	Reassignment effect on gap-value distribution
	Effect of the reassignment on the ``PC'' inverted file compression
	Effect of the reassignment on the ``FBIS'' and the ``LATimes'' inverted file compression
	Time and space costs


	Conclusions
	Acknowledgements
	References


