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1) The customer groups are correlated: Interestingly, the demo-
graphic groupfemale-under-25 has almost identical prefer-
ences as that of the groupfemale-over-35. Perhaps surpris-
ingly, female-26-35 is “closer” tomale-26-35 than to other
female groups. Even more surprisingly,all-female is almost
orthogonal toall-male.

2) Yet, each customer group has its own bias: From the first quad-
rant of Fig. 9, thefemale-under-25 group favors alight de-
sign more than any other criteria. By contrast, in the third quad-
rant of the same figure, themale-over-35 group prefers a de-
sign that appears to berobust andtraditional.

Intransitivity of preferences can now be explained. The demo-
graphic groupX = male-under-25 prefers the designC1-4 over
the designA4-2. (Geometrically, the axis for male-under-25, in the
fourth quadrant of Fig. 9, receives a higher value in the projection
from the pointC1-4 than does fromA4–2). It also turns out that the
sameX = male-under-25 identifies more with a design being
innovative and feminine (perhaps surprisingly) than does the
groupY = male-26-35 which identifies more with designs that are
perceived aspetite. Finally, that the groupZ = male-over-35

is almost orthogonal toY = male-26-35 makes transitivity of
preferences, fromX, to Y , to Z, almost impossible – even without
the deformation arising from arbitrary projections.
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Single-Channel Speech Enhancement in Variable
Noise-Level Environment

Chin-Teng Lin

Abstract—This paper discusses the problem of single-channel speech en-
hancement in variable noise-level environment. Commonly used, single-
channel subtractive-type speech enhancement algorithms always assume
that the background noise level is fixed or slowly varying. In fact, the back-
ground noise level may vary quickly. This condition usually results in wrong
speech/noise detection and wrong speech enhancement process. In order
to solve this problem, we propose a new subtractive-type speech enhance-
ment scheme in this paper. This new enhancement scheme uses the RTF
(refined time-frequency parameter)-based RSONFIN (recurrent self-orga-
nizing neural fuzzy inference network) algorithm we developed previously
to detect the word boundaries in the condition of variable background noise
level. In addition, a new parameter (MiFre) is proposed to estimate the
varying background noise level. Based on this parameter, the noise level in-
formation used for subtractive-type speech enhancement can be estimated
not only during speech pauses, but also during speech segments. This new
subtractive-type enhancement scheme has been tested and found to per-
form well, not only in variable background noise level condition, but also
in fixed background noise level condition.

Index Terms—Filter bank, noise estimation, recurrent network, time-fre-
quency analysis, word boundary detection.

I. INTRODUCTION

Background noise acoustically added to speech can decrease the
performance of digital signal processing used for applications such as
speech compression and recognition. The main objective of speech en-
hancement is to reduce the influence of noise [1]. Adaptive noise can-
cellation (ANC) [2]–[4] uses a secondary input to measure the noise
source such that the estimated noise can then be subtracted from the
primary channel resulting in the desired signal. A spectral subtraction
method [5] which does not need a second microphone can also reduce
the influence of noise. In this method, noise magnitude spectrum is esti-
mated during speech pauses, and it is subtracted from the noisy speech
magnitude spectrum in order to estimate the clean speech. A method
based on nonlinear spectral subtraction is presented [6], [7], and it
needs to estimate the signal-to-noise ratio (SNR). Gurgen and Chen [8]
performed speech enhancement based on Fourier–Bessel coefficients
of speech and noise signals. Jensen and Hansen [9] proposed a sinu-
soidal model based algorithm for enhancement of speech degraded by
additive broad-band noise.

An important problem in subtractive-type speech enhancement is to
detect the presence of speech in noisy environment. The above single-
channel speech enhancement algorithms always require that the back-
ground noise level is fixed or slowly varying in order to correctly de-
tect the presence of speech in noisy environment, but the background
noise level may vary quickly in real world. The speech enhancement
method proposed by Sametiet al. [10] contains a noise adaptation al-
gorithm which can cope with noise level variation as well as different
noise types. The method proposed in [11] updates the noise estima-
tion during speech pauses in order to calculate the masking threshold
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correctly. Logan and Robinson [12] modeled the speech and noise sta-
tistics using autoregressive hidden Markov models for speech enhance-
ment. Rezayee and Gazor [13] proposed an adaptive tracking algorithm
for enhancement of speech degraded by colored additive interference.
However, the detection algorithm used in these schemes is not reliable
in a nonstationary noise environment. In many applications, the envi-
ronment is further complicated by nonstationary backgrounds, where
there may exist concurrent noises, due to movements of desks, door
slams, etc. This condition usually results in incorrect speech/noise de-
tection of speech signal, and then results in wrong speech enhancement
process.

The problem of detecting the presence of speech in noisy environ-
ment was also attacked in robust word boundary detection algorithms
[14]–[17]. These algorithms usually use energy (in time domain),
zero crossing rate, and time duration to find the boundary between
the word signal and background noise. However, it has been found
that the energy and zero-crossing rate are not sufficient to get reliable
word boundaries in noisy environment, even if more complex decision
strategies are used [18]. Up to date, several other parameters were
proposed such as, linear prediction coefficient (LPC), linear prediction
error energy [19], [20], pitch information [21], and time-frequency
(TF) parameter [18]. However, these parameters still cannot be adapted
to variable-level background noise well.

In this paper, we focus on the problem of single-channel subtrac-
tive-type speech enhancement in the variable-level noise condition. To
avoid the previous problems, we use the RTF-based RSONFIN algo-
rithm developed by us [22]. Since the RTF parameter can extract useful
frequency energy and the RSONFIN [23], [24] can process the tem-
poral relations, this RTF-based RSONFIN algorithm can detect the
word boundaries well in the condition of variable background noise
level. This new algorithm has been tested and found to perform well
not only in variable background noise level condition, but also in fixed
background noise level condition. Another problem is to estimate the
noise information in the speech segments. Commonly used, single-
channel subtractive-type speech enhancement algorithms estimate the
noise magnitude spectrum during speech pauses. Since the noise mag-
nitude spectrum may vary in the speech segments, we should also esti-
mate it in the speech segments. We propose aminimum-frequency-en-
ergy (MiFre) parameter which can estimate the varying background
noise level by adaptively choosing the proper bands from the mel-scale
frequency bank. Based on this parameter, the background noise infor-
mation used for subtractive-type speech enhancement can be estimated,
not only during speech pauses, but also during speech segments.

This paper is organized as follows. The new MiFre parameter is
derived in Section II. In Section III, we introduce the RTF-based
RSONFIN algorithm, and propose a new subtractive-type speech
enhancement scheme. This enhancement scheme uses the new MiFre
parameter and the RTF-based RSONFIN word boundary detection
algorithm. In addition, some experiments are done in this section.
Finally, the conclusions of our work are summarized in Section IV.

II. M INIMUM FREQUENCYENERGY

In this section, we propose aminimum-frequency-energy(MiFre)
parameter which can estimate the varying background noise level by
adaptively choosing the proper bands from the mel-scale frequency
bank. Based on this parameter, the background noise level can be esti-
mated, not only during speech pauses, but also during speech segments.

A. Auditory-Based Mel-Scale Filter Bank

There is an evidence from auditory psychophysics that the human
ear perceives speech along a nonlinear scale in the frequency domain
[25]. One approach to simulating the subjective spectrum is to use a

filter bank, spaced uniformly on a nonlinear, warped frequency scale,
such as the mel scale. The relation between mel-scale frequency and
normal frequency (Hz) is described by the following equation:

mel= 2595 log(1 + f=700); (1)

where mel is the mel-frequency scale andf is in Hz. The filter bank
is then designed according to the mel scale, where the filters of 20
bands are approximated by simulating 20 triangular band-pass filters,
f(i; k)(1 � i � 20; 0 � k � 63), over a frequency range of 0�4000
Hz. Hence, each filter band has a triangular bandpass frequency re-
sponse, and the spacing as well as the bandwidth is determined by
a constant mel frequency interval by (1). The value of the triangular
function,f(i; k), also represents the weighting factor of the frequency
energy at thekth point of theith band.

With this mel-scale frequency bank given in Fig. 1(a), we can now
calculate the energy of each frequency band for each time frame of
a speech signal. Consider a given time-domain noisy speech signal,
xtime(m; n), representing the magnitude of then–th point of them–th
frame. We first find the spectrum,xfreq(m; k), of this signal by Dis-
crete Fourier Transform (128-point DFT).

xfreq(m; k) =

N�1

n=0

xtime(m; n)W
kn

N

0 � k � N � 1; 0 � m �M � 1 (2)

WN = exp(�j2�=N) (3)

wherexfreq(m; k) is the magnitude of thekth point of the spectrum
of themth frame,N is 128 in our system, andM is the number of
frames of the speech signal for analysis. We then multiply the spec-
trum xfreq(m; k) by the weighting factorsf(i; k) on the mel-scale
frequency bank and sum the products for allk to get the energyx(m; i)
of each frequency bandi of them–th frame.

x(m; i) =

N�1

k=0

jxfreq(m; k)jf(i; k)

0 � m �M � 1 1 � i � 20 (4)

wherei is the filter band index,k is the spectrum index,m is the frame
number, andM is the number of frames for analysis.

We found in our experiments that the energyx(m; i) obtained in
(4) usually had some undesired impulse noise and was covered by the
energy of background noise. We further smooth it by using a three-point
median filter to get̂x(m; i).

x̂(m; i) =SMOOTHING(X(m; i))

=
x(m� 1; i) + x(m; i) + x(m+ 1; i)

3
: (5)

Finally, the smoothed energy,x̂(m; i), is normalized by removing the
frequency energy of the beginning interval, Noisefreq, to getX(m; i),
where the energy of the beginning interval is estimated by averaging the
frequency energy of the first five frames of the recording:

X(m; i) = x̂(m; i)� Noise freq

= x̂(m; i)�

4

m=0

x̂(m; i)

5
: (6)

B. Background Noise Level Estimation

To estimate the background noise level, we need a parameter to
stand for the amount of word signal information of each band. Be-
fore we propose a way to estimate the background noise level, we first
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Fig. 1. (a) Flowchart for computing the RTF() and MiFre( ) parameters. (b) Procedure for estimating the maximum frequency energy and minimum
frequency energy in (a).

make some observations on the effect of additive noise on each fre-
quency band. In Fig. 2(a), we try to add white noise (0 dB) to the clean
speech signal to see the effects of adding white noise on each band.
For illustration, the smoothed and normalized frequency energies of a
speech signal,X(m; i) in (6), for 20 bands (i = 1; 2; . . . ; 20) and
166 frames (m = 0; 1; . . . ; 165) are shown in Fig. 2(b) and (c). We
find that the energy of the first word signal (m = 30; 41; . . . ; 50)
mainly focuses on the 5th band. Since the 8th�20th bands are seri-
ously corrupted by the additive white noise, these bands have little in-
formation of word signal. In order to estimate the background noise
of the first word signal segment correctly, we shall adopt the bands
between band indexes 8 and 20 to estimate the white noise level. In
addition, the energy of the second word signal (m = 70; 71; . . . ; 90)
mainly focuses on the 7th band, and the energy of the third word signal
(m = 120; 121; . . . ; 140) mainly focuses on the 9th band. Hence,
we cannot adopt the 7th and 9th bands in estimating the noise levels
in the second and third word signal segments. Obviously, some bands
have small frequency energyX(m; i) and should be adopted to esti-
mate the background noise level. However, these small-energy bands
may change under different word signals and noise conditions. This is

because different word signals and noise focus their frequency energy
on different bands; some focus on low frequency bands, and others on
high frequency bands.

Based on the above discussion and illustrations, we propose a new
parameter, MiFre, to estimate the variation of background noise level
and reduce the effect of word signal. We adopt the minimumX(m; i)
and smooth it by a three-point median filter to beX̂(m):

X̂(m) = SMOOTHING(min[X(m; i)]i=1; 2; ...;20): (7)

Finally, we put the slope constraint on̂X(m) to get theMiFre(m)
parameter to stand for the background noise level:

MiFre(m) =Slope-Constraint(X̂(m)); (8)

=

m

30
+ 5; if X̂(m) >

m

30
+ 5

X̂(m); if
m

30
+ 5 � X̂(m) � �

m

30
� 5

�
m

30
� 5; if �

m

30
� 5 > X̂(m).

(9)
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Fig. 2. (a) Speech waveform recorded in additive white noise of 0 dB. (b)
Smoothed and normalized frequency energies,( ), on 20 frequency
bands. (c) The contour of (b).

If the values ofX̂(m) increase or decrease largely, the slope constraint
will reduce the variations of̂X(m).

The detailed procedure to calculate the MiFre parameter is illus-
trated in Fig. 1, and the RTF parameter in this figure is used for the
RTF-based RSONFIN algorithm we developed [22] as described in the
next section. In addition, the procedure for estimating the maximum
frequency energy and minimum frequency energy in Fig. 1(a) is shown
in Fig. 1(b). In order to see the effect of MiFre parameter, we make a
test as follows. The speech signal with additive increasing-level white
noise (SNR = 10 dB) is shown in Fig. 3(a), and the corresponding
smoothed and normalized frequency energies,X(m; i) [see (6)], on
20 mel-scale frequency bands and 100 frames are shown in Fig. 3(b).
According to (9), the values of MiFre parameter can be obtained and
shown in Fig. 3(c). The root-mean-square energy of the background
noise is shown in Fig. 3(d). We can easily find that the values of MiFre
parameter in Fig. 3(c) are increasing and do reflect the variations of
background noise in Fig. 3(d).

III. N EW SPEECHENHANCEMENT ALGORITHM

In this section, we propose a new speech enhancement scheme
in variable background noise-level environment. This enhancement
scheme uses MiFre parameter to estimate the varying background
noise level, and uses the RTF-based RSONFIN algorithm to detect the
word boundaries in the condition of variable background noise level.

Fig. 3. (a) Speech signal with additive increasing-level white noise (SNR =
10 dB). (b) Smoothed and normalized frequency energy,( ), on 20
frequency bands. (c) Values of MiFre parameter. (d) Root-mean-square energy
of the background noise.

A. RTF-Based RSONFIN Algorithm for Word Boundary Detection

The structure of the RSONFIN is shown in Fig. 4(a). With the
learning ability of temporal relations, a procedure of using the
RSONFIN for word boundary detection in variable background
noise level condition is illustrated in Fig. 4(b). The input feature
vector of the RSONFIN consists of the average of the logarithmic
root-mean-square (rms) energy on the first five frames of recording
interval (Noisetime), RTF parameter, and zero-crossing rate (ZCR).
These three parameters in an input feature vector are obtained by
analyzing a frame of a speech signal. Hence there are three (input)
nodes in layer 1 of RSONFIN. Before entering the RSONFIN, the
three input parameters are normalized to be in [0, 1]. For each input
vector (corresponding to a frame), the output of RSONFIN indicates
whether the corresponding frame is a word signal or noise. For this
purpose, we used two (output) nodes in layer 5 of RSONFIN, where
the output vector of (1, 0) standing for word signal, and (0, 1) for noise.

In the training process, the noisy speech waveform is sampled,
and each frame is transformed into the desired input feature vector
of RSONFIN (Noisetime, RTF parameter, and zero-crossing rate).
These training vectors are classified as word signal or noise by
using waveform, spectrum displays and audio output. Among these
training vectors, some are from word sound category with the desired
RSONFIN output vector being (1, 0), and the others are from noise
category with the desired RSONFIN output vector being (0, 1).

The RSONFIN after training is ready for word boundary detection.
As shown in Fig. 4(b), the outputs of RSONFIN are processed by a
decoder. The decoder decodes the RSONFIN’s output vector (1, 0) as
value 100 standing for word signal, and (0, 1) as value 0 standing for
noise. We observed that the decoding waveform (i.e., the outputs of the
decoder) contained impulse noise sometimes. Hence, we let the output
waveform of the decoder pass through a three-point median filter to
eliminate the isolated “impulse” noise. Finally, we recognize the word-
signal island as the part of the filtered waveform whose magnitude is
greater than 30, and duration is long enough (by setting a threshold
value). We then regard the parts of the original signal corresponding
to the allocated word-signal island as the word signal, and the other
ones as the background noise. The details of the RTF-based RSONFIN
algorithm for word boundary detection can be found in [22].
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Fig. 4. (a) Structure of the Recurrent Self-Organizing Neural Fuzzy Inference Network (RSONFIN). (b) RTF-based RSONFIN algorithm for automatic word
boundary detection.

B. New Speech Enhancement Scheme

The flowchart of the proposed speech enhancement scheme in vari-
able background noise-level environment is shown in Fig. 5. Consider
a speech signals(n) corrupted by additive noised(n).

y(n) = s(n) + d(n) (10)

where the speech and noise signals are assumed to be uncorrelated.
Taking the Fourier Transform of (10) gives

Y (ejw) = S(ejw) +D(ejw): (11)

We further smooth the magnitudes ofY (ejw) by using a three-point
median filter to getjY (ejw)j

jY i(e
jw)j =

jYi�1(e
jw)j+ jYi(e

jw)j+ jYi+1(e
jw)j

3
; (12)

where i means thei–th time window. The spectral magnitude
jŶ (ejw)j is obtained by subtracting the noise spectral magnitude

estimatejD̂(ejw)j from the smoothed noisy speech spectral magnitude
jY (ejw)j.

jŶ (ejw)j = jY (ejw)j � jD̂(ejw)j: (13)

Based on the RTF-based RSONFIN algorithm described in the last
subsection, the noise spectral magnitude estimatejD̂(ejw)j can be
updated reliably during speech pauses. Commonly used single-channel
subtractive-type speech enhancement algorithms estimate the noise
magnitude spectrum during speech pauses. However, since the noise
magnitude spectrum may vary in the speech segments, we use the
MiFre parameter to estimate it not only during speech pauses but also
during speech segments as described in Section II. In addition, we
define a parameter, VAR, to represent the sum of the MiFre values
over all frames (see Fig. 1).

VAR =

M�1

m=0

jMiFre(m)j

M
: (14)
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Fig. 5. Proposed speech enhancement scheme in variable noise-level environment.

This VAR parameter can indicate the average variation of background
noise level.

Thresholdth1 in Fig. 5 is used to check whether the background
noise level is fixed or variable. We set the beginning boundary of
the speech segment to be “bb” and the ending boundary to be “eb.”
Thresholdth2 in Fig. 5 is used to check whether the speech segment
is long enough. IfVAR � th1, the variation of background noise
level in the recording interval is small. If(ee � bb) � th2, the MiFre
values are not sufficient to stand for the variation of the background
noise level in speech segment. In these two cases, the noise spectral
magnitude estimatejD̂(ejw)j obtained during speech pauses will not
be modified in the speech segment. However, ifVAR > th1 and
(eb � bb) > th2, the variation of background noise level in the
corresponding speech segment is large, and the MiFre values can stand
for the variation of the background noise level in speech segment. In
this case, the noise spectral magnitude estimatejD̂(ejw)j obtained
during speech pauses should be modified in the speech segment as
follows:

jD̂modi�ed(e
jw)j = jD̂(ejw)j � weight (15)

weight =1 +
MiFre(m)�MiFre(bb)� coef1

coef2
(16)

where, by trial and error, we chooseth1 = 5, th2 = 5400, coef1 = 2
andcoef2 = 1500 in our speech enhancement scheme. In this case,
(13) should be modified accordingly as follows:

jŶ (ejw)j = jY (ejw)j � jD̂modi�ed(e
jw)j: (17)

To reduce the effect of noise, we apply half-wave rectification to
jŶ (ejw)j; for each frequencyw, wherejŶ (ejw)j obtained by (17) is
less than zero, the output is set to zero.

jŶhalf(e
jw)j =

jŶ (ejw)j; if jŶ (ejw)j > 0

0; if jŶ (ejw)j � 0.
(18)

In the next step, the methods of “reducing noise residual” and “ad-
ditional signal attenuation” used by Boll [5] during nonspeech seg-
ments are implemented to get the final enhanced spectral magnitude
jŜ(ejw)j. In the process of reducing noise residual, the noise residual
is suppressed by replacing its current value with its minimum value

chosen from the adjacent analysis frames, and in the process of addi-
tional signal attenuation, the noise is attenuated by a fixed factor. Fi-
nally, we take the inverse fourier transform to get the enhanced speech
signal in time domain.

C. Experiments

This section tests the performance of the proposed speech enhance-
ment scheme. The sampling rate is 8 kHz, and the frame size is 240
samples (30 ms) with 50% overlap. Each speech signal covered by
additive noise is a Mandarin speech sentence with length of 4 s, and
there are totally 100 noisy sentences for testing. The added noise sig-
nals are from the noise database provided by the NATO Research Study
Group on Speech Processing (RSG.10) NOISE-ROM-0 [26]. The orig-
inal NOISE-ROM-0 data were sampled at 19.98 kHz and stored as
16-bit integers. In our experiments, they are prepared for use by down-
sampling to 8 kHz and applying attenuation on them. The attenuation
was applied to enable the addition of noise without causing an overflow
of the 16-bit integer range.

We first see the performance of the proposed scheme on a speech
signal with additive increasing-level white noise (SNR = 10 dB)
in Fig. 6. Obviously, the noise in the rear part of recording interval
is larger than the noise in the front part of recording interval. The
noise makes the distinction between speech and background noise am-
biguous. In Fig. 6(b), two speech segments are found, and the word
boundaries detected by the RTF-based RSONFIN algorithm are shown
by solid lines. Since the RTF parameter can extract useful frequency
energy and the RSONFIN [23] can process the temporal relations, the
RTF-based RSONFIN algorithm can find the variation of background
noise level and detect correct speech segments in the increasing back-
ground noise level condition. For contrast, the enhanced speech signal
produced by the new speech enhancement scheme without noise esti-
mation during speech segments is shown in Fig. 6(c). Since the noise
estimation is done only during speech pauses, the effect of additive
increasing-level white noise is obvious in the rear part of the second
speech segment. The enhanced speech signal produced by the new
speech enhancement scheme with noise estimation during speech seg-
ments is shown in Fig. 6(d). Since the noise estimation is done not
only during speech pauses but also during speech segments, the in-
creasing-level white noise can be removed reasonably. The rear part
of the second speech segment has no obvious noise component. This
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Fig. 6. (a) Original clean speech signal. (b) Speech signal with additive
increasing-level white noise (SNR = 10 dB). The word boundaries detected
by the RTF-based RSONFIN algorithm are shown by solid lines. (c) Enhanced
speech signal without noise estimation during speech segments. (d) Enhanced
speech signal with noise estimation during speech segments.

observation demonstrates the efficiency of the proposed new speech
enhancement scheme in variable background noise-level condition.

The amount of noise reduction in variable background noise level
condition is measured by the objective evaluation:

Input SNR =10 log

K

n=1

s
2(n)

K

n=1

d2(n)

(19)

OutputSNR =10 log

K

n=1

s
2(n)

K

n=1

[s(n)� ŝ(n)]2
(20)

where the “input SNR” is the SNR value of the input noisy speech
signal standing for the amount of the additive noise, the “output SNR”
is the SNR value of the output enhancement speech signal standing
for the efficiency of the speech enhancement scheme,K is the frame-
length,s(n) is the clean speech signal,d(n) is the additive noise, and
ŝ(n) is the enhanced speech signal. In our test, the input SNR values
are from 0 to 15 dB, and the output SNR values calculated by (20)
are shown in Fig. 7. This figure shows that the proposed scheme with
noise estimation during speech segments produces the enhanced speech
signals with higher SNR values at various input SNR values than that
without noise estimation during speech segments.

IV. CONCLUSIONS

Two major characteristics of the new speech enhancement scheme
proposed in this paper can be observed. 1) Since the RTF parameter

Fig. 7. Comparison of speech enhancement algorithm with noise estimation
and that without noise estimation during speech segments in variable
background noise level condition.

can extract useful frequency information and the RSONFIN can recog-
nize the temporal relations automatically and implicitly, the RTF-based
RSONFIN algorithm can find the variation of background noise level
and detect correct speech/noise segments in variable noise-level en-
vironment. The recurrent property of the RSONFIN makes it more
suitable for dealing with temporal problems. 2) Since the MiFre pa-
rameter can estimate the varying background noise level, the back-
ground noise information required in our subtractive-type speech en-
hancement scheme can be estimated not only during speech pauses
but also during speech segments. This new subtractive-type speech en-
hancement scheme has been tested and found to perform well not only
in variable background noise level condition but also in fixed back-
ground noise level condition.
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