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1) The customer groups are correlateiterestingly, the demo- Single-Channel Speech Enhancement in Variable
graphic groupfemale-under-25 has almost identical prefer- Noise-Level Environment
ences as that of the grodemale-over-35. Perhaps surpris-
ingly, female-26-35 is “closer” tomale-26-35 than to other Chin-Teng Lin

female groups. Even more surprisingiyl,1-female is almost

orthogonal teall-male.

2) Yet, each customer group has its own biasm the first quad- Abstract—This paper discusses the problem of single-channel speech en-
hancement in variable noise-level environment. Commonly used, single-

rant of Fig. 9, thefemale-under-25 group favors dight de-  channe| subtractive-type speech enhancement algorithms always assume
sign more than any other criteria. By contrast, in the third quaghat the background noise level is fixed or slowly varying. In fact, the back-

rant of the same figure, theale-over-35 group prefers a de- ground noise level may vary quickly. This condition usually results in wrong
sign that appears to hebust andtraditional. speech/noise detection and wrong speech enhancement process. In order

o . to solve this problem, we propose a new subtractive-type speech enhance-
Intransitivity of preferences can now be eXpIaln_ed. The deM@sent scheme in this paper. This new enhancement scheme uses the RTF
graphic groupX = male-under-25 prefers the desigl1-4 over (refined time-frequency parameter)-based RSONFIN (recurrent self-orga-
the designA4-2. (Geometrically, the axis for male-under-25, in théizing neural fuzzy inference network) algorithm we developed previously
fourth quadrant of Fig. 9, receives a higher value in the projecti(?ﬂdetecnhe‘_"’,ord boundariesinthe conqmon (_)fvarlable backgro_und noise
from the pointC1-4 than does from\4—2). It also turns out that the evel. In addition, a new parameter (MiFre) is proposed to estimate the
n p g i ) . . -~ varying background noise level. Based on this parameter, the noise level in-
sameX = male-under-25 identifies more with a design being formation used for subtractive-type speech enhancement can be estimated
innovative and feminine (perhaps surprisingly) than does thenot only during speech pauses, but also during speech segments. This new
groupY = male-26-35 which identifies more with designs that arefSUb”aCt:?’e'Qipe f”_hanc?f%'lsmbsc*l‘(eme hdas b_eeT teSItEd ?jntd fOUt:‘Otl t‘? per-
: . : orm well, not only in variable background noise level condition, but also
perceived apetite. Finally, that the group” = male-over-35 -0 backgrour{d Lo el con%ition.
is almost orthogonal t&” = male-26-35 makes transitivity of
preferences, froni, to Y, to Z, almost impossible — even without Index Terms—Filter bank, noise estimation, recurrent network, time-fre-

the deformation arising from arbitrary projections. quency analysis, word boundary detection.
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correctly. Logan and Robinson [12] modeled the speech and noise §ilser bank, spaced uniformly on a nonlinear, warped frequency scale,
tistics using autoregressive hidden Markov models for speech enharsigzh as the mel scale. The relation between mel-scale frequency and
ment. Rezayee and Gazor [13] proposed an adaptive tracking algorithonmal frequency (Hz) is described by the following equation:

for enhancement of speech degraded by colored additive interference.

However, the detection algorithm used in these schemes is not reliable mel = 2595log(1 + £/700), ()

ina nons_tatlonary noise _enwronment. In many applications, the EMhere mel is the mel-frequency scale ghds in Hz. The filter bank
ronment is further complicated by nonstationary backgrounds, where . - .

. . s then designed according to the mel scale, where the filters of 20
there may exist concurrent noises, due to movements of desks, door

) . . ) ands are approximated by simulating 20 triangular band-pass filters,
slams, etc. This condition usually results in incorrect speech/noise P y 9 g P

. . . i, k)(1<i<20,0<Ek<63),overafrequency range ok1000
tection of speech signal, and then results in wrong speech enhancemegrit ) .
process Z. Hence, each filter band has a triangular bandpass frequency re-

. . . . srPonse, and the spacing as well as the bandwidth is determined by
The problem of detecting the presence of speech in noisy ENVINaN s nstant mel frequency interval b (1). The value of the triangular
ment was also attacked in robust word boundary detection algorithgns d Y YA 9

[141-[17]. These algorithms usually use energy (in time domain unction, f(i, k), also represents the weighting factor of the frequency

zero crossing rate, and time duration to find the boundary betweeher.gy at.thé"th point of theith band. . -
ith this mel-scale frequency bank given in Fig. 1(a), we can now

the word signal and background noise. However, it has been foun .
. - . culate the energy of each frequency band for each time frame of
that the energy and zero-crossing rate are not sufficient to get rellaB'lae . - . . . - :

word boundaries in noisy environment, even if more complex decisiglnSpeech signal. Consider a given time-domain noisy speech signal,
. y ' P Tiime (M, 1), representing the magnitude of theth point of then—th

strategies are used [18]. Up to date, several other parameters were o . .
. S . : - .Trame. We first find the spectrum..,(m, k), of this signal by Dis-
proposed such as, linear prediction coefficient (LPC), linear predlctu%rrle,[e Fourier Transform (128-point DFT)
error energy [19], [20], pitch information [21], and time-frequency P '

(TF) parameter [18]. However, these parameters still cannot be adapted N-1 "
to variable-level background noise well. ireq(m, k) = Y @iime(m, n)WR"
In this paper, we focus on the problem of single-channel subtrac- n=0 } ,
tive-type speech enhancement in the variable-level noise condition. To 0Sk<SN-1, 0<m<M-1 )
avoid the previous problems, we use the RTF-based RSONFIN algo- Wy = exp(—j2a/N) 3)

rithm developed by us [22]. Since the RTF parameter can extract useful

frequency energy and the RSONFIN [23], [24] can process the temherexs..,(m, k) is the magnitude of théth point of the spectrum

poral relations, this RTF-based RSONFIN algorithm can detect toéthe mnth frame, N is 128 in our system, and/ is the number of

word boundaries well in the condition of variable background noiseames of the speech signal for analysis. We then multiply the spec-

level. This new algorithm has been tested and found to perform welim zf,.,(m, k) by the weighting factorg (i, k) on the mel-scale

not only in variable background noise level condition, but also in fixelequency bank and sum the products fokal get the energy (m, i)

background noise level condition. Another problem is to estimate tb¢each frequency bandof the m—th frame.

noise information in the speech segments. Commonly used, single-

channel subtractive-type speech enhancement algorithms estimate the

noise magnitude spectrum during speech pauses. Since the noise mag-

nitude spectrum may vary in the speech segments, we should also esti-

mate it in the speech segments. We proposgramum-frequency-en-

ergy (MiFre) parameter which can estimate the varying backgroungherei is the filter band index; is the spectrum indexy is the frame

noise level by adaptively choosing the proper bands from the mel-scalgmber, andV/ is the number of frames for analysis.

frequency bank. Based on this parameter, the background noise inforwe found in our experiments that the energyn, i) obtained in

mation used for subtractive-type speech enhancement can be estimggdisually had some undesired impulse noise and was covered by the

not only during speech pauses, but also during speech segments. energy of background noise. We further smooth it by using a three-point
This paper is organized as follows. The new MiFre parameter rigedian filter to geti:(m, 7).

derived in Section Il. In Section Ill, we introduce the RTF-based

N—-1
el i) = 3 Batvealms (G B)
k=0

0<m<M-1 1<:<20 (4)

RSONFIN algorithm, and propose a new subtractive-type speech &(m, i) = SMOOTHING( X (m, i)
enhancement scheme. This enhancement scheme uses the new MiFre e(m —1,0) + x(m, i) + z(m + 1,)
parameter and the RTF-based RSONFIN word boundary detection = . . (5)

algorithm. In addition, some experiments are done in this section. 5
Finally, the conclusions of our work are summarized in Section Iv. Finally, the smoothed energy(im. i), is normalized by removing the
frequency energy of the beginning interval, Nafseq, to getX (m, i),
where the energy of the beginning interval is estimated by averaging the
II. MINIMUM FREQUENCY ENERGY frequency energy of the first five frames of the recording:

In this section, we propose minimum-frequency-energiiFre) } ) . ) .
parameter which can estimate the varying background noise level by X(m, i) =&(m, i) — Noise_freq
adaptively choosing the proper bands from the mel-scale frequency 24: #(m,i)
bank. Based on this parameter, the background noise level can be esti- —#(m, i) — ™=0 _ ©)

mated, not only during speech pauses, but also during speech segments. 5

A. Auditory-Based Mel-Scale Filter Bank B. Background Noise Level Estimation

There is an evidence from auditory psychophysics that the humariTo estimate the background noise level, we need a parameter to
ear perceives speech along a nonlinear scale in the frequency donsémd for the amount of word signal information of each band. Be-
[25]. One approach to simulating the subjective spectrum is to usdoae we propose a way to estimate the background noise level, we first
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Fig. 1. (a) Flowchart for computing the RT#¢) and MiFrgm) parameters. (b) Procedure for estimating the maximum frequency energy and minimum
frequency energy in (a).

make some observations on the effect of additive noise on each foecause different word signals and noise focus their frequency energy
quency band. In Fig. 2(a), we try to add white noise (0 dB) to the clean different bands; some focus on low frequency bands, and others on
speech signal to see the effects of adding white noise on each bargdh frequency bands.

For illustration, the smoothed and normalized frequency energies of 8Based on the above discussion and illustrations, we propose a new

speech signalX (m, ¢) in (6), for 20 bandsi(= 1, 2, ..., 20) and parameter, MiFre, to estimate the variation of background noise level
166 frames«: = 0, 1, ..., 165) are shown in Fig. 2(b) and (c). We and reduce the effect of word signal. We adopt the mininditme, )
find that the energy of the first word signak(= 30, 41, ..., 50) and smooth it by a three-point median filter to kg ):

mainly focuses on the 5th band. Since the~820th bands are seri-
ously corrupted by the additive white noise, these bands have little in-
formation of word signal. In order to estimate the background no'?—‘?nally, we put the slope constraint oﬁ(m) to get theMiFre(m)

of the first word signal segment correctly, we shall adopt the banﬂarameter to stand for the background noise level:
between band indexes 8 and 20 to estimate the white noise level. In '

X (m) = SMOOTHINGMIN[X (m, i)]i=1.2.....20)- 7

addition, the energy of the second word signal£ 70, 71, ..., 90) MiFre(m) = Slope-Constraimt?(711,)), (8)
mainly focuses on the 7th band, and the energy of the third word signal m . m
(m = 120, 121, ..., 140) mainly focuses on the 9th band. Hence, gt X(m) > 39 to

we cannot adopt the 7th and 9th bands in estimating the noise levels . o m N

in the second and third word signal segments. Obviously, some bands =q X(m), if 30 +52X(m) = -
have small frequency energy(m, ¢) and should be adopted to esti- m Loom -

mate the background noise level. However, these small-energy bands T30 5 i T30 5> X(m).

may change under different word signals and noise conditions. This is 9)

m

30

5
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Fig. 3. (a) Speech signal with additive increasing-level white n@3R =

10 dB). (b) Smoothed and normalized frequency enedy,m, z), on 20
frequency bands. (c) Values of MiFre parameter. (d) Root-mean-square energy
of the background noise.
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A. RTF-Based RSONFIN Algorithm for Word Boundary Detection

The structure of the RSONFIN is shown in Fig. 4(a). With the
learning ability of temporal relations, a procedure of using the
RSONFIN for word boundary detection in variable background
e noise level condition is illustrated in Fig. 4(b). The input feature
Band index (i) vector of the RSONFIN consists of the average of the logarithmic

© root-mean-square (rms) energy on the first five frames of recording

i . - . ) interval (Noisetime), RTF parameter, and zero-crossing rate (ZCR).
gﬁbgih e(é")aﬁgeﬁ:&g?;’:;ﬁgquﬁéseedng'rgﬁg:x? gr?'tgnng(')s?r;;u%gg ( ese three parameters in an input feature vector are obtained by
bands. (c) The contour of (b). analyzing a frame of a speech signal. Hence there are three (input)

nodes in layer 1 of RSONFIN. Before entering the RSONFIN, the
. three input parameters are normalized to be in [0, 1]. For each input

If the values ofX (m) increase or decrease largely, the slope constraictor (corresponding to a frame), the output of RSONFIN indicates
will reduce the variations ok (m). whether the corresponding frame is a word signal or noise. For this

The detailed procedure to calculate the MiFre parameter is illusurpose, we used two (output) nodes in layer 5 of RSONFIN, where
trated in Fig. 1, and the RTF parameter in this figure is used for thige output vector of (1, 0) standing for word signal, and (0, 1) for noise.
RTF-based RSONFIN algorithm we developed [22] as described in theln the training process, the noisy speech waveform is sampled,
next section. In addition, the procedure for estimating the maximuamd each frame is transformed into the desired input feature vector
frequency energy and minimum frequency energy in Fig. 1(a) is showfi RSONFIN (Noisetime, RTF parameter, and zero-crossing rate).
in Fig. 1(b). In order to see the effect of MiFre parameter, we makeThese training vectors are classified as word signal or noise by
test as follows. The speech signal with additive increasing-level whitging waveform, spectrum displays and audio output. Among these
noise 6NR = 10 dB) is shown in Fig. 3(a), and the correspondingraining vectors, some are from word sound category with the desired
smoothed and normalized frequency energieésin, i) [see (6)], on RSONFIN output vector being (1, 0), and the others are from noise
20 mel-scale frequency bands and 100 frames are shown in Fig. 3@ategory with the desired RSONFIN output vector being (0, 1).
According to (9), the values of MiFre parameter can be obtained andThe RSONFIN after training is ready for word boundary detection.
shown in Fig. 3(c). The root-mean-square energy of the backgrouad shown in Fig. 4(b), the outputs of RSONFIN are processed by a
noise is shown in Fig. 3(d). We can easily find that the values of MiFiecoder. The decoder decodes the RSONFIN’s output vector (1, 0) as
parameter in Fig. 3(c) are increasing and do reflect the variations\eflue 100 standing for word signal, and (0, 1) as value 0 standing for
background noise in Fig. 3(d). noise. We observed that the decoding waveform (i.e., the outputs of the

decoder) contained impulse noise sometimes. Hence, we let the output

waveform of the decoder pass through a three-point median filter to
1. N EW SPEECHENHANCEMENT ALGORITHM eliminate the isolated “impulse” noise. Finally, we recognize the word-

signal island as the part of the filtered waveform whose magnitude is

In this section, we propose a new speech enhancement sch@meater than 30, and duration is long enough (by setting a threshold
in variable background noise-level environment. This enhancemenalue). We then regard the parts of the original signal corresponding
scheme uses MiFre parameter to estimate the varying backgrotmdhe allocated word-signal island as the word signal, and the other
noise level, and uses the RTF-based RSONFIN algorithm to detect tmes as the background noise. The details of the RTF-based RSONFIN
word boundaries in the condition of variable background noise leveklgorithm for word boundary detection can be found in [22].

80

Frame number (m)

40 F

20
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Fig. 4. (a) Structure of the Recurrent Self-Organizing Neural Fuzzy Inference Network (RSONFIN). (b) RTF-based RSONFIN algorithm for autamatic wor
boundary detection.

B. New Speech Enhancement Scheme estimate D(e’*)| from the smoothed noisy speech spectral magnitude

The flowchart of the proposed speech enhancement scheme in vBrite” -
able background noise-level environment is shown in Fig. 5. Consider

a speech signal(n) corrupted by additive noisé(n). V()= [Y(e')] = |D(e")]. (13)

y(n) = s(n) + d(n) (10) Based on the RTF-based RSONFIN algorithm described in the last
subsection, the noise spectral magnitude estirhBie’" )| can be
where the speech and noise signals are assumed to be uncorrelatedated reliably during speech pauses. Commonly used single-channel

Taking the Fourier Transform of (10) gives subtractive-type speech enhancement algorithms estimate the noise
o iw iw i magnitude spectrum during speech pauses. However, since the noise
Y(e’™) = 5(e’") + D(e’™). (11)  magnitude spectrum may vary in the speech segments, we use the

. w . . MiFre parameter to estimate it not only during speech pauses but also
Jw -
We further smooth the magnitudes{e™) by using a three-point during speech segments as described in Section Il. In addition, we

H ] N[ ,Jw
median filter to gefy (¢*)] define a parameter, VAR, to represent the sum of the MiFre values
. S (e S (eI W - jw over all frames (see Fig. 1).
V(o)) = M @OIF W)+ Ve ()] gy
3 M—1 i
where i means thei-th time window. The spectral magnitude 20 IMiFre(m)]|
VAR="*~————. (14)

[Y"(e’™)| is obtained by subtracting the noise spectral magnitude Vi
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Fig. 5. Proposed speech enhancement scheme in variable noise-level environment.

This VAR parameter can indicate the average variation of backgrouddosen from the adjacent analysis frames, and in the process of addi-

noise level. tional signal attenuation, the noise is attenuated by a fixed factor. Fi-
Thresholdthl in Fig. 5 is used to check whether the backgroundally, we take the inverse fourier transform to get the enhanced speech

noise level is fixed or variable. We set the beginning boundary efgnal in time domain.

the speech segment to bkeb” and the ending boundary to bels.”

Thresholdth2 in Fig. 5 is used to check whether the speech segmept Experiments

[ VAR < thl iati i . .
:S Iong enough ”.\ R = the variation of baclfground.nmse This section tests the performance of the proposed speech enhance-
evel in the recording interval is small. (fe — bb) < th2, the MiFre ment scheme. The samoli . L
e e . pling rate is 8 kHz, and the frame size is 240
values are not sufficient to stand for the variation of the backgrour%de les (30 ms) with 50% overlap. Each speech signal covered b
amp 0 p. p g y

noise level in speech segment. In these two cases, the noise spectal.. o . ;
. . N iw . . . itive noise is a Mandarin speech sentence with length of 4 s, and
magnitude estimatgD(e’" )| obtained during speech pauses will no . ; . :
L B here are totally 100 noisy sentences for testing. The added noise sig-
be modified in the speech segment. Howeve’/ ¥R > thl and - .
(cb — bb) > th2, the variation of background noise level in thenals are from the noise database provided by the NATO Research Study
‘ ! 9 roup on Speech Processing (RSG.10) NOISE-ROM-0 [26]. The orig-

corresponding speech segmentis large, and the MiFre values can stan

for the variation of the background noise level in speech segment.'rlla NOISE-ROM-0 data were sampled at 19.98 kHz and stored as

this case, the noise spectral magnitude estinmBte’*)| obtained 18-b|t_|ntegers. In ourexperlments, they are prepared for use by doyvn-
. e ampling to 8 kHz and applying attenuation on them. The attenuation
during speech pauses should be modified in the speech segment as . L . . .
follows: was applied to enable the addition of noise without causing an overflow
' of the 16-bit integer range.
|1§modiﬁcd(cf“')| = |f)(cf"“)| x weight (15) We first see the performance of the proposed scheme on a speech
. . signal with additive increasing-level white noiseNR = 10 dB)
MiFre(m) — M'Ffe(bb) — coefl in Fig. 6. Obviously, the noise in the rear part of recording interval
coef2 is larger than the noise in the front part of recording interval. The
noise makes the distinction between speech and background noise am-
where, by trial and error, we chooslel = 5, th2 = 5400, coef1 = 2 biguous. In Fig. 6(b), two speech segments are found, and the word
andcoef2 = 1500 in our speech enhancement scheme. In this cad®undaries detected by the RTF-based RSONFIN algorithm are shown

weight =1 +
(16)

(13) should be modified accordingly as follows: by solid lines. Since the RTF parameter can extract useful frequency
. ! _ . . energy and the RSONFIN [23] can process the temporal relations, the
Y ()| = [Y(e”)| = | Dmoditicale”™ |- (17) RTF-based RSONFIN algorithm can find the variation of background

. I noise level and detect correct speech segments in the increasing back-
To reduce the effect of noise, we apply half-wave rectification to ) o -
o e S . . ground noise level condition. For contrast, the enhanced speech signal
|Y (e’™)]; for each frequency, where|Y (e/*)| obtained by (17) is . : .
) produced by the new speech enhancement scheme without noise esti-
less than zero, the output is set to zero. ) . . . . -
mation during speech segments is shown in Fig. 6(c). Since the noise
. w |§’(cfw)|_, if |Y(nfw)| >0 estimation is done only during speech pauses, the effect of additive
[Yaars (e’™)] = 0 it 17 (7] < 0 (18) increasing-level white noise is obvious in the rear part of the second
’ if ¥ ()] < 0. speech segment. The enhanced speech signal produced by the new
In the next step, the methods of “reducing noise residual” and “aspeech enhancement scheme with noise estimation during speech seg-
ditional signal attenuation” used by Boll [5] during nonspeech segaents is shown in Fig. 6(d). Since the noise estimation is done not
ments are implemented to get the final enhanced spectral magnitedéy during speech pauses but also during speech segments, the in-
|S(e’™)]. In the process of reducing noise residual, the noise residuaéasing-level white noise can be removed reasonably. The rear part
is suppressed by replacing its current value with its minimum valud the second speech segment has no obvious noise component. This
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P S =5 = Fig. 7. Comparison of speech enhancement algorithm with noise estimation
iNnces 2 10"

(©) and that without noise estimation during speech segments in variable
R = background noise level condition.

e ——————) can extract useful frequency information and the RSONFIN can recog-
nize the temporal relations automatically and implicitly, the RTF-based
] RSONFIN algorithm can find the variation of background noise level
non and detect correct speech/noise segments in variable noise-level en-

vironment. The recurrent property of the RSONFIN makes it more
Fig. 6. (a) Original clean speech signal. (b) Speech signal with additivslitable for dealing with temporal problems. 2) Since the MiFre pa-
increasing-level white noisSINR = 10 dB). The word boundaries detectedrameter can estimate the varying background noise level, the back-
by the RTF-based RSONFIN algorithm are shown by solid lines. () Enhancgebund noise information required in our subtractive-type speech en-
speech signal without noise estimation during speech segments. (d) Enharjged.o ment scheme can be estimated not only during speech pauses
speech signal with noise estimation during speech segments. . . .

but also during speech segments. This new subtractive-type speech en-

hancement scheme has been tested and found to perform well not only

obﬁervatlon demﬁnstra_tes theb?ﬁ'g'e'?(cy of tge p_roplosecli ne";_s_'peﬁf:t}ariable background noise level condition but also in fixed back-
enhancement scheme in variable background noise-level conditiony o noise level condition.

The amount of noise reduction in variable background noise level
condition is measured by the objective evaluation:

k,

= =
Sample indesx
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