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A Comparative Study of Power and Sample Size
Calculations for Multivariate General Linear Models

Gwowen Shieh
Department of Management Science

National Chiao Tung University

Repeated measures and longitudinal studies arise often in social and behavioral science
research.  During the planning stage of such studies, the calculations of sample size are of
particular interest to the investigators and should be an integral part of the research
projects.  In this article, we consider the power and sample size calculations for normal
outcomes within the framework of multivariate general linear models that represent the
most fundamental method for the analysis of repeated measures and longitudinal data.
Direct extensions of the existing generalized estimating equation and likelihood-based
approaches are presented.  The major feature of the proposed modification is the
accommodation of both fixed and random models.  A child development example is
provided to illustrate the usefulness of the methods.  The adequacies of the sample size
formulas are evaluated through Monte Carlo simulation study.

Introduction

Repeated measures and longitudinal studies arise often in social and
behavioral analyses, in which repeated observations of a response variable
and a set of independent variables are recorded on subjects across
occasions.  Because repeated observations are recorded on the same
subject, the response variables are usually correlated.  Methods for
analyzing correlated data have recently received considerable attention in
the literature, see Keselman, Algina and Kowalchuk (2001) for a
comprehensive review and their references for related discussions.  The
generalized estimating equation (GEE) approach proposed by Liang and
Zeger (1986), in particular, is widely used by researchers in a number of
fields for the analysis of longitudinal data.  In recent years, a number of
articles are devoted to exemplifying the use of the GEE method.  For
application of the GEE method relevant to behavioral studies, see Duncan et
al. (1995).  Two of the attractive properties of the GEE approach are that it

This research was partially supported by the National Science Council.  I wish to
convey my appreciation to the reviewers, whose suggestions extended and strengthened
the article’s content immensely.
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accommodates both discrete and continuous data, and it also allows for the
flexibility in the correlation structure under a single framework.
Furthermore, it only requires specification of the forms of the first two
moments.  The full joint distribution of correlated responses is not required.

Sample size calculations and power analyses are often critical for
researchers to address specific scientific hypotheses and confirm credible
treatment effects.  Accordingly, it is of practical importance to be able to
perform these tasks in a GEE setting.  Liu and Liang (1997) proposed a
sample size and power formula derived from the score statistic.  Shih (1997)
and Rochon (1998) proposed similar Wald test procedures to compute
sample sizes and statistical powers in the context of GEE.  All these GEE-
based approaches represent a unified tool for both normal and non-normal
responses of repeated measures and longitudinal studies.  These procedures
have been illustrated in these articles with simulated and real data sets for
binary, count and normal outcomes.  Due to the complex nature, however,
there is little information on the discrepancy of these methods.  It would be
helpful to make direct comparisons of these approaches in terms of both
calculated sample sizes and precision of estimated power with a familiar
content, such as the commonly used analysis of variance models in the
repeated measures studies of continuous outcome variables.

In this article, we examine the adequacy of the sample size formula for
Gaussian outcomes of multivariate general linear models.  Since the GEE
approach is closely related to quasi-likelihood methods, a question of interest
is how the GEE approach compares with the methods obtained from a
likelihood-based viewpoint when the correlated responses have a joint
multivariate normal distribution.  Therefore, the existing likelihood-based
approaches of O'Brien and Shieh (1992) are also discussed.  However, it is
important to note that these approaches are applicable to fixed (conditional)
models that assumed all the levels of the independent variables to be
predetermined before data collection.  The results would be specific to the
particular values of the independent variables that are observed or preset by
the researcher.  However, it is quite common in behavioral research to have
studies in which the levels of the independent variables for each
experimental unit cannot be controlled and are available only after the
observations are made.  These models are referred to as random
(unconditional) models.  A natural generalization to incorporate both fixed
and random independent variables should be essential to these approaches
for performing power and sample size calculations in practice.  According
to theoretical arguments, the GEE and likelihood-based approaches are
modified to accommodate the two types of models.
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To test the multivariate general linear hypothesis, the test statistics and
corresponding modification of sample size formulas of both the GEE and
likelihood-based approaches are presented.  These methods are illustrated
with the child development example from Muller, LaVange, Ramey, &
Ramey (1992).  Since all the approaches considered here use large sample
approximations, simulation studies are conducted to assess their adequacy
for finite sample and robustness for noncentrality structure under various
model configurations.

The Fixed Model

Consider the standard multivariate general linear model with all the
levels of independent variables fixed a priori

(1) Y = XB + εεεεε,

where Y = (y
1
, ..., y

N
)T is a N × p matrix with y

i
 as the p × 1 vector of observed

sequence of measurements for the ith subject; X = (x
1
, ..., x

N
)T is a N × r design

matrix with full column rank r < N, where x
i
 is the r × 1 vector of independent

variables associated with the ith subject; B is the r × p matrix of unknown
regression coefficients; and εεεεε = (εεεεε1

, ..., εεεεεN
)T is a N × p matrix with εεεεε i

 as the
p × 1 vector of random errors associated the ith subject, for i = 1, ..., N.  The
errors εεεεεi

 are assumed to have independent and identical normal distribution
N

p
(0, �), where � is a p × p positive-definite covariance matrix.  We are

concerned with the general linear hypothesis H
0
: CBA = �

0
, where C is the

c × r matrix of between-subject contrasts with full row rank c � r, and A
is the p × a matrix of within-subject contrasts with full column rank a � p.
The maximum likelihood estimators for B and � are B̂ = (XTX)-1XTY and �̂

= (Y – XB̂)T(Y – XB̂)/N, respectively.  The common statistics for H
0
 are

obtained from the eigenvalues of E-1H, where E = (YA – XB̂A)T(YA – XB̂A)
and H = (CB̂A – �

0
)T[C(XTX)-1CT]-1(CB̂A – �

0
).  It follows from standard

results that E has the Wishart distribution W
a
(N – r, AT �A), H has the

Wishart distribution W
a
(c, AT �A, �), and E and H are independent, where

� = (AT �A)-1(CBA – �
0
)T[C(XTX)-1CT]-1(CBA – �

0
) is the noncentrality

parameter matrix.  See Timm (2002) and Morrison (1990) for further discussion
of the Wilks likelihood ratio |E(E + H)-1|, Pillai trace tr[H(E + H)-1] and
Hotelling-Lawley trace tr(E-1H) test statistics, where tr(•) is the trace of a
matrix.

Note that the analysis of repeated observations can be viewed as a
regression model with correlated errors.  This is exactly the formulation of
the GEE approach.  A brief review of the GEE methods is provided in the
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Appendix.  Next, we present the important details of the test statistics of the
GEE and likelihood-based approaches.

The GEE Approach

With the subject-wise orientation, the following results are derived
through the GEE setting of Rochon (1998) and Liu and Liang (1997) for the
multivariate general linear model shown by Equation 1.  The Wald test
statistic or generalized T2

0
statistic proposed in Rochon is

(2) Q
W
 = N•tr(E-1H)

where tr(E-1H) is the Hotelling-Lawley trace mentioned above.  Further-
more, it can be shown that the quasi-score statistic or Rao’s score statistic
in Liu and Liang (1997) is

(3) Q
S
 = N•tr[H(E + H)-1]

where tr[H(E + H)-1] is the aforementioned Pillai trace.  The actual test is
performed by referring the test statistics Q

W
 and Q

S
 to their asymptotic

distribution under H
0
, which is a central chi-square distribution with ca

degrees of freedom.
In order to evaluate the power under alternative hypothesis, the

distributions of both statistics shown by Equations 2 and 3 are approximated
by a noncentral chi-square distribution with ca degrees of freedom.  It
follows from Equation 6 of Rochon (1998) and Equation 4 of Liu and Liang
(1997) that the noncentrality parameter � = tr(�), where � is defined earlier.
In this case, the asymptotic property of Rochon’s Q

W
 and Liu and Liang’s

Q
S
 agree with that of the Hotelling-Lawley trace and Pillai trace,

respectively (see Anderson, 1984, p. 330 and Seber, 1984, p. 415 for details).
Consequently, the Wald statistic Q

W
 and Rao’s statistic Q

S
 have identical

asymptotic distributions under both null and alternative hypotheses.

The Likelihood-based Approach

To test a general linear hypothesis under multivariate general linear
model shown by Equation 1, the common statistics are computed from |E(E
+ H)-1|, tr[H(E + H)-1] and tr(E-1H), and their critical values have been
widely tabled and charted (for example, see Seber, 1984, pp. 562-564).
However, in practice, more tractable ones have been proposed by
transforming them to F-type statistics.  In this article, we focus on F
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approximations of the Hotelling-Lawley trace statistic tr(E-1H) for two
principle reasons.  First, it resembles very much the aforementioned statistic
(Equation 2).  Second, it has more desired properties than the other
competing tests.  To be specific, two transformations of tr(E-1H) are
considered here.  Pillai and Samson (1959) proposed

(4) F
T1

 = df2
T1

tr(E-1H)/sca

where df2
T1

 = s(N – r – a – 1) + 2 and s = minimum(c, a).  Moreover, McKeon
(1974) presented

(5) F
T2

 = df2
T2

tr(E-1H)/hca,

where df2
T2

 = (ca + 2)g + 4, g = [(N – r)2 – (N – r)(2a + 3) + a(a + 3)]/
[(N – r)(c + a + 1) – (c + 2a + a2 – 1)], and h = (df2

T2
 – 2)/(N – r – a –1).

Under the null hypothesis, both F
T1

 and F
T2

 are compared to an F distribution
with numerator degrees of freedom ca, and denominator degrees of freedom
df2

T1
 and df2

T2
, respectively.

To approximate the distributions of F
T1

 and F
T2

 under the alternative
hypothesis, O'Brien and Shieh (1992) described a direct extension of the
respective F distributions to their noncentral counterpart with the noncentrality
parameter � as mentioned earlier.  These procedures are motivated and
partially justified by the knowledge of the following facts.  First, a noncentral
F distribution with numerator and denominator degrees of freedom (df1, df2)
and noncentrality parameter � converges to a noncentral chi-square
distribution with degrees of freedom df1 and noncentrality parameter � when
df2 tends to infinity.  In this case, both F

T1
 and F

T2
 converge to the same

asymptotic distribution of N•tr(E-1H), which is a noncentral chi-square
distribution with degrees of freedom ca and noncentrality parameter �.
Second, when s = 1, the proposed noncentral F distribution is exact for both F-
type statistics.  Although similar transformation has been presented by Muller
and Peterson (1984) and Muller et al. (1992), their method provides smaller
noncentrality values for s > 1 as discussed in O'Brien and Shieh (1992).

The Random Model

Traditionally, we treat the model described in Equation 1 as a conditional
random model because the values of the independent variables are fixed and
known.  It is important to recognize and account for the extra variability
stemming from the fact that, in another replication of the same study,
different settings for the independent variables will be obtained.  Thus, the
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random model is more appropriate for the studies in which the values of the
independent variables cannot be predetermined.  We now define the formal
random model associated with the multivariate general linear model.

Assume that the independent variables (x = x
i
, i = 1, ..., N) follow a

distribution f(x) with finite moments.  The form of f(x) is assumed to be
depended on none of the unknown parameters B and �.  It follows from the
standard asymptotic result that

1

/ /
N

T T
i i

i

N N
=

= ∑X X x x

converges in probability to K where K = Ex(xxT) and Ex(•) denotes the
expectation taken with respect to the distribution of x.  With this additional
assumption and the application of Slutsky’s Theorem, it can be demonstrated that
N1/2(B̂  – B) = N1/2(XTX)-1XTεεεεε has a limiting matrix normal distribution N

r × p
(0,

K-1, �).  Similarly, [C(XTX)-1CT]-1/2(C B̂ A – CBA) has a limiting matrix
normal distribution N

c × a
(0, I

c
, AT �A), where I

c
 is the c × c identity matrix.

Hence, under the null hypothesis H
0
: CBA = �

0
, H converges in distribution

to the Wishart distribution W
a
(c, AT �A, 0).  It can be shown that the

distribution of E is the Wishart distribution W
a
(N – r, AT �A) under both

hypotheses for the fixed and random models.  Consequently, under the null
hypothesis, the proposed central chi-square and F approximations for the
four statistics Q

W
, Q

S
, F

T1
 and F

T2
 described above are extended to the case

of random independent variables.
For the statistics under the alternative hypothesis, we note that

[C(XTX)-1CT]-1/2(C B̂ A – �
0
) and N1/2(CK-1CT)-1/2(C B̂ A – �

0
) are

equivalent in asymptotic distribution.  For the purpose of relating asymptotic
power function calculations to the local alternatives to H

0
, an asymptotically

equivalent distribution of [C(XTX)-1CT]-1/2(C B̂ A – �
0
) can be defined in the

form of

N
c × a

[N1/2(CK-1CT)-1/2(CBA – �
0
), I

c
, AT �A],

in which case, we propose to consider the distribution of H with the
operational and asymptotically equivalent Wishart distribution W

a
(c, AT �A,

N � ) and �  = (AT �A)-1(CBA – �
0
)T(CK-1CT)-1(CBA – �

0
).

We proceed to approximate the distributions of the GEE-based statistics
Q

W
 and Q

S
 by a noncentral chi-square distribution with ca degrees of

freedom.  The noncentrality parameter used in the approximation is defined
as

(6) �
N
 = N � ,
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where �  = tr( � ).  Similarly, we approximate the distributions of the
likelihood-based statistics F

T1
 and F

T2
 by noncentral F distributions with

noncentral parameter �
N
, common numerator degrees of freedom ca and

denominator degrees of freedom df2
T1

 and df2
T2

 defined in Equations 3 and
4, respectively.  Essentially, the noncentral parameter �

N
 is the counterpart

of � with substitution of XTX with NK.
Note that the probability distribution f(x) of x can be discrete, continuous

and both.  In general, there is no simple and tractable expression for the
distribution B̂  except in some special cases.  For the common additional
assumption that x has a multivariate normal distribution as in Sampson
(1974), it can be shown that B̂  follows a matrix t distribution, see Dickey
(1967) for detailed discussion.  As described in Dickey (1967), the limiting
distribution of a matrix t agrees with the matrix normal distribution.
Therefore, all the asymptotic properties claimed previously for B̂  and
related statistics still apply under the normality assumption of x.

Sample Size Calculations

The GEE Approach

The actual implementation of sample size calculations of the GEE
approaches using the statistics Q

S
and Q

W
 is as follows.  With specified

parameter values B and �, and chosen probability distribution f(x), the
sample size needed to test hypothesis H

0
: CBA = �

0
 with specified

significance level � and power 1 – � against the alternative H
1
: CBA � �

0

is determined by the following two steps.  First, find the noncentrality �
N
 of

a noncentral chi-square distribution with ca degrees of freedom such that its
100•�th percentile is equivalent to the 100(1 – �)th percentile of a central chi-
square distribution with ca degrees of freedom.  Second, the sample size
estimate is computed as �

N
/ � , where �  is defined in Equation 6.  Note that

both methods result in the same estimated sample size.
Note that although the notion of fixed values for independent variables was

introduced in Liu and Liang (1997), their presentation and simulation studies did
not emphasize the special feature of random independent variable.  Moreover,
our proposed formulation naturally accommodates the extension of unequal
allocation in Rochon (1998).  Therefore, the approach described here differs
from that of Liu and Liang (1997) and Rochon (1998) with respect to the
independent variables distribution where they proposed to consider only the
fixed model.  This is naturally extended here to the random case and the
distribution f(x) could be either discrete or continuous with a finite number of
levels such as Bernoulli or multinomial distributions or an infinite number of
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values, for example, Poisson and normal distributions.  If x is discrete with m
distinct values x

uj
 and f(x

uj
) = �

j
, j = 1, …, m, where

1

1
m

j
j

�
=

=∑ ,

then

K = Ex(xxT) = 
1

.
m

T
j uj uj

j

�
=

∑ x x

Accordingly, this representation is also valid for the case of x
uj
 being

considered as fixed levels rather than random component as in Liu and Liang
(1997) and Rochon (1998).

The Likelihood-based Approach

In a manner analogous to the GEE approach described above, we keep
the same assumption that the independent variables x has a joint probability
function f(x), which can be either discrete or continuous, and propose the
factorization defined in Equation 6 for the noncentral parameter �

N
 of the

noncentral F approximations of F
T1

 and F
T2

 under the alternative hypothesis.
Therefore, this procedure becomes a direct generalization of O'Brien and
Shieh (1992) in which their results are limited to those applications where all
the levels of the independent variables in the model are fixed in advance.
Hence, given parameter values B and �, chosen probability distribution f(x),
and sample size N, the statistical power achieved for testing hypothesis H

0
:

CBA = �
0
 with specified significance level � against the alternative H

1
:

CBA � �
0
 is the probability

P[F(ca, df2, N � ) > F
ca, df2, �

]

with df2 = df2
T1

 and df2
T2

 for the two F-type test statistics F
T1

 and F
T2

 defined
in Equations 4 and 5, respectively, where F(df1, df2, �) denotes a noncentral F
random variable with (df1, df2) degrees of freedom and noncentrality parameter
�, and F

df1, df2, �
 denotes the 100(1 – �)th percentile of a central F random variable

with (df1, df2) degrees of freedom.  Note that this procedure can be reversed
to calculate the sample size needed in order to attain the specified power.
However, it usually involves an iterative process to find the solution because both
F(df1, df2, �) and F

df1, df2, �
 depend on the sample size N.
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An Example

We illustrate in this section the power and sample size calculation
procedures in a child development example that has motivated our work.
Muller et al.  (1992) presented a power analysis for a longitudinal study of
a child’s intellectual performance as a function of mother’s estimated verbal
intelligence.  With child IQ measurements at 12, 24, and 36 months (p = 3),
and with intercept, linear, quadratic, and cubic trends in mother’s
standardized IQ (MSIQ) as independent variables (r = 4), this yields

.12 .24 .36

.12 .24 .36
2

.12 .24 .36
3

.12 .24 .36

1

 and ,

I I I

L L L

Q Q Q

C C C

MSIQ
MSIQ
MSIQ

� � �

� � �

� � �

� � �

   
   

= =   
   
     

x B

where �
I.t

 is the intercept, while �
L.t

, �
Q.t

, and �
C.t

 are the corresponding
coefficients of linear, quadratic, and cubic values of MSIQ for time t = 12,
24, and 36, respectively.  Here the hypothesized relationship between mother
and child competence of interest corresponds to a test of the time × mother’s
IQ interaction.  Hence, the between-subject and within-subject contrast
matrices (c = 3 and a = 2) are

1/ 2 1/ 60 1 0 0
0 0 1 0  and 0 2 / 6 ,
0 0 0 1 1/ 2 1/ 6

 −    = = −       

C A

respectively.  According to the previous study of the Infant Health and
Development Program (IHDP, see Ramey, Bryant, Wasik, Sparling, Fendt,
& LaVange, 1992), the model parameter estimates are

114.46 104.66 98.83
218.48 83.66 72.19

2.88 8.77 10.67 ˆˆ  and 83.66 251.92 158.60 .
0.71 0.90 1.30

72.19 158.60 244.58
0.21 0.54 0.72

      = = − − −     − − −  

B �

As for the values of the independent variables, one of the three schemes
assumed that through screening the sample would be evenly distributed
across the four groups of mother’s IQ: namely retarded (IQ < 70), borderline
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(IQ 70-85), normal (IQ 85-100) and high (IQ > 100).  Furthermore, it was also
assumed that the spread of mother’s IQ scores within each group would
follow the IHDP pattern, and the actual mother’s IQ scores were treated as
continuous values in the power analysis.  At first sight, this may produce
reasonable approximation to the true mother’s IQ score distribution of the
current study.  However, the authors considered it impractical and expected
an increase in power associated with over-sampling of the extreme values
of mother’s IQ.  The primary reason of inducing such scheme and other
approximations is due to the lack of a proper procedure that accounts for the
nature of continuous distribution.  Therefore, the absence of consensus in
determining the discretization of continuous independent variables
distribution and the failure to embed the method in a general setup are
obvious limitations of the existing approaches in Muller et al. (1992), O'Brien
and Shieh (1992), Liu and Liang (1997) and Rochon (1998).

For illustrative purpose, we assume that the mother’s standardized IQ
(MSIQ) has a standard normal distribution.  Note that the mother’s IQ score
has a population mean 100 and standard deviation 15.  Thus, it follows that

1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

1 1 0 1 0
0 1 0 3

( ) ,
1 0 3 0
0 3 0 15

T
X

m m m
m m m m

E
m m m m
m m m m

   
   

= = =   
   

     

K xx

where m
i
 is the ith moment of a standard normal distribution.  We are

interested in how many subjects are needed to detect the time × mother’s IQ
interaction H

0
: CBA = 0 in terms of the matrices C and A just stated.  With

these specifications, it follows from Equation 6 that �   = 0.1328.  Assuming
the significance level � = 0.05, the sample size estimates of the Wald test
(Equation 2) and Rao’s test (Equation 3) and F transforms (Equations 4 and
5) are 132, 132, 135 and 137, respectively, for power 1 – � = 0.90, while the
corresponding sample size estimates are 158, 158, 161 and 162, respectively,
for power 1 – � = 0.95.  The achieved power levels of the four tests are
0.9858, 0.9858, 0.9843 and 0.9836 for a given sample size N = 200.  These
numbers are comparable with the results obtained from Muller et al. (1992)
shown in Table 6.

With these sample size and power calculations, the most powerful
approach can be easily identified.  However, the proposed approaches use
large sample approximations, there is no guarantee that the one that gives
higher power will always be more accurate in achieving the nominal power.
Hence, we continue to compare the accuracy of these formulas in terms of
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the discrepancy between estimated actual power and nominal power, where
they all use the same sample size.  This is demonstrated in the following
simulation studies.

Simulation Studies

In order to evaluate the accuracy of the proposed approaches, Monte
Carlo simulation studies are performed for three different multivariate
general linear models with Gaussian responses.  To reinforce the concept of
fixed or random models and to emphasize the flexibility of the proposed
methods, the three models are chosen as follows.

Fixed MANOVA Model

For the fixed MANOVA model, we consider two designs for the
standard MANOVA model with equal group sizes.  The first design has r = 4,
whereas the second design is set to have r = 3.  For the first design, the vector
of independent variable contains only indicator variables, taking the values
of zero or one, x = [1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T or [0 0 0 1]T, and each of
these vectors is replicated with the same number of times in the design matrix
X.  In this case, it is trivial that XTX = (N/4)I

4
.  Hence, even for the fixed

independent variable structure, the noncentrality parameter can still be
written in the form �

N
 in Equation 6 with K = (1/4)I

4
.  We are interested in

a test of no group effects (c = 3) with

1 1 0 0
1 0 1 0 .
1 0 0 1

− 
 = −
 − 

C

Accordingly, the independent variable vector in the second design is x =
[1 0 0]T, [0 1 0]T or [0 0 1]T.  Furthermore, XTX = (N/3)I

3
 and

1 1 0
with 2.

1 0 1
c

− = = − 
C

Random MANOVA Model

In contrast to the fixed MANOVA model, we generalize the configurations
of independent variables into a random setting of discrete uniform distribution
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with �
j
 = 1/r, j = 1, ..., r.  Hence, the design matrix X is now composed of

vectors, which follow a discrete uniform distribution.  It is interesting to note
that K = E

x
(xxT) = (1/r)I

r
 for r = 3 and 4.  Hence, for any one of the four proposed

approaches, the sample size formulas are identical for the first two models.

Development Model

The third model is patterned after the prescribed child development data
set with r = 4 repeated measures.  We consider the vector of independent
variables composed of powers of a standard normal variable, specifically
x = [1 z z2 z3]T, where z has a standard normal distribution.  Hence, the matrix
K has the same form as defined in the previous section for the child
development example.  Here, the concern is whether there is a linear,
quadratic and cubic trend relationship between response and the between-
subject contrast matrix is defined as

0 1 0 0
0 0 1 0 with 3.
0 0 0 1

c
 
 = =
 
 

C

As in the previous two models, two different designs are studied as well.
Note that all four sample size formulas depend on the identical

noncentrality parameter �
N
 as defined in Equation 6, which in turn relies on

tr( � ) or the sum of eigenvalues of � , where �  = (AT �A)-1(CBA –
�

0
)T(CK-1CT)-1(CBA – �

0
).  Therefore, without loss of generality, we

assume AT �A = I
a
, and �

0
 is a c × c null matrix throughout the simulation

study.  Furthermore, we let �  = diag( 1� , ..., a� ), a diagonal matrix be with
diagonal elements ( 1� , ..., a� ), where ( 1� , ..., a� ) are the eigenvalues of �
and

tr( � ) = 
1

.
a

l
l

�
=
∑

For each of the three models described above, the values of a are set as 3
and 2 for the two designs, respectively.  In order to study the robustness
properties of the sample size formulas with respect to a wide range of
designs and sample sizes, the parameter matrix BA = ( 1

TB , 2
TB )T is defined

such that ( 1� , ..., a� ) has the following four different structures:
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Equal: l�  = � */a, l = 1, ..., a;

Linear: l�  = l· � */(
1

a

l

l
=
∑ ), l = 1, ..., a;

Geometric: l�  = 2l-1· � */( 1

1

2
a

l

l

−

=
∑ ), l = 1, ..., a;

Extreme: 1�  = � *, and l�  = 0, l = 2, ..., a.

The value of � * is predetermined by P[F(ca, df2
T1

, N � *) >
1,, 2 0.05Tca dfF ] =

0.70 for each design.  In fact, for simplicity, B
1
 is set as a 1 × a null vector

in all cases, and B
2
 can thus be decided, since it is the only unknown element

in �  for each of the four different eigenvalue structures.  It is important to
note that the equal and extreme eigenvalue structures cover the two opposite
cases of ( 1� , ..., a� ) for all possible combinations of A, �, B, and �

0
 under

the specifications of C and K.  Obviously, the other two structures stand for
some of the intermediate situations.  Given the sample sizes N and
eigenvalues structure � *, the nominal powers of the four approaches can be
computed according to the procedures described earlier.  Note that the
nominal power of the F

T1
 statistic is always 0.70.  In general, the nominal

power of F
T2

 statistic is slightly lower, whereas the nominal power of the
Wald and Rao’s statistics tends to be higher than 0.70.

Estimates of actual Type I error rate and power associated with the
given sample sizes and model configurations are then computed through
Monte Carlo simulation using 5000 replicate data sets.  The adequacy of the
sample size formula is determined by the difference between the estimated
and nominal values of Type I error rate and power.  All calculations are
performed using programs written with SAS/IML (SAS Institute, 1999).
The results of the simulation studies are presented in Tables 1–6 for the three
models and each with two different designs.  We also conducted the
simulation study for two different levels of power, namely P[F(ca, df2

T1
,

N � *) >
1,, 2 0.05Tca dfF ] = 0.50 and 0.95.  The results are similar to those of

power 0.70, and are thus not shown here.
As would be expected, the results in Tables 1–6 suggest that the

accuracy of the competing approaches increases with the sample size, and
varies with the structure of the eigenvalues.  For the errors between the
estimated Type I error rate and the nominal level 0.05, it is clear that the
method Q

W
 gives the largest errors while the other three methods have much

better performance of achieving the nominal level in all six tables.  With
respect to the accuracy of power calculations, the Rao’s statistic Q

S
 of the

GEE approach is the most sensitive one among the four approaches with
respect to four different eigenvalue structures.  This situation is more
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prominent when the sample size is small in all models.  On the contrary, the
two likelihood-based approaches are much more robust with respect to the
level of variation among eigenvalues.  Furthermore, the performance of the
two F-transform approaches appears to be excellent over the whole range
of conditions that we have considered.  Although the differences between
the two approaches are small, it shows a clear pattern that the F

T2
 approach

Table 1
The Errors Between Actual and Nominal Values of Type I Error Rate and
Power for Fixed MANOVA Model with Equal Group Size (c = 3, r = 4, a = 3,
� = 0.05)

Sample Method Error Nominal Error for power
size for � power Eigenvalues structure of �

Equal Linear Geometric Extreme

N = 20 Q
W

0.2772 0.8075 0.1367 0.1361 0.1359 0.1281
Q

S
-0.0160 0.8075 -0.1509 -0.1743 -0.1855 -0.4079

F
T1

0.0148 0.7000 -0.0336 -0.0322 -0.0322 -0.0556
F

T2
0.0018 0.6008 0.0156 0.0150 0.0170 -0.0076

N = 40 Q
W

0.1034 0.7446 0.1086 0.1040 0.1054 0.0920
Q

S
-0.0098 0.7446 -0.0712 -0.0774 -0.0806 -0.1562

F
T1

0.0024 0.7000 -0.0162 -0.0160 -0.0174 -0.0208
F

T2
-0.0026 0.6591 0.0013 0.0029 0.0029 -0.0019

N = 60 Q
W

0.0586 0.7281 0.0807 0.0753 0.0745 0.0597
Q

S
-0.0036 0.7281 -0.0431 -0.0475 -0.0471 -0.1027

F
T1

0.0048 0.7000 -0.0100 -0.0076 -0.0076 -0.0220
F

T2
0.0002 0.6743 0.0045 0.0051 0.0021 -0.0097

N = 80 Q
W

0.0394 0.7205 0.0453 0.0463 0.0443 0.0451
Q

S
-0.0072 0.7205 -0.0421 -0.0389 -0.0423 -0.0751

F
T1

-0.0004 0.7000 -0.0146 -0.0122 -0.0152 -0.0204
F

T2
-0.0024 0.6813 -0.0045 -0.0049 -0.0063 -0.0099

N = 100 Q
W

0.0250 0.7161 0.0515 0.0499 0.0499 0.0409
Q

S
-0.0050 0.7161 -0.0251 -0.0281 -0.0287 -0.0541

F
T1

-0.0004 0.7000 -0.0048 -0.0044 -0.0052 -0.0110
F

T2
-0.0024 0.6853 0.0029 0.0021 0.0013 -0.0061D
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is more accurate with the estimated actual power than the other F
T1

approach.  The performance for the method Q
W
 is very good throughout the

six tables regardless of the eigenvalues structure and sample size.  However,
this is counteracted by the inflated estimates of Type I error rate � mentioned
earlier.  Therefore, the practical use of Q

W
 is questionable at least for the

multivariate general linear models.

Table 2
The Errors Between Actual and Nominal Values of Type I Error Rate and
Power for Fixed MANOVA Model with Equal Group Size (c = 2, r = 3, a = 2,
� = 0.05)

Sample Method Error Nominal Error for power
size for � power Eigenvalues structure of �

Equal Linear/Geometric Extreme

N = 15 Q
W

0.1602 0.8106 0.0964 0.0912 0.0802
Q

S
-0.0126 0.8106 -0.1218 -0.1384 -0.2852

F
T1

0.0080 0.7000 -0.0172 -0.0170 -0.0446
F

T2
0.0006 0.6293 0.0237 0.0215 -0.0031

N = 30 Q
W

0.0708 0.7462 0.0744 0.0696 0.0588
Q

S
0.0000 0.7462 -0.0546 -0.0590 -0.1072

F
T1

0.0076 0.7000 -0.0078 -0.0064 -0.0228
F

T2
0.0034 0.6696 0.0088 0.0112 -0.0024

N = 45 Q
W

0.0432 0.7291 0.0395 0.0441 0.0407
Q

S
-0.0014 0.7291 -0.0443 -0.0457 -0.0713

F
T1

0.0034 0.7000 -0.0128 -0.0140 -0.0174
F

T2
0.0016 0.6807 -0.0019 -0.0023 -0.0071

N = 60 Q
W

0.0312 0.7213 0.0409 0.0423 0.0313
Q

S
-0.0010 0.7213 -0.0285 -0.0321 -0.0495

F
T1

0.0034 0.7000 -0.0036 -0.0044 -0.0128
F

T2
0.0008 0.6859 0.0041 0.0045 -0.0051

N = 75 Q
W

0.0214 0.7167 0.0367 0.0331 0.0371
Q

S
0.0010 0.7167 -0.0159 -0.0193 -0.0313

F
T1

0.0044 0.7000 0.0022 -0.0018 -0.0022
F

T2
0.0036 0.6889 0.0093 0.0055 0.0045D
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As mentioned on the previous page, the sample size formulas in the first
two models are identical.  Hence, the discrepancy between the results in
Tables 1–2 and Tables 3–4 are the direct consequence of using fixed or
random independent variables.  In general, the absolute errors in Tables 3–
4 are slightly larger than those in Tables 1–2.  Such phenomena shall continue

Table 3
The Errors Between Actual and Nominal Values of Type I Error Rate and
Power for Random MANOVA Model with Uniformly Distributed Group Size
(c = 3, r = 4, a = 3, � = 0.05)

Sample Method Error Nominal Error for power
size for � power Eigenvalues structure of �

Equal Linear Geometric Extreme

N = 20 Q
W

0.2804 0.8075 0.1239 0.1229 0.1233 0.1101
Q

S
-0.0192 0.8075 -0.1793 -0.2049 -0.2169 -0.4195

F
T1

0.0102 0.7000 -0.0490 -0.0574 -0.0580 -0.0830
F

T2
-0.0030 0.6008 -0.0032 -0.0072 -0.0102 -0.0376

N = 40 Q
W

0.1072 0.7446 0.0954 0.0868 0.0830 0.0754
Q

S
-0.0094 0.7446 -0.0864 -0.0974 -0.0998 -0.1784

F
T1

0.0048 0.7000 -0.0316 -0.0368 -0.0346 -0.0482
F

T2
-0.0022 0.6591 -0.0145 -0.0167 -0.0157 -0.0271

N = 60 Q
W

0.0644 0.7281 0.0663 0.0677 0.0667 0.0519
Q

S
-0.0016 0.7281 -0.0547 -0.0561 -0.0643 -0.1069

F
T1

0.0082 0.7000 -0.0200 -0.0160 -0.0194 -0.0340
F

T2
0.0032 0.6743 -0.0065 -0.0023 -0.0065 -0.0211

N = 80 Q
W

0.0506 0.7205 0.0525 0.0487 0.0507 0.0427
Q

S
0.0018 0.7205 -0.0433 -0.0405 -0.0439 -0.0709

F
T1

0.0098 0.7000 -0.0198 -0.0136 -0.0114 -0.0172
F

T2
0.0062 0.6813 -0.0099 -0.0041 -0.0021 -0.0065

N = 100 Q
W

0.0290 0.7161 0.0443 0.0475 0.0469 0.0371
Q

S
-0.0060 0.7161 -0.0329 -0.0293 -0.0309 -0.0589

F
T1

-0.0010 0.7000 -0.0110 -0.0074 -0.0062 -0.0116
F

T2
-0.0032 0.6853 -0.0071 -0.0013 -0.0005 -0.0053D
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to exist between random and fixed models in other settings.  For the results
associated with the development model in Tables 5–6, comparatively much
larger sample sizes are required to achieve the same accuracy than the
previous two cases in Tables 1–4.  Due to the polynomial function of the
standard normal covariates, the magnitude of the errors between the

Table 4
The Errors Between Actual and Nominal Values of Type I Error Rate and
Power for Random MANOVA Model with Uniformly Distributed Group Size
(c = 2, r = 3, a = 2, � = 0.05)

Sample Method Error Nominal Error for power
size for � power Eigenvalues structure of �

Equal Linear/Geometric Extreme

N = 15 Q
W

0.1614 0.8106 0.0788 0.0756 0.0536
Q

S
-0.0166 0.8106 -0.1634 -0.1796 -0.3102

F
T1

0.0024 0.7000 -0.0476 -0.0532 -0.0754
F

T2
-0.0054 0.6293 -0.0019 -0.0075 -0.0315

N = 30 Q
W

0.0624 0.7462 0.0508 0.0522 0.0476
Q

S
-0.0022 0.7462 -0.0782 -0.0816 -0.1248

F
T1

0.0042 0.7000 -0.0286 -0.0314 -0.0368
F

T2
0.0004 0.6696 -0.0112 -0.0148 -0.0208

N = 45 Q
W

0.0388 0.7291 0.0299 0.0283 0.0249
Q

S
-0.0008 0.7291 -0.0581 -0.0573 -0.0857

F
T1

0.0058 0.7000 -0.0278 -0.0226 -0.0346
F

T2
0.0034 0.6807 -0.0157 -0.0101 -0.0211

N = 60 Q
W

0.0342 0.7213 0.0315 0.0301 0.0227
Q

S
0.0058 0.7213 -0.0373 -0.0369 -0.0583

F
T1

0.0100 0.7000 -0.0110 -0.0106 -0.0198
F

T2
0.0074 0.6859 -0.0021 -0.0019 -0.0139

N = 75 Q
W

0.0212 0.7167 0.0267 0.0249 0.0261
Q

S
-0.0048 0.7167 -0.0239 -0.0279 -0.0427

F
T1

0.0000 0.7000 -0.0050 -0.0100 -0.0086
F

T2
-0.0016 0.6889 -0.0003 -0.0021 -0.0037D
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estimated power and the nominal power tends to decrease when the
eigenvalue structure changes from “equal” to “extreme”.  The results in the
two MANOVA models show the opposite pattern that the “equal”
eigenvalue structure produces the smallest errors among the four different
structures, while the “extreme” eigenvalue structure gives the largest errors.
This should be the case that is commonly encountered in the standard
MANOVA model.

Table 5
The Errors Between Actual and Nominal Values of Type I Error Rate and
Power for Development Model with Standard Normal Independent Variable
(c = 3, r = 4, a = 3, � = 0.05)

Sample Method Error Nominal Error for power
size for � power Eigenvalues structure of �

Equal Linear Geometric Extreme

N = 100 Q
W

0.0294 0.7161 -0.0019 0.0057 0.0079 0.0181
Q

S
-0.0042 0.7161 -0.0823 -0.0751 -0.0727 -0.0885

F
T1

-0.0002 0.7000 -0.0554 -0.0514 -0.0454 -0.0432
F

T2
-0.0024 0.6853 -0.0481 -0.0425 -0.0393 -0.0375

N = 150 Q
W

0.0206 0.7105 0.0069 0.0141 0.0135 0.0085
Q

S
0.0018 0.7105 -0.0415 -0.0381 -0.0391 -0.0569

F
T1

0.0048 0.7000 -0.0280 -0.0212 -0.0212 -0.0304
F

T2
0.0032 0.6904 -0.0230 -0.0166 -0.0170 -0.0258

N = 200 Q
W

0.0194 0.7078 -0.0044 -0.0024 0.0034 0.0144
Q

S
-0.0004 0.7078 -0.0432 -0.0390 -0.0386 -0.0334

F
T1

0.0026 0.7000 -0.0336 -0.0284 -0.0264 -0.0090
F

T2
0.0012 0.6929 -0.0301 -0.0245 -0.0225 -0.0047

N = 250 Q
W

0.0162 0.7062 0.0008 0.0080 0.0098 0.0024
Q

S
0.0028 0.7062 -0.0278 -0.0226 -0.0230 -0.0392

F
T1

0.0060 0.7000 -0.0192 -0.0130 -0.0144 -0.0196
F

T2
0.0056 0.6943 -0.0159 -0.0103 -0.0127 -0.0177

N = 300 Q
W

0.0094 0.7052 -0.0032 0.0034 0.0056 0.0104
Q

S
0.0006 0.7052 -0.0298 -0.0242 -0.0226 -0.0226

F
T1

0.0024 0.7000 -0.0234 -0.0154 -0.0146 -0.0084
F

T2
0.0010 0.6953 -0.0203 -0.0133 -0.0125 -0.0067D
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Conclusions

The primary aim of the present article is to provide guidance in the choice
of approach for sample size and power calculations within the framework of
multivariate general linear models with Gaussian responses.  The proposed
approaches are the direct extension of the work by Liu and Liang (1997)
Rochon (1998) and O'Brien and Shieh (1992) to accommodate both fixed and

Table 6
The Errors Between Actual and Nominal Values of Type I Error Rate and
Power for Development Model with Standard Normal Independent Variable
(c = 3, r = 4, a = 2, � = 0.05)

Sample Method Error Nominal Error for power
size for � power Eigenvalues structure of �

Equal Linear/Geometric Extreme

N = 40 Q
W

0.0726 0.7464 0.0174 0.0202 0.0274
Q

S
-0.0020 0.7464 -0.1296 -0.1288 -0.1614

F
T1

0.0048 0.7000 -0.0704 -0.0626 -0.0672
F

T2
0.0020 0.6764 -0.0590 -0.0498 -0.0560

N = 80 Q
W

0.0310 0.7217 -0.0003 0.0009 -0.0001
Q

S
-0.0016 0.7217 -0.0761 -0.0745 -0.0869

F
T1

0.0028 0.7000 -0.0480 -0.0424 -0.0458
F

T2
0.0018 0.6891 -0.0417 -0.0377 -0.0385

N = 120 Q
W

0.0230 0.7142 -0.0098 -0.0094 -0.0080
Q

S
0.0020 0.7142 -0.0542 -0.0560 -0.0662

F
T1

0.0046 0.7000 -0.0362 -0.0370 -0.0380
F

T2
0.0032 0.6929 -0.0319 -0.0333 -0.0357

N = 160 Q
W

0.0138 0.7105 -0.0003 0.0015 -0.0051
Q

S
0.0006 0.7105 -0.0381 -0.0357 -0.0437

F
T1

0.0032 0.7000 -0.0252 -0.0212 -0.0246
F

T2
0.0026 0.6947 -0.0229 -0.0173 -0.0217

N = 200 Q
W

0.0108 0.7083 0.0019 -0.0001 -0.0039
Q

S
0.0000 0.7083 -0.0293 -0.0323 -0.0409

F
T1

0.0014 0.7000 -0.0184 -0.0200 -0.0246
F

T2
0.0008 0.6958 -0.0164 -0.0186 -0.0226D
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random independent variables.  Their methods have been restricted to the
simplifying assumption that all levels of the independent variables in the
model are completely fixed nonrandom.  According to the explicit sample
size formulas obtained in this article, the general setup of the proposed
approaches provides feasible solutions for studies involving both fixed and
random independent variables.

The GEE approach described in Liu and Liang (1997) and Rochon (1998)
represents a unified tool for sample size and power calculations for both
normal and non-normal responses of repeated measures and longitudinal
studies.  Unfortunately, it is found in this article that their approaches have
potential problem associated with the control of Type I error rate or the
sensitivity to the unbalanced design for the most common research paradigm
of multivariate general linear models with normal responses.  More
importantly, it is outperformed by the likelihood-based approaches of two F
transforms of Hotelling-Lawley trace statistic.  Such phenomenon continues
to exist in the proposed modification of their approaches over all the
conditions that we have considered.  The simulation results suggest the
proposed F

T2
 approach developed from the approximation proposed by

McKeon (1974) performs extremely well and shall be of practical use.
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Appendix

Brief Review of Generalized Estimating Equations (GEE)

Consider the repeated measures design or longitudinal study, and let *
ijy  be

the response and *
itx  be the K × 1 vector of independent variables or covariates

for the ith subject and the tth condition or time point, where i = 1, ..., N and t = 1,
..., T

i
.  Here for simplicity we consider the situation that all T

i
 = T; the case of

varying T
i
 can be handled in a similar way.  Let *

iy  be the T × 1 vector
( * *

1,...,i iTy y )T and *
iX  be the T × K matrix ( * *

1,...,i iTx x )T.  It is assumed throughout
that *

iy  and *
jy  are independent for any i � j.  The GEE approach fits a “marginal

model” in which a mean function and a covariance structure are specified, but
a full likelihood is not required.  The mean function specifies the relationship
between the marginal mean * *( | )it itE y x  = �

it
 and the vector *

itx  through a
generalized linear model g(�

it
) = *T

itx �, where � is a K × 1 vector of parameters,
and g is a known link function.  Common choices for the link function might be
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identity link g(�) = � for Gaussian data, log link g(�) = log(�) for count data, and
logit link g(�) = log[�/(1 – �)] for binary data.  The variance function V * *( | )it ity x
= �

it
 is expressed as �

it
 = �(�

it
)/	, where � is a known function and 	 is a scale

parameter which may be estimated.  Under the GEE model, the key step is to
write the covariance matrix of *

iy  given *
iX  as  V

i
 = 1/ 2

iA R
i
(�) 1/ 2

iA , where A
i

is a T × T diagonal matrix with �
it
 as the tth diagonal element, and R

i
(�) is the

working correlation matrix which is fully specified by the q × 1 vector of unknown
parameters �.  The vector � typically contains parameters that characterize the
correlation as a function of time lag or distance separation.

The major feature of GEE is the relaxation of the full likelihood function.
For the classical univariate and multivariate linear models with normal
responses, the mean and variance functions (the first two moments) fully
determine the likelihood function, but this assumption is violated for many
types of data such as binary or count outcomes.  To specify the entire
likelihood, additional assumptions about higher order moments are also
necessary.  Even if additional assumptions are made, the likelihood is often
intractable and involves many nuisance parameters in addition to � and � that
must be estimated.  GEE alleviate these restrictions.

A link can be built from familiar linear regression and generalized linear
models to GEE methodology through the form of the estimating equations.
Estimating equations represent a set of equations the solution of which give
parameter estimates.  For linear regression, it is well known that the least
squares estimates are obtained from solving the normal equations.  In similar
fashion, the parameter estimates of generalized linear model are solutions to
the estimating equations obtained by maximizing the likelihood function of the
exponential family.  The estimating equations of generalized linear models
were extended by Liang and Zeger (1986) to account for correlated
measurements from longitudinal data.  Specifically, the GEE approach
estimates � by solving the following generalized estimating equations:

( )1 *

1

,
N

T
i i i i

i

−

=
− =∑D V y 0�

where D
i
 = 
�

i
/
�T is the T × K gradient matrix and �

i
 = (�

i1
, ..., �

iT
)T.  The

extra term “generalized” distinguishes these as estimating equations in
generalized linear models that accommodate the correlation structure R

i
(�).

Liang and Zeger (1986) showed that the solution to the generalized
estimating equations gives a consistent estimate �̂  of � that is asymptotically
multivariate normal with the covariance matrix given by
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( )
1 1

1 1 * 1 1

1 1 1

ˆcov( ) cov .
N N N

T T T
i i i i i i i i i i i

i i i

− −
− − − −

= = =

     
=             

∑ ∑ ∑D V D D V y V D D V D�

Liang and Zeger (1986) proposed to estimate cov( �̂ ) by replacing �, 	 and
� with their estimators and replacing cov( *

iy ) by ( *
iy  – ˆ i� )( *

iy  – ˆ i� )T, where
ˆ i�  = ( 1ˆ ˆ, ...,i iT� � ) and ˆ iT�  = g-1( * ˆT

itx � ), t = 1, ..., T.  Another useful feature
of the GEE methodology is that � and cov( �̂ ) are consistently estimated
even if the correlation structure is misspecified.  A good discussion of the
connection between the GEE approach and the well-known least squares
regression methodology was given by Dunlop (1994).  Review of commercial
software packages to fit GEE models can be found in Ziegler and Gromping
(1998) and Horton and Lipsitz (1999).
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