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Abstract. This work proposes a new rotation mode CORDIC algorithm, which considerably reduces the iteration
number. It is achieved by combining several design techniques. Particularly, a new table-lookup recoding scheme
for rotation angles and variable scale factors is developed to reduce the iteration numbers for rotation and scale
factor compensation. By addressing the MSB parts of the residual rotation angles to a lookup table, two micro
rotation angles are retrieved that in combination best matches the MSB parts. We also combine the leading-one bit
detection operations for residual rotation angles, to skip unnecessary rotations. The resulting problems of variable
scale factors are then solved by our previous fast decomposition and compensation algorithm (C.C. Li and S.G.
Chen, in Proceedings of 1996 IEEE International Symposium Circuits and Systems, May 1996, Atlanta, USA,
pp- 264-267; C.C. Li and S.G. Chen, in Proceedings of 1997 IEEE International Conference on Acoustic, Speech
and Signal Processing, Munich, 1997, Germany, pp. 639-642). To further reduce the iteration number of scale factor
compensation, we again apply the mentioned residual recoding technique and the leading-one bit detection scheme
to the fast variable scale factor algorithm. Those techniques collectively reduce the iteration number significantly.
Simulations show that in average the new design needs only 9.78 iterations to generate results with 22-bit accuracy,
including all the iterations for rotations and scale factor compensations. Statistically, the total iteration number is
less than /2 for results with n-bit accuracy. The introduced extra table size is of the same order of magnitude as that
for the angle set {tan~' 27/, i =0, 1, ..., n}, required by general CORDIC algorithms. The new recoding scheme
can be applied to other elementary function such as division and square-root functions.

Keywords: CORDIC algorithm, variable scale factor, table lookup method, residual angle and scale factor
recoding

1. Introduction introduction. Most of the CORDIC algorithms assume
a constant scale factor for the ease of scale factor com-
pensation. However, they have to rotate even when the

residual rotation angles have converged [3—6]. In some

The basic CORDIC (Coordinate Rotation Digital Com-
puter) algorithm [1, 2] is a highly efficient iterative

technique for vector rotations, de-rotations, as well as
for the computation of elementary functions. Since the
algorithm can be realized as a sequence of shift-and-
add operations, it is very suited for VLSI implemen-
tation and popular for general engineering and DSP
applications.

There have been numerous improved CORDIC
algorithms and structures proposed ever since its

cases, they either have to do accurate but slow decision
operations for rotation directions or do rough direction
decisions at the expense of extra compensation opera-
tions [3, 4]. To speedup CORDIC operations, the fol-
lowing techniques are widely used: (1) use carry-free
redundant addition scheme [3, 4, 7-10]; (2) fast deci-
sion of rotation directions with only a few most sig-
nificant digits (MSDs) of the control parameters [3, 4,
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7-10]; (3) skip unnecessary rotations; (4) effectively re-
code rotation angles for saving rotation iterations [11];
(5) apply radix-4 rotation schemes [8, 12—14], toreduce
iteration numbers; and (6) predict the rotation sequence
for parallel and pipelined processing [15-18].

Some of the mentioned techniques result in vari-
able scale factors. Variable scale factors have the trou-
ble of complicated scale factor computation followed
by penalty compensation [9, 10]. Due to the consider-
able overhead generated by variable scale factor, most
of the existing radix-4 CORDIC algorithms resort to
constant scale factor approach [8, 13]. However, these
constant-scale-factor CORDICs are basically hybrid
radix-2 and radix-4 algorithms. As a result, their it-
eration numbers are not fully reduced. Recently, we
proposed CORDIC algorithms with variable scale fac-
tors [12, 16, 19], skip unnecessary rotations and at the
same time perform low-complexity on-line decomposi-
tions and compensations for the variable scale factors.
Specifically, the radix-4 algorithm costs fewer itera-
tions (including rotations and compensations) than the
existing radix-4 algorithms. The radix-4 CORDIC al-
gorithm proposed in [14] is similar to the one in [12],
except the ways they handle variable scale factors. Both
designs share the same low iteration number of 0.87n.
Note that a similar variable scale factor decomposition
and compensation algorithm to thatin [12, 19] was pro-
posed much later in [20, 21]. Although the very high-
radix CORDIC algorithm [20, 21] has an extremely
small iteration number, it is irregular in realization,
which needs multiplication-and-accumulation circuits.
Its efficiency is high dependent on practical circuit
optimization.

In this paper, to further reduce the shift-and-add
operations of both rotation iterations and scale factor
compensations, we will present a new table lookup re-
coding scheme for rotation angles and variable scale
factors. The new method can speedup both the con-
vergence rates of the residual rotation angles and our
fast variable scale factor decomposition and compen-
sation algorithm [12, 19]. For more reduction of itera-
tion number, the new CORDIC algorithm also applies
the leading-one bit detection operations to both resid-
ual rotation angles and decomposition of variable scale
factors.

This paper is organized as follows. Section 2 reviews
the basic CORDIC algorithm, while Section 3 proposes
a new recoding algorithm for residual rotation angles
and exponents, followed by the introduction of new
CORDIC algorithm. Evaluation and simulation of the

new CORDIC algorithm are conducted in Section 4.
Section 5 draws a brief conclusion.

2. Basic CORDIC Algorithm

CORDIC algorithm is a generalized algorithm that can
perform vectoring and rotation operations of a vector
in three different kinds of coordinate systems, includ-
ing (1) the linear coordinate system, (2) the circular
coordinate system, and (3) the hyperbolic coordinate
system. The operations are approached by a sequence
of micro-rotations using only shift-and-add operations,
combined with table-lookup operations. In the paper,
we only focus on the most popular circular coordi-
nate system. Similar results can be directly applied to
the other two systems. In addition, we only investi-
gate the rotation mode operations. Algorithm for vec-
toring mode can be similarly derived. First, the ba-
sic theory of the CORDIC algorithm is reviewed as
follows.

Given a vector p(x, y), to be rotated by an angle 6,
the rotated output vector p(x’, y’) is

x' =xcosf + ysiné (2.1)
vy = ycosf — xsinf (2.2)

One can take the out the cosine factor and approximate

0 by O~ 3" 80, where §; = {—1,1} and 6; =
tan~! 27, Therefore, in matrix form

x’ n 1 8,271 x
[y’}”Kg[—aiz—i 1 ]u @3

where

n n 1 n
- =T —— =Tk 4
K il:!cos@ ,l:! =5 gK 24)

Decision of §; € {—1, 1} is for the convergence of the
residual angle z;1; to zero:

G =2 =86 =60—) 8,0, and & =sign(z;)
m=0

(2.5)

As such, computation of final x’ and y’ consists of
two parts. One is the iteration of the shift-and-add
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operations,

Xi+1
Yi+1

1 827X
[—5,-2i 1 :||:yii|

i 1 8n27"7\ X0
(0 R

i=0,1,....n (2.6)

followed by the second part of scale factor compensa-
tion:

X =K Xpp1, Vi =K - yag 2.7)
Here (xo, yo)=(x,y) is the initial vector, and
(X, 1+ Ypy1) is the final result after n + 1 rotations.

In total, the algorithm needs n + 1 and n/3 to n/4
shift-and-add operations for the rotations and scale fac-
tor compensation, respectively. The number of rotation
can be further reduced by skipping all the unnecessary
rotations of §; = tan~! 2~ upto6,,_; = tan=! 27",
if the leading-one bit (or leading-zero bit) of the posi-
tive (or negative) residual z; is the m-th most significant
fraction bit. In that case we can set §; = 8;4] = -+ =
Sm—1 = 0. The reduction in rotation number introduces
the nasty problem of variable scale factors. The cost
normally exceeds the saving in rotation number. It is the
main disadvantage of the existing CORDIC algorithms
with variable scale factors. To alleviate the problem, we
developed a simple and efficient algorithm [12, 19] for
variable scale factor decomposition and compensation.
The algorithm will be further improved and included
in the new CORDIC algorithm as will detailed next.

3. Fast CORDIC Algorithm Based on a New
Table-Based Residual Recoding Method

For fast convergence, first we detect the leading-
one (leading-zero) bit positions, for positive (nega-
tive) residual angle z;, respectively, in the i-th iter-
ation. This action avoids unnecessary rotations re-
quired by conventional CORDIC algorithms. Then
the most significant r bits (denoted as z;,), counted
from the leading-one (or leading-zero) bit of z;, are
used to access &, and §;, information from a table,
where §,,,, §;, € {1, —1} and m > [. These two retrieved
parameters correspond to a combined rotation angle
Sm; tan~127M 4§ tan~! 27! that best matches z;,
(in a least-square error sense), which makes z;, —
(8, tan~127m 4+ § tan~' 27%) as close to zero as

possible. This approach corresponds to the following
iteration operation.

Xigr = i (1 = 8,8, 27") 4 3 (8,27 4 8,,27")
Yi+l = yi(l — 81,.8,”,.2—(1,+m,)) — X (Sliz—l; +8mi2—m,)
3.1)

This iteration results in a variable scale factor.

1 1
1 1
K = Hcos 01, cos B, = l_[ s i

i=1 i=1
(3.2)

The four-operand addition can be easily reduced to
conventional two-operand addition by using carry-save
adders. The best combination of §,,, and §;, is done by
computer search, which is dependent on z; ,, and the
range size g of §,,, and §;,.

In generalization, we may include more than two
8;’s and a larger ¢ to speedup the convergence rate.
However, the computational complexity increases sig-
nificantly. Hence, here we only investigate the case of
two combined direction parameters. Similar techniques
can be extended to the general case. The variable scale
factor described by (3.2) introduces considerable over-
head in the existing CORDIC algorithms. To solve the
problem, we will combine our previously proposed ef-
ficient decomposition and compensation algorithm for
variable scale factors [12, 19]. In order to further reduce
the iteration number, we will apply the same residual
recoding technique to this scale factor algorithm. In the
end, a fast CORDIC algorithm with a small combined
iteration number can be obtained, as will be detailed
next.

3.1. Recoding Tables for the Residual
Rotation Angles

Based on (3.1), some lookup tables for the residual ro-
tation angles can be constructed by computer search
with the closest match as mentioned before. In a sense,
it approximately amounts to a radix-2" CORDIC algo-
rithm, by examining the MSB part z; . of the residual
rotation angle z;. Since an optimal table depends on
the iteration index i, it is better to have an optimized
lookup table for each i. However, it will increase the
table size accordingly. From computer simulations, we
find that it is enough to have good results by using only
two different tables, as shown below.
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Table 1. Recoding table for the residual rotation angle, Case (1):
k={0,1},r =4,90 = 8.

Table 2. Recoding table for the residual rotation angle, Case (2):
k>1,r=4,q1=1.

Optimized patterns of §;, and §,,;

Zi,r
(7% ~2 D) Sy Sk Skg1 Sk ka3 Skad Skts kg2

Optimized patterns of §;, and 8,

Zi,r
(@K ~27®D) S St Ska2 Ske3 ks Skas  Skagel

1000 0 0 1 0 1 0 0 0
1001 0 1 0 -1 0 0 0 0
1010 0 0 1 1 0 0 0 0
1011 0 1 0 0 -1 0 0 0
1100 0 1 0 0 0 -1 0 0
1101 0 1 0 0 0 0 0 1
1110 0 1 0 0 0 1 0 0
1111 1 0 -1 0 0 0 0 0

1000 0 1 0 0 1 0 0
1001 0 1 0 1 0 0 0
1010 0 1 1 0 0 0 0
1011 0 1 1 0 0 0 0
1100 1 0 0 —1 0 0 0
1101 1 0 0 0 -1 0 0
1110 1 0 0 0 0 0 1
1111 1 0 0 0 1 0 0

Here, we take r = 4 bits (i.e., radix-2*) as a de-
sign example. Table 1 shows the stored optimized §,,,
and §;, patterns, corresponding to the z; , information.
From Taylor’s expansion of 6, = tan~!27*, we find
that the binary patterns of 6 and 0; are noticeably dif-
ferent from those of the 6;’s, k > 1. Therefore, two
different tables are used for the cases of k={0, 1}
and k > 1, respectively, where k is the leading-one
(or leading-zero) bit position of the residual rotation
angle z;. Simulations show that this kind of arrange-
ment produces good results close to the optimized so-
lution. This configuration has a table size (in bits) of
2(qo + q1) x 277" =(q0+q1) x 2", where gy and g,
are the §; range sizes corresponding to the cases of
k = {0, 1} and k > 1, respectively, and 2" is the radix
number.

Note that the given table size does not include the
termn x p for {tan 1277, i =0,1,...,n}, required by
conventional CORDIC algorithms. The extra table size
(g0 + q1) x 2" is small, because r and g are generally
much less than n. Note that when roughly k& > n/3,
8, and 6, patterns can be fully decided by the residual
rotation angles, such that the table size can be further
reduced. Also note that we can have a faster conver-
gence rate, at the cost of a larger range number and
table size.

Example. Consider the radix-16 (2*) residual angle
recoding algorithm as shown in Tables 1 and 2. In the
tables, each row has ¢ entries indicating the presence
(8; = *£1) or absence (§; = 0) of §;. Here, at most
we only allow two none-zero §;’s, which corresponds
to &;, and &, of (3.1). For better residue angle con-
vergence, we separate the recoding scheme into two

cases, depending on the leading-one bit position k of
the residue angle as shown in Tables 1 and 2.

3.2.  Fast Variable Scale Factor Decomposition
Algorithm Based on the Residual
Recoding Scheme

For low-complexity decomposition and compensation
of the variable scale factors described by (3.2), here we
further improve and speedup our previous efficient vari-
able scale factor algorithm [12, 19], by using a residual
recoding scheme similar to that for residual rotation an-
gle. The whole improved algorithm is detailed below.
According to [12, 19], K can be first transformed to

1
T=hK= 1_[00591, €08 Oy,

i=1

1 1
=1In 1_[
ol \/1 + 2-2I; \/1 + 2-2m;
1
2

i=1

This equation suggests that from the information of §,,,
and §;,, we can obtain the terms —21 In(1 + 27%") and
—211In(1 4 272" from a lookup table and perform the
accumulation operation of (3.3), in parallel with the ro-
tation iterations. In the end of all the rotation operations,
T is also solved. The scale factor K is obviously equal
to e’ -e” in turns can be decomposed into a sequence of
shift-and-add terms, by using the CCM algorithm [22].

To speedup the decomposition operation, we apply
the same residual recoding technique to reduce the
exponent residual successively. Specifically, we first



Fast CORDIC Algorithm Based on a New Recoding Scheme 23

Table 3. Recoding table for the residual exponents of scale factors.

Optimized patterns of p;; and o

.S
5217" ~ 27 k+3) Pk—1 Pk Pik+1 Pkt2  Pkiq—2
1000 0 1 0 0 0
1001 0 1 0 0 1
1010 0 1 0 1 0
1011 0 1 1 0 0
1100 0 1 1 0 0
1101 1 0 0 -1 0
1110 1 0 0 -1 0
1111 1 0 0 0 -1

perform the leading-one (or zero) bit detection of the
residual exponent 8; in the j-th iteration. Then the s
MSB’s B; s (counted from the leading bit) of 8; are
used as the address to retrieve the terms In(1 + p;, 271
and In(1+p,,;27"7) from atable. The table is optifnized
such that B; 11 = B; —In(1+p;, 274y —1In(1+ Pm; 277
is as close to zero (in a least-square error sense) as
possible. As such, the corresponding decomposition
equation is:

J
=K~[T(U+p2") (1 +p0,2™) G4

Jj=1

where o, pm; € {—1, 1}. Table 3 lists the optimized
patterns of p;; and p,,,, for the example of s = 4, ¢ = 5.

Once the optimized p;; and p,,; combination is re-
trieved, they are used to access the corresponding terms
In(1+p;, 274 )and In(1+4+ Pm,;27"7) from another lookup
table. These two terms are then subtracted from the ex-
ponent residual. Similarly, to speedup the convergence
rate of the decomposition, we can have more than two
non-zero p;’s and a larger ¢ in the lookup table, at the
cost of higher complexity per iteration. The required
table size is similar to that for residual rotation angles.

3.3.  The New CORDIC Algorithm

In summary, by combing the leading-bit detection
scheme, the residual recoding technique, and the fast
decomposition and compensation algorithm for vari-
able scale factors, we have a CORDIC algorithm as
detailed by the following steps:

(1) Set the initial iteration number i = 0, initial resid-
ual angle zyp = 6, initial rotation vector (xg, yo) =
(x, ), and initial exponent residual 7, =0.If 6 =

0, then (x’, ') = (x, y); end of the rotation and
exit the iteration. Otherwise, proceed to step (2).

(2) Check leading-one bit position £ and obtain z; , of
z;. If z; # 0, go to step (3). Otherwise z; = 0: rota-
tion operations are completed; set the total iteration
number I = i — 1; go to step (5), for further de-
compositions and compensations of variable scale
factors.

(3) Using z;,, retrieve the optimized §;, and §,,, in-
formation, —1 In(1 4+ 2727), —11In(1 4 272m),
an~!' 27/ and tan~! 27" from lookup tables, and
perform the iteration:

Xit1 = X (1 - 81 2 (ki ))

+yi(81i2 +8m,»2_ )
Yi+1 = y,‘(l — Slj(slniz_(li+mi))
— X (81[2711 + Sm, 2*’"1)

(3.5)

Zig1 = 2 — (8, tan™" 27" + 8 tan™ 271)
(3.6)
1 —20;
Tiv1 =T + ) In(1 +277%)
1 o,
+ (=5 ) @ +277) 3.7)

(4) Seti =i+ 1, gotostep (2).

(5) Set iteration number j =0, the initial exponent
residual By = T, initial vector (x)), ) = (x1, Y1),
to be compensated by scale factor.

(6) Check leading-bit position k and obtain §; ; of B;.
If B; # 0, go to step (7). Otherwise B; = 0: de-
compositions and compensations of variable fac-
tors are completed; let / = j — 1 and output the
final rotated vector (x’, y') = (x/;, y).

(7) Using B; s, retrieve the optimized o1 and Pom; infor-
mation, In(1 + p,j2’lf) and In(1 + p,,;27™/) from
lookup tables, and perform the iteration:

X =51+ p,27) (L4 pm,27)
wﬂ=w0+m200+p2”0

Biv1 = Bi — [In(1+ p;,27") + In(1 + p,27")]
3.9

(3.8)

(8) Set j = j + 1 and go to step (6).

Figure 1 shows the architecture for the rotation oper-
ations and exponent accumulation of the new CORDIC
processor, while Fig. 2 is the architecture for scale
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decompositions and compensations. These two archi-
tectures can be merged as one, because their operations
are similar. However, for the consideration of high-
speed operations, they can be put in a pipelined struc-
ture in cascade. The pipelined structure is particularly
efficient for the applications that require intensive and
sustaining vector rotation operations.

4. Evaluation and Simulation

First, let’s discuss the construction of the recoding
tables for residual rotation angles. For the ease of re-
alization, we only consider the recoding table that will
produce positive residual rotation angles. As such, we
don’t have to consider the detection of leading-zero bit
for negative residuals. As mentioned before, for best
convergence performance, each possible value k of the
leading-one bit position of the residual rotation angle
needs an optimized table of its own. That means the
total table size (in bits) required by the new optimized
CORDIC algorithm is

n—1
) n
S, = |:Z(2qu><2’_1)+nxp:|+5 x p

k=0

n—1
+|:Z(2><q,ix2’_l)+nxp’:| 4.1)

k=0

where ZZ;& (2 x g x 2"~ 1): table size for the recod-
ing of residual rotation angles; g;: range (number) of
8;’s of the k-th recoding table; n x p: table size for
tan~! 27°s, required by general CORDIC algorithms;
2 x p': table size for (—3)In(1 + 27%), in exponent
accumulation; Zz;é (2 x g} x 2" 1): table size for the
recoding of variable scale factors; g;: range (number)
of p;’s of the k-th recoding table; n x p': table size for
In(1 + p;277), in scale factor decomposition; p’: word
length used in scale factor decomposition.

It seems that (4.1) introduces considerable mem-
ory overhead. However, the table size ZZ;&(Z X gy X
2-1) can be reduced to about Y {72 x gp x
27=1) by knowing that tan~! 27# ~ 2~ fori > n/3. So
is Zz;é (2 x g x 2"1). Moreover, r and gy are gen-
erally much smaller than n. More significantly, after in-
tensive simulations, we found that two recoding tables
(corresponding to k ={0, 1} and k > 1, respectively)
for residual rotation angles, and one recoding table for
the residual exponents, are enough to generate compa-

rable performance to that of the optimized case. Doing

this way, the total table size is reduced to

n
Sr=[2><(610+611)><2"‘+n><p]+5 X p'
+2xqpx 27 +nx p] 4.2)

In the equation, obviously the original table size term np
and the new term np’ are the dominant terms. Also note
that the values of 7; = In(1 +8i22’2i)/2 anda; = In(1+
2~")reduce to zero and 27/, respectively, when roughly
i > n/2. These properties can be utilized to reduce
table size. Therefore, the total table size is roughly two
to three folds that of the general CORDIC algorithms.

Based on the structures shown in Figs. 1 and 2, we
performed fixed-point hardware simulations using Ver-
ilog hardware description language, assuming 22-bit
accuracy (including 6-bit integer part and 16-bit frac-
tional part). Exhausted simulations were conducted for
all the rotation angles in the range of 0°~45°. The to-
tal simulation patterns are 2949120, which are from
000000.000...000 to 101101.000...... 000. Table 4
shows and compares the simulation statistics of the
sub-optimized case (with three recoding tables) and the

Table 4. Statistics of iteration numbers for the new optimized and
sub-optimized CORDIC algorithms.

Number of occurrences
Total rotation

number Sub-optimized case Optimized case
00 1 1
01 256 510
02 5940 11924
03 16096 35313
04 4278 31010
05 17952 48210
06 35228 48298
07 62292 114536
08 95766 162424
09 128265 295286
10 241874 601588
11 404136 1104256
12 1062108 413326
13 741469 78755
14 123881 3683
15 9578 0
Total 2949120 2949120
Average 10.74 9.78
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Figure 3. Iteration number distribution of the new sub-optimized CORDIC algorithm.
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Figure 4. TIteration number distribution of the new optimized CORDIC algorithm.

optimized case (with 12 recoding tables). Figure 3 is
the iteration distribution graph corresponds to the sub-
optimal case, while Fig. 4 corresponds to the optimized
case (through computer search). The sub-optimal case
results in an averaged iteration number of 10.74, which
is a little larger than the optimized design with an aver-
aged iteration number of 9.78. This small 10% increase
in iteration number has the advantage of a much re-
duced table size, in comparison to the optimized case.
Note that for both cases, we use the same condition of
gr =8, fork=0,1,qe =7, fork > 1, and gq; = 5,
which are also optimized by computer search.

It can be argued statistically, that total iteration num-
ber required by the new algorithm is less than n /2, for
the whole operations of rotation and scale factor de-
composition and compensation, where # is the target
data precision in bits. Although the new design has to
perform 4-operand addition operations per iteration, it
can be easily reduced to 2-operand additions by us-
ing the low-cost and fast carry-save adders. Compar-
ison of the iteration numbers, iteration latencies and
area performances of the new design with some of the
comparable efficient designs [12, 14, 16] is shown in
Table 5, for the realization of serial computation. As
mentioned in the introduction, although the very high-
radix CORDIC algorithm [20, 21] enjoys very small

iteration numbers, it needs two complicated MAC units
with a long iteration time. In implementation, its effi-
ciency is highly dependent on circuit designers’ exper-
tise. Therefore, we will not include it in the comparison
table. The CORDIC algorithm with close-to-optimal
angle recoding scheme [11] can reduce the iteration
number to n/3 in average (excluding penalty iterations
for the introduced complicated variable scale factors).
However, it has to perform O(n?) comparison opera-
tions. That is a huge overhead compared to the other
CORDIC algorithms. The differential CORDIC algo-
rithm [18] is designed for efficient parallel pipeline op-
erations. It is not suited for serial computation, due to
its long initial delay of # time units. In addition, it needs
n iterations for micro-rotations plus O(n) shift-and-add
iterations for constant scale factor compensation.

In the comparison table, the fast prediction algorithm
[16], the radix-4 algorithms [12, 14], all have a low iter-
ation number of about 0.8n (including micro-rotations
and variable scale factor compensations). Normally the
dominant timing terms (in descending order) contribut-
ing to the iteration latency are: delay time #,; of barrel
shifter, and adder delay time #,,. These two terms gen-
erally are significantly greater the other terms such as
tisy tmux> Yas tids tmbe and t,, (all are defined beneath
Table 5). In order to roughly quantify the comparison,
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Table 5. Performance comparison of competing CORDIC'’s.

Iteration latency (excluding #;)

Algorithm Iteration number n=16

n =232

n=64 Extra/Area (w.r.t conventional algorithm)

Conventional algorithm 4n/3
1
Fast-predict algorithm [16] 4n/5 +logs(n)
1.30

Radix-4 algorithm [12] 4n/5
1.13
Radix-4 algorithm [14] 4n/5
1.36
New algorithm Less than n/2

1.65

(ths + tud) + tis + tmbe + tinux

(T1d + tos + taa) + s

(tig + tps + taq) + tis + 2tmux

(t1a + tag + tps) + tis + 2tfu + taar

([bs + taa’) + ts 0

1 1
Aumpe + 3n%/2 bit cells

1.20 1.13

Ajq + 3n%/2 bit cells

1.10 1.06

Aps 4 Aga + Awg + 312+ 5 bit cells
1.25 1.17

Ag + 2nAp + (3n%/2 4 16 x 8) bit cells
1.47 1.32

Where 1, is the delay time for table selection, 1, is the delay time of barrel shifter, #,4 is the delay time of an n-bit adder, #;4 is the delay time for
leading-one bit detection, which is the same as the delay time for zero-skipping, #,, is the delay time of a MUX circuit, f is the delay time
for a modified Booth encoder, ¢, is the delay time of a log, n-bit adder, #, is the delay time of an one-bit full adder, A, is the size of the lookup
table as detailed in Table 7, Ay is the size of an n-bit barrel shifter, A,q is the size of an n-bit adder, A, is the size of an one-bit register, Ay is
the size of a leading-one bit detector, which is the same as that of a zero-skipping circuit, A, is the size of a modified Booth encoder and Ay,

is the size of an one-bit full adder.

Table 6. Typical delays and areas of key cells.

Key cell delay/area n = 16 bits n = 32 bits n = 64 bits
tps/Aps 2.67 ns (2234 pum?2) 4.46 ns (5740 um?) 6.87 ns (13797 um?)
tad/Aad 1.53 ns (11053 pm?) 1.83 ns (25239 um?2) 2.72 ns (41015 um?)
Lot/ A g 0.81 ns (2349 um?) 0.96 ns (2859 um?) 1.05 ns (3283 um?)
tia/A1q 0.54 ns (976 um?) 0.60 ns (1389 pm?) 0.65 ns (3820 m?)
tube/Ambe 0.78 ns (652 um?)

tfa/Afa 0.69 ns (150 um?)

Lo 0.49 ns (46 um?)

we synthesized most of the key circuit modules in the
critical path for each design, by using Synopsys syn-
thesis tool and UMC 0.25 pm standard cell, assuming a
maximum transition time 0.8 ns (suggested by the cell
library) and a maximum 10-gate fanout. The synthesis
results are shown in Table 6. Of course, the simulations
results only reflect general characteristics.

As shown, the simulation results confirm the previ-
ous argument on delay time. We can see that the delay
sum f,q + tps + t;; dominates the critical path. This
sum term is required by every design, which is signifi-
cantly larger than the sum of all the other timing terms.
The numbers shown in Table 5 are the normalized iter-
ation latencies with respect to the iteration latency of
the conventional CORDIC structure. Although the new
design’s delay time is the longest among all, it is only

1.32 to 1.65 times that of the conventional one. This
delay time is much closer to the latencies of the other
designs. Note that these figures do not take #;, setup
time and hold time into account, which are required
in realization. If they are included in the calculation,
then all the normalized latencies will be closer to one
than before. Compared to the conventional CORDIC
algorithms, the greatly reduced iteration number (from
4n /3 to n/2) of the new design is more than enough to
compensate the slightly lengthened iteration latency.
Based on the area costs given in Table 5, it is hard
to compare the area performances precisely, especially
when they are in the same order of magnitude. Un-
der this condition, the actual area costs are highly
dependent on process, design methodology, cell li-
brary, synthesis tool and circuit designers’ expertise.
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Table 7. Extra ROM table sizes in addition to the tan=! 2~
table.

Algorithm A; (no. of bit cells)
Conventional algorithm nxn
Fast-predict algorithm [16] Sn/2 xn
Radix-4 algorithm [12] Sn/2 xn

(n +3n/|2+]) xn
(5n/2) xn+16 x 8

Radix-4 algorithm [14]
New Algorithm (for radix-16)

Therefore, we only give a brief discussion as follows.
Table 5 lists other area costs than the common term
(2Aps+3A40) + A, +3nA,, (corresponding to the re-
quired area of the conventional CORDIC). This com-
mon quantity is the most dominant area contributor,
because it consists of the relatively large barrel shifters
and adders. Compared to the conventional CORDIC,
all the other designs in Table 5 need extra ROM table
areas. Typically, a ROM bit cell only occupies an area
of about three transistors. The extra ROM table sizes
listed in Table 7 are estimated to be noticeably smaller
than the common area term. Note that the extra term
2n Ay, of the new design corresponds to an area of 2n
full adders, which is only a small portion of total area.
Hence, it is reasonable to conclude that the new design
has a total area less than two times that of the conven-
tional CORDIC, and its area is comparable to that of
the radix-4 CORDIC of [14].

5. Conclusion

The proposed new CORDIC algorithm considerably
reduces iteration number. It is achieved by combining
several design techniques. The new algorithm is generic
enough to be extended to higher radices for lower it-
eration numbers, but at larger ROM sizes. The vector-
ing mode CORDIC and hyper-trigonometric CORDIC
operations using those design techniques are not ad-
dressed here, which will be reported in the future work.
Similarly, the new recoding scheme can also be applied
to other basic functions such as the division and square-
root operations.
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