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The process capability index, Cpk, is extensively used to assess
process performance in manufacturing industry. Statistical
hypothesis testing or an interval estimation of a single Cpk

had been derived under a normally distributed process. How-
ever, the difference between two process capability indices,
Cpk1 � Cpk2, cannot be inferred statistically because of the
complexity of the sampling probability theory. This study pro-
poses a bootstrap resampling simulation method to construct
the biased corrected percentile bootstrap (BCPB) confidence
interval of (Cpk1 � Cpk2), which can be used to select the better
of two suppliers. The various simulation results indicate that
the bootstrap confidence interval of (Cpk1 � Cpk2) can be
employed to evaluate effectively the difference between the
performance of two suppliers.
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1. Introduction

Internationalisation has become the goal of many companies
and industries. Manufacturers must respond to the consumers’
demands and offer after-sales service, as well as maintain the
high quality and low cost of the product. Therefore, effective
total quality management and accurate evaluation of manufac-
turers’ process capabilities have become important in industry.

Process capability analysis is used to determine whether the
process capability of a supplier conforms to a customer’s
requirement, by applying an expression called the process
capability index (PCI), to a controlled process. Accordingly,
the PCI can be used by both producer and supplier as a
reference when signing a contract. Purchasing personnel can
use the PCI to decide whether to accept or reject products
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provided by suppliers. Quality engineers can use the PCI to
evaluate and continually improve a process.

Several process capability indices have been suggested to
assess processes. Among them, Cp and Cpk [1,2] are frequently
employed to evaluate process capability in manufacturing
industries. However, Cpk is more extensively used in practice
than is Cp because the former considers the degree of process
mean, �, shifted from the centre of the specifications and the
standard deviation, �, simultaneously. If the process is normally
distributed, Cpk can be defined as follows:

Cpk = min �USL � µ
3�

,
µ � LSL

3� � (1)

where USL is the upper specification limit and LSL is the
lower.

A larger PCI value implies a better process capability. For
economic reasons, 100% inspection is impossible for most
manufacturers, and hence the process mean, µ, and the standard
deviation, σ, are unknown. The sample mean (X) and sample
standard deviation (S) are the unbiased estimators of µ and �
under the normal assumption, but the unbiased estimator of
Cpk is difficult to obtain. The estimator of Cpk is defined
as follows:

Ĉpk = min �USL � X
3S

,
X � LSL

3S � (2)

Many methods have been developed methods for evaluating
whether a single supplier’s process conforms to a customer’s
requirements. However, very few studies have addressed the
difference between two suppliers’ PCIs. Two common methods
are considered to obtain the difference between two suppliers’
PCIs. They are described as follows:

1. 100% inspection is performed to calculate separately the
PCI for each supplier; the suppliers are then compared
according to their respective true PCI values.

2. A sample is inspected, and statistical testing is used to
assess two suppliers’ process capabilities.

Method 1 requires 100% inspection, which is very expensive
and time-consuming, and is therefore usually not used in



250 J.-P. Chen and L.-I. Tong

practice. Method 2 is also difficult to implement since a proper
statistical testing procedure may not exist for all PCIs. Chou
[3] offered a procedure for comparing pairs of Cp, Cpu or Cpl

indices. However, a procedure to compare two Cpk indices has
not yet been developed, because the sampling distribution of
the estimator of Cpk1 � Cpk2 is more complex than that of the
estimators of Cp, Cpu, and Cpl. Consequently, an exact statistical
hypothesis test for Cpk1 � Cpk2 cannot be constructed, indicating
that method 2 is hard to implement for determining the differ-
ence between two Cpk indices. However, the confidence interval
can then be used to assess the two suppliers’ capabilities if
the confidence interval of the difference between two suppliers’
process capabilities can be obtained.

This study aims to obtain the confidence interval between the
Cpk of two suppliers, using the bootstrap resampling simulation
method [4]. The coverage proportion and other criteria are
used to determine the accuracy of the method.

2. Schema of the Bootstrap Confidence
Interval

Efron [5,6] introduced and developed a non-parametric, but
computationally intensive, estimation method called “boots-
trap”. It is a databased simulation method for statistical infer-
ence. In particular, the non-parametric bootstrap can be used
to estimate the sampling distribution of a statistic, while
assuming only that the sample is representative of the popu-
lation from which it is drawn and that the observations are
independent and identically distributed. In its simplest form,
the non-parametric bootstrap does not rely on any distributional
assumptions regarding the underlying population. Let
{x1,x2,. . .,xn} be a sample of size n, taken from a process. A
bootstrap sample, denoted by {x*

1,x*
2,. . .,x*

n}, is a sample of size
n drawn (with replacement) from the original sample. Hence,
a total of nn resamples is possible.

Bootstrap sampling is equivalent to sampling (with
replacement) from the empirical probability distribution func-
tion. Accordingly, the bootstrap distribution resembles the
underlying distribution. In practice, only a random sample of
the nn possible resamples is commonly drawn. The estimates
are determined for each process index, and the subsequent
empirical distribution is referred to as the statistic’s bootstrap
distribution. Efron and Tibshirani [4] claimed that a minimum
of approximately 1000 bootstrap resamples is usually sufficient
for obtaining reasonably accurate confidence interval estimates.

Suppose we have a random variable, X, to evaluate the
performance of a process. Although the distribution of X is
unknown, we wish to estimate some parameter, �, that charac-
terises the performance of the process. An estimate of �̂ can
be determined using the bootstrap sample. The estimate is
represented by �̂*, and is called the bootstrap estimate. The
resampling procedure can be repeated many times, say, B
times. The B bootstrap estimates �̂*

1,�̂*
2,. . .,�̂*

B can be calculated
from the resamples. Other studies on bootstrap methods include
Efron and Gong [7], Gunter [8,9], Mooney and Duval [10],
or Young [11].

Efron and Tibshirani [4] further developed three types of
bootstrap confidence interval – the standard bootstrap (SB)

confidence interval, the percentile bootstrap (PB) confidence
interval, and the biased corrected percentile bootstrap (BCBP)
confidence interval. The relevant formulae are as follows:

1. Standard Bootstrap (SB). The sample mean and the standard
deviation of B bootstrap estimates �̂*

i can be obtained as fol-
lows.

�̂* =
1
B �B

i=1

�̂*
i ,

S*
�̂ = � 1

B � 1 �
B

i=1

(�̂*
i � �̂*)2

If the distribution of �̂ is approximately normal, the (1 � �)
100% SB confidence interval for � is �̂* � z�

2
S*

�̂ where z�

2

is the 100 (�/2)th percentage point of the standard normal
distribution.

2. Percentile Bootstrap (PB). From the ordered set of �̂*
1, the

(1 � �) 100% PB confidence interval for � can be obtained
as follows:

[�* (�/2 � B), �̂* ((1 � �/2) � B)]

where �̂*(i) is the ith value of ordered �̂*
i , i = 1, 2,…, B.

3. Biased-Corrected Percentile Bootstrap (BCPB). The boots-
trap distribution determined from only a sample of the
complete bootstrap distribution may be shifted higher or
lower than expected That is, the distribution is biased.
Accordingly, a third method has been presented to correct
this potential bias (see [6] for a complete justification of
the method.) First, the distribution of �̂*(i) is used to
calculate the probability,

p0 = Pr[�̂* (i) � �̂] (i = 1,2,. . .,B)

where �̂ is the value of � estimated from a random sample
{x1,x2,. . .,xn}. Secondly, the following are calculated:

z0 = 	�1 (p0)
PL = 	(2z0 � z�/2)
PU = 	(2z0 + z�/2)

where 	(�) is the cumulative standard normal distribution
function. Finally, the BCPB confidence interval is obtained
as follows.

[�̂* (PLB), �̂* (PUB)]

Chou [3] proposed three one-sided tests of the difference
between pairs of Cp, Cpu, and Cpl process capability indices
under the normal assumptions. For testing the null hypothesis
H0: Cp1


 Cp2
against the alternative hypothesis Ha: Cp1 � Cp2

,
the test statistic is given by F0 = S2

1/S2
2, which has an

F-distribution with (n � 1) and (m � 1) degrees of freedom
when �1 = �2. For a given significance level, α, H0 is rejected
if F0 � F(1��,n�1,m�1), where F(1��,n�1,m�1) is the 100(1 � α)th
percentage point of the F-distribution with (n � 1) and (m � 1)
degrees of freedom. In this case, supplier 2 is more capable
than supplier 1. Furthermore, to test the null hypothesis
H0: Cpu1


 Cpu2
(or Cpl1


 Cpl2
) against the alternative hypoth-

esis Ha: Cpu1
� Cpu2

(or Cpl1
� Cpl2

), the sampling distribution
of the test statistic is very complex. The sampling distributions
of Ĉpk or (Ĉpk1 � Cpk2) are much more complicated than those
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Table 1. The simulation results of a BCPB confidence interval
for various process parameter combinations.

µ1 µ2 �1 �2 Sample Coverage Average Standard
sizes proportion length of deviation of

the interval the interval
width width

310 305 10 9 20 0.942 1.34142 0.31028
40 0.937 0.86816 0.13436
60 0.937 0.68159 0.08416

12 7 20 0.922* 1.39725 0.31630
40 0.934 0.91020 0.14723
60 0.944 0.72381 0.09511

14 5 20 0.913* 1.64495 0.39445
40 0.932* 1.07735 0.19168
60 0.935 0.87772 0.13125

315 300 10 9 20 0.935 1.26984 0.29246
40 0.937 0.81212 0.12501
60 0.955 0.64506 0.08401

12 7 20 0.93* 1.28938 0.30407
40 0.929* 0.82535 0.12802
60 0.933 0.65382 0.07938

14 5 20 0.908* 1.44659 0.35180
40 0.926* 0.95289 0.16090
60 0.943 0.76534 0.10817

320 295 10 9 20 0.932* 1.11397 0.24152
40 0.937 0.71538 0.11092
60 0.941 0.56659 0.06965

12 7 20 0.928* 1.13815 0.24420
40 0.937 1.12910 0.26129
60 0.953 0.57602 0.07199

14 5 20 0.932* 1.29113 0.31908
40 0.935 0.82741 0.13414
60 0.94 0.66377 0.08792

*Indicates a proportion significantly different from the expected value of
0.950 (at α = 0.01).

of Cpu and Cpl. No study has yet proposed either a method
for developing the unbiased estimators of Ĉpk1 � Cpk2, or the
sampling distributions of test statistics.

Franklin and Wasserman [12] offered three non-parametric
bootstrap lower confidence limits for Cp and Cpk. A simulation
was performed, and the bootstrap and the parametric estimates
were compared. The simulation results revealed that, in the
normal process environment, the bootstrap confidence limits
perform as well as the lower confidence limits derived by the
parametric method and based on a normal process (see Chou
et al [13] for Cp; Bissell [14] for Cpk; Boyles [15] for Cpm).
In non-normal process environments, the bootstrap estimates
were significantly better.

In sum, the difference between two suppliers’ Cpk cannot be
evaluated by employing the procedure for testing the hypothesis
H0: Cpk1  Cpk2 against Ha: Cpk1 � Cpk2. If both the lower and
upper confidence limits for the difference between two process
capability indices (Cpk1 � Cpk2), are positive, then supplier 1
has a better process capability than supplier 2; if both confi-
dence limits are negative, then supplier 2 has a better process
capability than supplier 1; if one confidence limit is positive
and the other negative, then no significant difference exists
between the two suppliers’ process capabilities. In this study,
the biased-corrected percentile bootstrap (BCP) is employed to
determine the confidence limits for (Cpk1 � Cpk2) and the results
are used to select the better of the two candidates.

3. Procedures for Selecting a Better
Supplier Using the Bootstrap Confidence
Interval

This section presents a procedure for constructing a bootstrap
confidence interval to select a better supplier using the boots-
trap confidence limits. The accuracy and sensitivity of the
procedure are analysed for various sample sizes, process means
and standard deviations.

3.1 BCPB Confidence Interval for Cpk1 � Cpk2

If two suppliers’ processes are independently normally distri-
buted and the target value of each process is the specification
centre, then the bootstrap confidence interval for the difference
between two suppliers’ process capability indices, Cpk1 � Cpk2,
can be obtained as follows:
Step 1. Assume that the two suppliers’ processes are normally
distributed as N(�1, �1) and N(�2,�2). The target value is T,
and the specification centre is m (m = (USL � LSL)/2).
Step 2. Randomly select m1 and m2 from suppliers 1 and 2,
respectively. These are referred to as the original samples.
Step 3. Select the bootstrap sample with a replacement from
each original sample, by the bootstrap resampling method.
Step 4. Compute the jth (j = 1,. . .,B) estimates of Cpk1 and
Cpk2 from the jth bootstrap sample. These are defined as
Ĉ*

pk1j and Ĉ*
pk2j. The difference, ê*

j = Ĉ*
pk1j � Ĉ*

pk2j is also calcu-
lated.
Step 5. Repeat Steps 3 and 4 B times (B = 1000). The B
bootstrap samples are obtained and the set of B values of ê*

j

are sorted in increasing order, and referred to as ê*(1),e*
(2),. . .,ê*(B).
Step 6. Find the (1 � �) 100% BCPB confidence interval of
(Cpk1 � Cpk2), that is [ê*(PLB),ê*(PUB)].

Statistical analysis software, SAS, is used to generate the
random samples from two independent normal processes and
thus calculate the BCPB confidence interval for (Cpk1 � Cpk2).
An example of the computation follows.

Step 1. Assume that two suppliers’ process distributions are
from N1(315, 12) and N2(300, 7). The upper and lower specifi-
cation limits are 353 and 273, and the specification centre is
313, which is also the target value of the process.
Step 2. Generate two original random samples of size 40 from
N1(315, 12) and N2(300, 7), respectively: {x 1,x2,. . .,x40}1 and
{x1,x2,. . .,x40}2.
Step 3. Generate bootstrap samples {x*

1,x*
2,. . ,x*

40}1,
{x*

1,x*
2,. . .,x*

40}2 by bootstrap resampling with replacement from
the original random samples,{x1,x2,. . .,x40}1 and
{x1,x2,. . .,x40}2.
Step 4. Compute the difference ê* = Ĉ*

pk1 � Ĉ*
pk2.

Step 5. Repeat steps 3 and 4 one thousand (B = 1000) times.
The estimates, ê*

j , j = 1,. . .,1000, are sorted in ascending order,
ê*(1),. . .,ê*(1000). Table 1 gives the results.
Step 6. Obtain a 95% BCPB confidence limits for (Cpk1 � Cpk2)
as (�0.33381, 0.5563).
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Fig. 1. The trend diagrams of three criteria for various sample sizes.

3.2 Analysing the Accuracy and Sensitivity of the
BCPB Confidence Interval

Monte Carlo simulation is used to determine the accuracy of
the BCPB confidence interval for (Cpk1 � Cpk2), as follows:

1. Repeat steps 3 to 6 in Section 3.1, N times (a larger N
yields greater effectiveness). N sets of BCPB confidence
intervals are obtained.

2. The actual difference between two suppliers’ process
capability indices, Cpk1 � Cpk2, is computed as follows:
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Fig. 2. The trend diagrams of three criteria for various standard deviations.

D = min�USL � µ1

3�1

,
µ1 � LSL

3�1
�

� min�USL � µ2

3�2

,
µ2 � LSL

3�2
�

3. The actual proportion of the (1 � α)100% BCPB confidence
intervals that contain D are computed.

4. The actual proportion is compared to (1 � α)100%.

If the actual proportion is greater than or equal to (1 � α)100%,
then the BCPB confidence interval method is considered effec-
tive and accurate.

The simulation method is also used to analyse the sensitivity
of the proposed BCPB confidence interval. Sensitivity analysis
can be performed by repeating steps 3 to 6 for various para-
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Fig. 3. The trend diagrams of three criteria for various process means.

meter combinations of sample size, process mean, and process
standard deviation. The accuracy and effectiveness of the BCPB
confidence interval are expected to be robust for various pro-
cess parameter combinations.

The accuracy and sensitivity of various process parameters
(�1, �2) = (310, 305)(315, 300)(320, 295), (�1, �2) = (10, 9)(12,
7)(14, 5), (n1,n2) = (20, 20)(40, 40)(60, 60) are considered.

Table 1 displays the simulation results for a 95% BCPB
confidence interval under various parameter combinations.
Three criteria are used to measure the performance of the
BCPB confidence interval:

1. Coverage proportion. The coverage proportion is the number
of times that the BCPB confidence intervals contained the
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Fig. 4. (a) The capacitor and (b) aluminium foil.

Table 2. Data of voltages for aluminium foils from two suppliers. (USL, T, LSL) = (530, 520, 510), (n1, n2) = (50, 50), measurement unit: WV.

Supplier 1 Supplier 2

519.9 519.5 520.1 517.0 521.1 521.7 521.3 523.5 524.4 522.5
517.1 518.7 520.1 521.2 521.7 523.3 527.1 524.9 522.9 524.2
520.4 517.9 522.9 517.7 517.2 523.9 523.5 527.5 517.3 518.7
520.7 521.0 519.1 518.4 518.9 518.7 521.9 519.7 520.4 520.4
517.9 518.4 520.8 519.3 520.6 523.7 526.8 517.7 528.1 517.5
516.6 519.0 520.6 517.9 519.6 523.8 514.7 522.6 518.5 526.3
519.6 522.6 518.3 522.1 523.1 523.2 524.4 522.7 519.6 520.4
519.9 519.8 520.7 516.5 521.5 520.6 525.2 524.1 519.3 522.2
519.2 521.2 518.9 517.8 521.3 520.1 521.9 516.7 520.9 525.2
521.3 517.4 519.5 522.0 523.8 522.6 523.1 521.7 520.9 526.3

true difference value, D, over N = 1000 runs. A larger
coverage proportion corresponds to a better performance.

2. Average length. The average length of the BCPB confidence
interval is calculated for N = 1000 runs. A shorter average
length corresponds to a better performance.

3. Standard deviation. The standard deviation of the lengths
of the bootstrap confidence interval is calculated for
N = 1000 runs. A lower standard deviation corresponds to
a better performance.

The frequency of coverage for the confidence interval is
binomially distributed with N = 1000 and p = 0.95. Hence, a
99% confidence interval for the coverage rate is 0.95 � 2.575
� √((0.95 � 0.05)/1000) = 0.95 � 0.0178, Hence, we could be
99% confident that a “true 95% confidence interval” would
have a coverage proportion between 0.933 and 0.967. Although
ten out of 27 possible intervals are below 0.933, they all
exceed 0.91, and the simulation results are considered reliable.

The results of the sensitivity analysis are as follows:

1. Figures 1(a) to 1(i) display the trend of three criteria for
various sample sizes with given pairs of process mean and
standard deviation values.

Figures 1(a) to 1(i) reveal that the coverage proportion
increases slightly, and the average length and standard
deviation of the intervals decreases, as the sample size
increases. The accuracy of the BCPB confidence intervals
also increases with sample size. For n = 20, 1 out of the 9
computed BCPB confidence limits contains the actual D
value. For n = 40, 4 out of the 9 computed BCPB confidence
limits contains the D value. For n = 60, 7 out of 9 computed

BCPB confidence limits contains the D value. Accordingly,
the sample size for the BCPB confidence interval of
(Cpk1 � Cpk2) should be greater than or equal to 40.

2. Figures 2(a) to (i) display the trend of three criteria for
various combinations of standard deviations with particular
sets of process means and various sample sizes.

Figures 2(a) to 2(i) reveal that the coverage proportion
decreases as �1/�2 increases. Conversely, the average length
and standard deviation increase as �1/�2 increases, except
in the case where (�A, �B) = (320, 295) and (n1,n2) = (40,40).

3. Figures 3(a) to 3(i) display the trend of three criteria for
various combinations of process means with particular sets
of process standard deviations and sample sizes.

Figures 3(a) to (i) reveal that the coverage proportion does not
change significantly as (�1,�2) increases. Generally, the average
length and standard deviation decreases as (�1,�2) increases,
except in cases where (�A, �B) = (12, 7) and (n1,n2) = (40,
40). With respect to the accuracy of BCPB confidence intervals,
although 10 out of the 27 coverage proportions are outside the
true 95% BCPB confidence intervals, the coverage proportions
for various process parameter combinations all exceed 0.91,
indicating that the BCPB confidence interval can be used as a
reliable tool for selecting the more capable of two competing
suppliers.

In the sensitivity analysis of the BCPB confidence intervals,
the simulation results reveal that the behaviour of the three
evaluating criteria (coverage proportion, average length, and
standard deviation) changes very little for various parameter
combinations of process mean, process standard deviation, and
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sample sizes. The findings show that the BCPB confidence
interval is robust. We recommend that sample sizes above 40
are necessary for employing the BCPB confidence interval for
(Cpk1 – Cpk2).

4. Numerical Example

This study cites data from two suppliers, who provided
aluminium foil materials to an electronics company in Tai-
wan, to demonstrate the proposed procedure. Aluminium foil
is a key component that governs the quality of capacitors
(see Fig. 4), and the voltage is an important quality charac-
teristic of aluminium foil: the production specifications
(USL, T, LSL) of the voltage are (530, 520, 510). If the
voltage falls outside this interval, the aluminium foil will
break, and thus be rejected. Fifty random samples are taken
from suppliers 1 and 2 by a quality inspector. Table 2 shows
the collected sample data. The process of each supplier is
approximately normally distributed. The simulation result
for the 95% BCPB confidence interval for Cpk1 � Cpk2 is
(0.44139, 1.18139). We are thus 95% confident that supplier
1 is more capable than supplier 2, since the lower and upper
confidence limits are positive.

5. Conclusions

The process capability indices, Cp and Cpk, are extensively
used in manufacturing industries. Cpk simultaneously measures
the ability of a process to meet a required target value,
and the variation within specified limits. Therefore, Cpk more
accurately assesses the process capability than Cp. Although
statistical tests have been developed to compare two Cp, Cpu

and Cpl process capability indices of normal processes, a
statistical test for comparing two Cpk values has not been
developed due to the complexity of the sampling distribution
of (Ĉpk1 � Ĉpk2).

This study proposes a BCPB confidence interval for
(Cpk1 � Cpk2) that involves the bootstrap resampling method to

replace the hypothesis testing method for selecting the more
capable of two candidate suppliers. This bootstrap interval is
accurate and effective when used for this purpose. Quality
engineers or managers with limited statistical background can
easily implement the procedure for establishing the BCPB
confidence interval and selecting a capable supplier.
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