Conclusion: In this note, the regulator problem of linear continuous-time systems with nonsymmetrical constrained control is studied. Necessary and sufficient conditions for domain $\mathcal{D}(F, q_1, q_2)$, which generates admissible control by feedback law, to be a positively invariant set w.r.t. system (6), are given. These conditions guarantee that system (1)-(7) is asymptotically stable for every motion emanating from domain $\mathscr{D}(F, q_1, q_2)$. A spectral analysis of equation FA + FBF = HF is also given together with conditions on the existence of matrix H. The necessary condition of the main result is established by using an important property of the \mathscr{R} er F: when domain $\mathscr{D}(F, q_1, q_2)$ is positively invariant w.r.t. system (6), \mathcal{R} er F is also positively invariant w.r.t. the system. Finally, the case of symmetrical constrained control is obtained easily by taking $q_1 = q_2 = \rho$.

REFERENCES

- [1] A. Benzaouia, "The regulator problem for linear discrete-time systems with nonsymmetrical constrained control," in Proc. 30th CDC IEEE-Brighton, 1991.
- A. Benzaouia and A. Hmamed, "Regulator problem for linear [2] continuous systems with nonsymmetrical constrained control using nonsymmetrical Lyapunov functions," in *Proc. 31th CDC IEEE*-Arizona, 1992
- A. Benzaouia and C. Burgat, (a) "Regulator problem for linear [3] discrete-time systems with nonsymmetrical constrained control," Int. J. Contr., vol. 48, no. 6, pp. 2441-2451, 1988; (b) "Existence of nonsymmetrical Lyapunov functions for linear systems," Int. J. Syst. Sci., vol. 20, no. 4, pp. 597-607, 1989; (c) "Existence of nonsymmetrical stability domains for linear systems," Linear Algebra Appl., vol. 121, pp. 217-231, 1989.
- [4] G. Bitsoris, "Positively invariant polyhedral sets of discrete-time linear systems," Int. J. Contr., vol. 47, no. 6, pp. 1713-1726, 1988.
- J. Cheganças, Sur le concept d'invariance positive appliqué à l'etude de la command avec contrainte des systèmes dynamiques. Thesis, D. I. Res. Rep. 85325. LAAS, Toulouse, 1985
- [6] P. O. Gutman and P. Hagander, "A new design of constrained controllers for linear systems," IEEE Trans. Automat. Contr., vol. 30, pp. 22-33, 1985.
- W. Hahn, Stability of Motion. New York: Springer-Verlag, 1967. B. Porter, "Eigenvalue assignment in linear multivariable systems
- by output feedback," Int. J. Contr., vol. 25, pp. 483-490, 1977.
- M. Vassilaki and G. Bitsoris, "Constrained regulation of linear [9] continuous-time dynamical systems," Syst. Contr. Lett., vol. 13, pp. 247-252, 1989.

Optimal Periodic Control Implemented as a Generalized Sampled-Data Hold Output Feedback Control

Nie-Zen Yen and Yung-Chun Wu

Abstract--In this note, a conversion method to convert the analog linear quadratic regulation control to a generalized sampled-data hold output feedback control for a linear periodic system or a linear timeinvariant system is presented. It is shown that by using such a conversion, one can implement the optimal periodic control scheme in the presence of incomplete and delayed state measurements.

Manuscript received January 10, 1992; revised September 17, 1992. This work was supported by the National Science Council of ROC under contract CS81-0210-D009-503.

N.-Z. Yen is with the Institute of Electronics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050.

Y.-C. Wu is with the Institute and Department of Control Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, 30050.

IEEE Log Number 9208704.

I. INTRODUCTION

Consider the optimal control problem of a linear periodic system

$$\dot{\mathbf{x}}(t) = A(t)\mathbf{x}(t) + B(t)\mathbf{u}(t)$$
(1.a)

$$\mathbf{y}(t) = C(t)\mathbf{x}(t) + D(t)\mathbf{u}(t)$$
(1.b)

to minimize the following quadratic performance index:

$$J = \int_0^\infty \mathbf{x}^{\tau}(t)Q(t)\mathbf{x}(t) + \mathbf{u}^{\tau}(t)R(t)\mathbf{u}(t) dt \qquad (2)$$

where $x \in R^n$ is the state, $u \in R^m$ is the control, $y \in R^r$ is the output measurement, and A(t), B(t), C(t), D(t), Q(t), and R(t)are continuous matrix functions which satisfy the periodical property that A(t) = A(t + T), B(t) = B(t + T), C(t) = C(t + T)T), D(t) = D(t + T), Q(t) = Q(t + T) and R(t) = R(t + T), where T is the periodic time, $Q(t) \in \mathbb{R}^{n \times n}$ is positive semidefinite, and $R(t) \in \mathbb{R}^{m \times m}$ is positive definite.

It is known (e.g., [2]-[5]) that the above linear quadratic regulation (LQR) control problem can be solved by the following periodic state feedback:

$$\boldsymbol{u}(t) = \boldsymbol{G}(t)\boldsymbol{x}(t) \tag{3.a}$$

$$G(t) = -R(t)^{-1}B^{\tau}(t)P(t)$$
 (3.b)

and $P(t) \in \mathbb{R}^{n \times n}$ is a periodic positive semidefinite matrix function solved from the following periodic Riccati equation (if the solution exists):

$$-P(t) = A^{\tau}(t)P(t) + P(t)A(t)$$

where

 $-P(t)B(t)R(t)^{-1}B^{\tau}(t)P(t) + Q(t). \quad (3.c)$

In general, to implement the analog optimal periodic control scheme (3.a) needs complete state measurement. In this note, one converts the control scheme into a generalized-sampled-data hold control using the output measurement (1.b) only.

II. DEVELOPMENT

A. Generalized Sampled-Data Hold Control

The periodic system (1) with the optimal periodic control (3.a) yields the following closed-loop system:

$$\dot{\mathbf{x}}(t) = (A(t) + B(t)G(t))\mathbf{x}(t). \tag{4}$$

Associated to the closed-loop system, one defines $\phi(t, \theta)$, $\Psi(t, \theta)$, and $\Psi_{P}(t, \theta)$ as the state transition matrices satisfying the following three differential equations, respectively:

$$\frac{d}{dt}\phi(t,\theta) = A(t)\phi(t,\theta); \qquad \phi(\theta,\theta) = I_n \quad (5)$$

$$\frac{d}{dt}\Psi(t,\theta) = (A(t) + B(t)G(t))\Psi(t,\theta); \quad \Psi(\theta,\theta) = I_n$$
(6)

$$\frac{d}{dt}\Psi_p(t,\theta) = \begin{pmatrix} A(t) & B(t)G(t) \\ O_n & A(t) + B(t)G(t) \end{pmatrix} \Psi_p(t,\theta);$$

$$\Psi_P(\theta, \theta) = I_{2n}.$$
 (7)

Where I_n denotes the *n* dimensional identity matrix, O_n denotes the n dimensional zero matrix. It is easy to check the following equality (see Lemma 1 in the Appendix):

$$\Psi_P(t,\theta) = \begin{pmatrix} \phi(t,\theta) & B_{\dagger}(t,\theta) \\ O_n & \Psi(t,\theta) \end{pmatrix}$$
(8)

0018-9286/93\$03.00 © 1993 IEEE

where

$$B_{\dagger}(t,\theta) = \int_{\theta}^{t} \phi(t,s)B(s)G(s)\Psi(s,\theta) \, ds$$
$$= \Psi(t,\theta) - \phi(t,\theta).$$

Based on the optimal periodic control (3.a) and the closed-loop system (4), one conjures a generalized sampled-data hold control (Kabamba [6]) as follows:

 $\boldsymbol{u}(kT+\theta) = G(\theta)\hat{\boldsymbol{x}}(kT+\theta) = G(\theta)\Psi(\theta,0)\hat{\boldsymbol{x}}(kT) \quad (10)$ where $k = 0, 1, 2, \dots, \theta \in [0, T)$, $\hat{\mathbf{x}}(kT + \theta) = \Psi(\theta, 0)\hat{\mathbf{x}}(kT)$, and $\hat{\mathbf{x}}(kT) \in \mathbb{R}^n$. Notice that if $\hat{\mathbf{x}}(kT) = \mathbf{x}(kT)$, then $\hat{\mathbf{x}}(kT + \theta) = \mathbf{x}(kT)$ $\mathbf{x}(kT + \theta)$ for all $\theta \in [0, T)$ (see Lemma 2 in the Appendix), so that (10) is just equivalent to (3.a). Now, one defines

$$\hat{\lambda}(kT) = \lim_{\theta \to T^-} \hat{\mathbf{x}}((k-1)T+\theta) = \Psi(T,0)\hat{\mathbf{x}}((k-1)T) \quad (11)$$

then one has

$$u(kT - \sigma) = G(T - \sigma)\Psi(T - \sigma, 0)\hat{\mathbf{x}}((k - 1)T)$$

= $G(T - \sigma)\Psi(T - \sigma, T)\hat{\lambda}(kT)$
= $[O_{m \times n} \quad G(T - \sigma)]\Psi_p(T - \sigma, T)\begin{pmatrix} \mathbf{x}(kT) \\ \hat{\lambda}(kT) \end{pmatrix}$
(12.a)

and

x(kT)

$$-\sigma) = \phi(kT - \sigma, kT)\mathbf{x}(kT) + \int_{kT}^{kT - \sigma} \phi(kT - \sigma, s)B(s)\mathbf{u}(s) ds = \phi(T - \sigma, T)\mathbf{x}(kT) + \int_{T}^{T - \sigma} \phi(T - \sigma, s)B(s)G(s)\Psi \cdot (s, 0)\hat{\mathbf{x}}((k - 1)T) ds = \phi(T - \sigma, T)\mathbf{x}(kT) + \int_{T}^{T - \sigma} \phi(T - \sigma, s)B(s)G(s)\Psi \cdot (s, T)\hat{\lambda}(kT) ds = [I_n O_n]\Psi_p(T - \sigma, T)\left(\frac{\mathbf{x}(kT)}{\hat{\lambda}(kT)}\right)$$
(12.b)

for all $\sigma \in (0, T]$. Thus by (12.a) and (12.b), it is concluded that $\mathbf{y}(kT-\sigma) = C(kT-\sigma)\mathbf{x}(kT-\sigma)$

$$+ D(kT - \sigma)u(kT - \sigma)$$
$$= C_{h}(-\sigma) \left(\frac{x(kT)}{\hat{\lambda}(kT)} \right)$$
(13)

where

$$C_{h}(-\sigma) = [C(kT - \sigma) \quad D(kT - \sigma)G(T - \sigma)]\Psi_{p}$$

$$\cdot (T - \sigma, T)$$

$$= [C(-\sigma) \quad D(-\sigma)G(-\sigma)]\Psi_{p}(-\sigma, 0). \quad (14)$$

B. Conversion Algorithm

Assume that $\sigma_1, \sigma_2, \dots, \sigma_f$ are positive real numbers which satisfy $0 < \sigma_1 < \cdots < \sigma_f \leq T$ and

$$\operatorname{rank}\begin{pmatrix} C_{h}(-\sigma_{1})\\ C_{h}(-\sigma_{2})\\ \vdots\\ C_{h}(-\sigma_{f}) \end{pmatrix} = 2n.$$
(15)

By (13) and (15), one can obtain

$$\mathbf{x}(kT) = \begin{bmatrix} I_n & O_n \end{bmatrix} \begin{pmatrix} \mathbf{x}(kT) \\ \hat{\lambda}(kT) \end{pmatrix} = L \begin{pmatrix} \mathbf{y}(kT - \sigma_1) \\ \mathbf{y}(kT - \sigma_2) \\ \vdots \\ \mathbf{y}(kT - \sigma_f) \end{pmatrix}$$
(16)

where $L \in R^{n \times fr}$ is given by

(9)

$$L = \begin{bmatrix} I_n & O_n \end{bmatrix} \left(\begin{pmatrix} C_h(-\sigma_1) \\ C_h(-\sigma_2) \\ \vdots \\ C_h(-\sigma_f) \end{pmatrix}^{\tau} \begin{pmatrix} C_h(-\sigma_1) \\ C_h(-\sigma_2) \\ \vdots \\ C_h(-\sigma_f) \end{pmatrix} \right)^{-1} \begin{pmatrix} C_h(-\sigma_1) \\ C_h(-\sigma_2) \\ \vdots \\ C_h(-\sigma_f) \end{pmatrix}^{\tau}.$$
(17)

This means that x(kT) can be exactly predicted by y(kT - t) σ_1), $y(kT - \sigma_2), \dots, y(kT - \sigma_f)$ if the generalized sampled-data hold control (10) is valid in the interval [(k - 1)T, T), so that

$$u(kT + \theta) = G(\theta)\Psi(\theta, 0)L\begin{pmatrix} y(kT - \sigma_1) \\ y(kT - \sigma_2) \\ \vdots \\ y(kT - \sigma_f) \end{pmatrix}$$
(18)

is just an equivalent control of (3.a) for all $k \ge 1$ and $\theta \in [0, T)$.

C. Another Conversion

An alternative conversion using less output measurements is also possible. To do so, one assumes

$$\begin{pmatrix} C_h(-\sigma_1) \\ C_h(-\sigma_2) \\ \vdots \\ C_h(-\sigma_g) \end{pmatrix} = \begin{bmatrix} M_1 & M_2 \end{bmatrix}$$
(19)

where $g \leq f$, $M_1 \in \mathbb{R}^{gr \times n}$, $M_2 \in \mathbb{R}^{gr \times n}$, and rank $[M_1] = n$. By (13) and (19), one obtains

$$\mathbf{x}(kT) = (M_{1}^{\tau}M_{1})^{-1}M_{1}^{\tau} \begin{pmatrix} \mathbf{y}(kT - \sigma_{1}) \\ \mathbf{y}(kT - \sigma_{2}) \\ \vdots \\ \mathbf{y}(kT - \sigma_{g}) \end{pmatrix} - (M_{1}^{\tau}M_{1})^{-1}M_{1}^{\tau}M_{2}\hat{\lambda}(kT). \quad (20)$$

Thus, an alternative conversion can be taken as follows:

,

$$\boldsymbol{u}(kT+\theta) = G(\theta)\Psi(\theta,0)\hat{\boldsymbol{x}}(kT) \tag{21.a}$$

$$\hat{\mathbf{x}}(kT) = L_1 \begin{pmatrix} \mathbf{y}(kT - \sigma_1) \\ \mathbf{y}(kT - \sigma_2) \\ \vdots \\ \mathbf{y}(kT - \sigma_g) \end{pmatrix} + L_2 \hat{\mathbf{x}}((k-1)T) \quad (21.b)$$

where $L_1 = (M_1^{\tau}M_1)^{-1}M_1^{\tau} \in R^{n \times gr}, L_2 = -(M_1^{\tau}M_1)^{-1}$ $M_1^{\tau}M_2\Psi(T,0) \in \mathbb{R}^{n \times n}, \ k = 1, 2, \cdots, \text{ and } \theta \in [0,T).$

Remark 1: Since $u(\theta)$ for $\theta \in [-T, 0)$ may not obey (10), a practical control scheme in the first periodic time can be taken as follows:

$$\boldsymbol{u}(\theta) = \boldsymbol{G}(\theta)\boldsymbol{\Psi}(\theta, 0)\boldsymbol{E}(\boldsymbol{x}(0)) \tag{22}$$

for $\theta \in [0, T)$, where the expectation E(x(0)) can be substituted by an estimated vector using any other approaches (e.g., the exact reconstruction method developed in [7]).

Remark 2: A necessary and sufficient condition to exist real numbers $\sigma_1, \dots, \sigma_f$ ($0 < \sigma_1 < \dots < \sigma_f \leq T$) for satisfying (15) is that the following Gramian matrix has full rank (see Lemma 3 in the Appendix).

$$\int_{0}^{I} \Psi_{p}^{\tau}(-\sigma, 0) [C(-\sigma) \quad D(-\sigma)G(-\sigma)]^{\tau} \cdot [C(-\sigma) \quad D(-\sigma)G(-\sigma)] \Psi_{p}(-\sigma, 0) \, d\sigma. \quad (23)$$

Similarly, a necessary and sufficient condition to exist real numbers $\sigma_1, \dots, \sigma_g$ $(0 < \sigma_1 < \dots < \sigma_g \leq T)$ for satisfying rank $[M_1] = n$ is that the following Gramian matrix has full rank

$$\int_0^T \phi^{\tau}(-\sigma, 0) C^{\tau}(-\sigma) C(-\sigma) \phi(-\sigma, 0) \, d\sigma.$$
 (24)

Remark 3: It is interesting to compare the presented approach with a multirate output feedback control given as follows (e.g., [8]):

$$u(kT + iT/\tilde{f} + \theta) = L_i y(kT)$$
(25)

where \overline{f} is a positive integer, $\theta \in [0, T/\overline{f})$, and $L_i \in \mathbb{R}^{m \times r}$, $i = 0, 1, 2, \dots, \bar{f} - 1$ are the piecewise output feedback gains. From the theoretical viewpoint, the converted generalized sampled-data hold control (18) [or (21)] is really an optimal solution of the continuous-time LQR control problem, it produces the least cost and arises no intersample ripple. On the other hand, a multirate output feedback control can be considered as a suboptimal approach using convenient structure. A significant advantage of this approach is that the minimization problem of the index (2) subject to the multirate structure can be converted into a discrete-time LQR control problem, in particular, if the system has complete state information, then the optimal solution can simply be solved from a discrete-time algebraic Riccati equation (see [1]). Besides, a multirate output feedback control scheme is easier for practical implementation because it only uses a zero-order hold and needs less output measurements.

III. EXAMPLE

Consider the optimal control problem of the following linear periodic system

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} \cos\left(2\pi t\right) & \sin\left(2\pi t\right) \\ -\sin\left(2\pi t\right) & \cos\left(2\pi t\right) \end{pmatrix} \mathbf{u}(t)$$
(26.a)

$$\mathbf{y}(t) = [\cos(2\pi t) \ \sin(2\pi t)]\mathbf{x}(t)$$
 (26.b)

to minimize a quadratic performance index as follows:

$$J = \int_0^T \boldsymbol{x}^{\tau}(t) \boldsymbol{x}(t) + \boldsymbol{u}^{\tau}(t) \boldsymbol{u}(t) \, dt.$$
 (27)

By solving the periodic Riccati equation (3.c), one obtains the optimal periodic control as follows:

$$\boldsymbol{u}(t) = \begin{pmatrix} -\cos\left(2\pi t\right) & \sin\left(2\pi t\right) \\ -\sin\left(2\pi t\right) & -\cos\left(2\pi t\right) \end{pmatrix} \boldsymbol{x}(t).$$
(28)

This control scheme yields the following closed-loop system:

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \mathbf{x}(t).$$
(29)

Now, let T = 1, $\sigma_1 = 0.4$, $\sigma_2 = 0.6$, $\sigma_3 = 0.8$, and $\sigma_4 = 1.0$. By (14), one obtains

$$\begin{pmatrix} C_h(-0.4) \\ C_h(-0.6) \\ C_h(-0.8) \\ C_h(-1.0) \end{pmatrix} = \begin{pmatrix} -0.8090 & -0.5878 & -0.3979 & -0.2891 \\ -0.8090 & 0.5878 & -0.6651 & 0.4832 \\ 0.3090 & 0.9511 & 0.3787 & 1.1656 \\ 1.0000 & 0.0000 & 1.7183 & -0.0000 \end{pmatrix}$$

$$(30)$$

and by (17), one obtains

$$L = \begin{pmatrix} -0.7196 & -1.3087 & 0.3641 & -0.7535 \\ -1.7058 & 2.0658 & -1.2796 & 0.6866 \end{pmatrix}.$$
 (31)

thus, the converted generalized sampled-data hold control (18) is given by

$$u(kT + \theta) = \begin{pmatrix} -\cos(2\pi\theta) & \sin(2\pi\theta) \\ -\sin(2\pi\theta) & -\cos(2\pi\theta) \end{pmatrix}$$
$$\cdot \begin{pmatrix} e^{-\theta} \begin{pmatrix} -0.719 & -1.308 & 0.364 & -0.753 \\ -1.705 & 2.065 & -1.279 & 0.686 \end{pmatrix}$$
$$\cdot \begin{pmatrix} y(kT - 0.4) \\ y(kT - 0.6) \\ y(kT - 0.8) \\ y(kT - 1.0) \end{pmatrix} \end{pmatrix}.$$
(32)

This converted control scheme is checked by simulation as shown in Fig. 1.

IV. CONCLUSIONS

In this note, a conversion method to convert the analog optimal periodic control to a generalized sampled-data hold output feedback control for a linear periodic system is developed. Such a conversion enables us to implement the optimal periodic control scheme in the presence of incomplete state measurement. Besides, the converted control scheme can use the delayed output feedback to offer a leisure time for on line computation, so that it can provide ability to tolerate the time delay (such as: measurement delay, computation time lag, etc). Such a conversion algorithm is also applicable to a linear timeinvariant system just by considering the system as a periodic model with an arbitrary periodic time.

$$B_{\dagger}(t,\theta) = \int_{\theta}^{t} \phi(t,s) B(s) G(s) \Psi(s,\theta) \, ds$$
$$= \Psi(t,\theta) - \phi(t,\theta).$$

Proof: One has

$$\frac{d}{dt} \left\{ \int_{\theta}^{t} \phi(t,s) B(s) G(s) \Psi(s,\theta) \, ds \right\}$$
$$= A(t) \left\{ \int_{\theta}^{t} \phi(t,s) B(s) G(s) \Psi(s,\theta) \, ds \right\}$$
$$+ B(t) G(t) \Psi(t,\theta) \qquad (A.1)$$

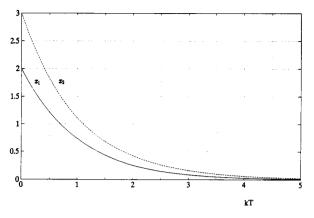


Fig. 1. The response of the periodic system (26) with the converted control scheme (32), where one assumes $\mathbf{x}(0) = [\mathbf{x}_1(0)\mathbf{x}_2(0)]^{\tau} = [2 \ 3]^{\tau}$.

and

$$\frac{d}{dt} \{ \Psi(t,\theta) - \phi(t,\theta) \} = A(t) \{ \Psi(t,\theta) - \phi(t,\theta) \}$$
$$+ B(t) G(t) \Psi(t,\theta). \quad (A.2)$$

Thus, the equality can be obtained by checking the differential equation (7) directly.

Lemma 2: If $\hat{\mathbf{x}}(kT) = \mathbf{x}(kT)$, then the control (10) equals to (3.a) on [kT, (k + 1)T).

Proof: With the control (10), the state of the periodic system (1) becomes

$$\mathbf{x}(kT+\theta) = \phi(\theta,0)\mathbf{x}(kT) + \int_{0}^{\theta} \phi(\theta,s)B(s)\mathbf{u}(kT+s) \, ds$$
$$= \phi(\theta,0)\mathbf{x}(kT)$$
$$+ \int_{0}^{\theta} \phi(\theta,s)B(s)G(s)\Psi(s,0)\hat{\mathbf{x}}(kT) \, ds$$
$$= \phi(\theta,0)\mathbf{x}(kT) + B_{\dagger}(\theta,0)\hat{\mathbf{x}}(kT)$$

$$= \phi(\theta, 0)(\mathbf{x}(kT) - \hat{\mathbf{x}}(kT)) + \Psi(\theta, 0)\hat{\mathbf{x}}(kT) \quad (A.3)$$

Thus, if $\hat{\mathbf{x}}(kT) = \mathbf{x}(kT)$, then $\mathbf{x}(kT + \theta) = \hat{\mathbf{x}}(kT + \theta)$ for all $\theta \in [0, T).$

Lemma 3: Assume H(t) is a continuous matrix function from [0, T] into $\mathbb{R}^{n_1 \times n_2}$, then the following Gramian matrix

$$\Omega_T = \int_0^T H(t) H^{\tau}(t) dt \qquad (A.4)$$

is positive definite, if and only if there exist finite points σ_1 , $\sigma_2, \cdots, \sigma_f$ of (0, T], such that

$$[H(\sigma_1): H(\sigma_2): \cdots : H(\sigma_f)]$$
(A.5)

has full row rank.

Proof: (If) If there exist finite points $\sigma_1, \sigma_2, \dots, \sigma_f$ of (0, T], such that the given matrix (A.5) has full row rank, then for any nonzero vector $\xi \in \mathbb{R}^{n_1}$, one can find at least a point $\sigma_i \in$ $\{\sigma_1, \sigma_2, \cdots, \sigma_f\}$, such that $\xi^{\tau} H(\sigma_i) \neq 0$. Since H(t) is continuous, this implies

$$\xi^{\tau} \Omega_T \xi = \int_0^T \xi^{\tau} H(t) H^{\tau}(t) \xi \, dt > 0 \tag{A.6}$$

so that Ω_T is positive definite.

(Only if) Assume Ω_T is positive definite, and consider arbitrary finite points $\sigma_1, \sigma_2, \dots, \sigma_f$ of (0, T], if the given matrix (A.5) has not full row rank, then one can find $\xi \in \mathbb{R}^{n_1}$ and $\sigma_{f+1} \in (0, T]$, such that

$$\xi^{\tau} H(\sigma_{f+1}) \neq 0 \tag{A.7}$$

and

r;

$$\xi^{\tau}[H(\sigma_1): H(\sigma_2): \cdots : H(\sigma_f)] = 0.$$
(A.8)

This implies that some columns of $H(\sigma_{f+1})$ cannot be expressed as a linear combination of columns of matrix (A.5), so that it is true that

ank
$$[H(\sigma_1): H(\sigma_2): \cdots : H(\sigma_f): H(\sigma_{f+1})]$$

$$\geq \operatorname{rank} [H(\sigma_1): H(\sigma_2): \cdots : H(\sigma_f)] + 1.$$
 (A.9)

By giving the extending procedure at most n_1 times, one can finally find $\{\sigma_1, \sigma_2, \dots, \sigma_f, \sigma_{f+1}, \dots, \sigma_{f+q}\} \subset (0, T]$, such that

$$\operatorname{rank} \left[H(\sigma_1) \colon H(\sigma_2) \colon \cdots \colon H(\sigma_f) \colon H(\sigma_{f+1}) \colon \cdots \colon H(\sigma_{f+q}) \right] = n_1.$$

REFERENCES

- [1] H. M. Al-Rahmani and G. F. Franklin, "A new optimal multirate control of linear periodic and time-invariant systems," IEEE Trans. Automat. Contr., vol. 35, pp. 406-415, Apr. 1990.
- S. Bittanti, P. Colareri, and G. Guardabassi, "Periodic solutions of periodic Riccati equations," *IEEE Trans. Automat. Contr.*, vol. [2] AC-29, pp. 665–667, July 1984. S. Bittanti, P. Bolzern and P. Colaneri, "The extended periodic
- [3]
- Lyapunov lemma," *Automatica*, vol. 21, pp. 603–605, 1985. S. Bittanti, P. Colaneri, and G. De Nicolao, "Periodic regulators with incomplete and noise measurements," in *Proc. 29th Conf.* [4]
- Decisions Contr., Hawaii, 1990, pp. 3648-3649. H. Kano and T. Nishimura, "Controllability, stabilizability, and matrix Riccati equation for Periodic system," *IEEE Trans. Automat.* [5]
- Contr., vol. AC-30, pp. 1129–1131, Nov. 1985. P. T. Kabamba, "Control of linear systems using generalized sampled-data hold functions," *IEEE Trans. Automat. Contr.*, vol. [6] AC-32, pp. 772-782, Sept. 1987.
- D. H. Chyung, "State variable reconstruction," Int. J. Contr., vol. 39, pp. 955-963, 1984. [7]
- [8] N. Z. Yen and Y. C. Wu, "On a general optimal algorithm for multirate output feedback controllers of linear stochastic periodic systems," IEEE Trans. Automat. Contr., 1993, to be published.

On Discrete Spectral Factorizations—A Unify Approach

M. C. Tsai

Abstract-This note summarizes state-space formulae for all key spectral factorizations appearing in the discrete-time H^2/H^{∞} optimization. The factorization problems are categorized into three groups. The construction of solutions is formulated into finding special coprime factors of a given transfer matrix by the associated discrete algebraic Riccati equation. Solution procedures for the three groups are in general the same, and under that we may lead to yield a unify approach.

Manuscript received February 7, 1992; revised August 28, 1992. The author is with the Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China.

IEEE Log Number 9208705.

0018-9286/93\$03.00 © 1993 IEEE