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Conclusion: In this note, the regulator problem of linear 
continuous-time systems with nonsymmetrical constrained con- 
trol is studied. Necessary and sufficient conditions for domain 

9 ( F ,  ql ,  q2), which generates admissible control by feedback 
law, to be a positively invariant set w.r.t. system (61, are given. 
These conditions guarantee that system (1)-(7) is asymptotically 
stable for every motion emanating from domain 9 ( F ,  41, 42).  A 
spectral analysis of equation FA + FBF = HF is also given 
together with conditions on the existence of matrix H. The 
necessary condition of the main result is established by using an 
important property of the Z e r  F :  when domain 9 ( F ,  41, q 2 )  is 
positively invariant w.r.t. system (6), X e r  F is also positively 
invariant w.r.t. the system. Finally, the case of symmetrical 
constrained control is obtained easily by taking q, = 42 = p. 
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Optimal Periodic Control Implemented as a 
Generalized Sampled-Data Hold 

Output Feedback Control 

Nie-Zen Yen and Yung-Chun Wu 

Abstract-In this note, a conversion method to convert the analog 
linear quadratic regulation control to a generalized sampled-data hold 
output feedback control for a linear periodic system or a linear time- 
invariant system is presented. It is shown that by using such a conver- 
sion, one can implement the optimal periodic control scheme in the 
presence of incomplete and delayed state measurements. 
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I. INTRODUCTION 
Consider the optimal control problem of a linear periodic 

(1.a) 
(1 .b) 

system 
x.(t> = A ( t ) x ( t )  + B ( t ) u ( t )  
y ( t >  = C ( t > x ( t >  + D ( t ) u ( t )  

to minimize the following quadratic performance index: 

J = I x x T ( t ) Q ( t ) x ( t )  + u ‘ ( t ) R ( t ) u ( t )  dt ( 2 )  
0 

where x E R” is the state, U E R“ is the control, y E R’ is the 
output measurement, and A(t),  B(t),  C( t ) ,  D(t) ,  Q(t), and R ( t )  
are continuous matrix functions which satisfy the periodical 
property that A ( t )  = A(t + T ) ,  B ( t )  = B(t + T) ,  C ( t )  = C(t + 
T ) ,  D( t )  = D(t + T ) ,  Q(t )  = Q(t + T )  and R ( t )  = R(t + T ) ,  
where T is the periodic time, Q(t)  E R n X n  is positive semidefi- 
nite, and R ( t )  E R”’” is positive definite. 

It is known (e.g., [2]-[5]) that the above linear quadratic 
regulation (LQR) control problem can be solved by the follow- 
ing periodic state feedback: 

(3 .4  

G ( t )  = - R ( t ) - ’ B ‘ ( t ) P ( t )  (3.b) 
and P ( t )  E R”‘“ is a periodic positive semidefinite matrix func- 
tion solved from the following periodic Riccati equation (if the 
solution exists): 

- P O )  = A ’ ( t ) P ( t )  + P ( t ) A ( t )  

- P ( t ) B ( t ) R ( t ) - ’ B ‘ ( t ) P ( t )  + Q ( t ) .  (3.c) 
In general, to implement the analog optimal periodic control 
scheme (3.a) needs complete state measurement. In this note, 
one converts the control scheme into a generalized-sampled-data 
hold control using the output measurement (1.b) only. 

11. DEVELOPMENT 

A. Generalized sun pled-Data Hold Control 

yields the following closed-loop system: 

Associated to the closed-loop system, one defines +(t,  01, 
V(r, e), and Wp(t ,  0 )  as the state transition matrices satisfying 
the following three differential equations, respectively: 

The periodic system (1) with the optimal periodic control (3.a) 

x ( t )  = ( A ( t )  + B ( t ) G ( t ) ) x ( t ) .  (4) 

d 
-4(t, e )  = A ( t ) + ( t ,  0) ;  +(e, e )  = I ,  (5) 
dt 
d 
-wt, e)  = + ~ ( t ) ~ ~ t ) ) w t ,  e); w e ,  e >  = I,, 
dt 

(6) 

Where I,, denotes the n dimensional identity matrix, 0, denotes 
the n dimensional zero matrix. It is easy to check the following 
equality (see Lemma 1 in the Appendix): 
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where 

B+(t ,  0 )  = / ' + ( t ,  s ) B ( s ) G ( s ) W s ,  e>  ds 

= W t ,  e )  - + ( t ,  e ) .  (9) 
Based on the optimal periodic control (3.a) and the closed-loop 
system (4), one conjures a generalized sampled-data hold control 
(Kabamba [61) as follows: 

u(kT + 0 )  = G(O)P(kT + 0 )  = G(O)*(O,O)P(kT) (10) 
where k = 0, 1,2;.., 0 E [O, TI, f ( k T  + 0 )  = WO,O)P(kT), and 
f ( k T )  E R". Notice that if f ( k T )  = x ( k T ) ,  then P(kT + 0)  = 

x(kT + 0)  for all 0 E [0, T )  (see Lemma 2 in the Appendix), so 
that (10) is just equivalent to (3.a). Now, one defines 

i ( k T )  = Lim P((k - l )T  + 6 )  = T(T,O)P((k - 1)T) (11) 
e+ T -  

then one has 

u(kT - a )  = G(T - a)'P(T - a,O)f ( (k  - 1)T) 

= G(T - a ) q ( T  - a , T ) i ( k T )  

(12.a) 

for all a E (0, TI. Thus by (12.a) and (12.b), it is concluded that 
y ( k T  - a )  = C ( k T  - cT)x(kT - a )  

+ D(kT - a ) u ( k T  - a )  

(13) 

where 

C h ( - g )  = [ C ( k T -  a )  

.(T - a , T )  

D ( k T -  a ) G ( T -  ~ ) l ' J ' p  

= [C( - a )  D( - a ) G (  - (T )]'I'p( - U ,  0). (14) 

B. Conversion Algorithm 

satisfy 0 < a, < ... < 
Assume that a1, a,;.., af are positive real numbers which 

I T and 

By (13) and (1.51, one can obtain 

where L E R n X f r  is given by 

(17) 

This means that x ( k T )  can be exactly predicted by y ( k T -  
all, y(kT - a,);.., y(kT - uf) if the generalized sampled-data 
hold control (10) is valid in the interval [ (k  - 1)T, T ) ,  so that 

is just an equivalent control of (3.a) for all k 2 1 and 0 E [0, T) .  

C. Another Conversion 

also possible. To do so, one assumes 
An alternative conversion using less output measurements is 

where g 5 f, M, E R g r x n ,  M ,  E R g r x n ,  and rank[M,I = n. BY 
(13) and (191, one obtains 

- ( M;M, ) - I  M;M, i(m. (20) 

Thus, an alternative conversion can be taken as follows: 

u(kT + 0 )  = G(O)T(O,O)P(kT)  (21 .a) 

where L ,  = (M;M,)-'M; E R n x g r ,  L ,  = -(M;M,)-' 
M;M,WT,O)  E R"'", k = 1,2;.., and 0 E [O, TI. 

Remark 1: Since u ( 0 )  for 0 E [ - T ,  0) may not obey (lo), a 
practical control scheme in the first periodic time can be taken 
as follows: 

u ( 0 )  = G(0)WB,O)E(x(O) )  (22) 
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Ch( -0.6) 
Ch( - 0.8) 

for 8 E [O, T ) ,  where the expectation E(x(0) )  can be substituted 
by an estimated vector using any other approaches (e.g., the 
exact reconstruction method developed in [7]). 

Remark 2: A necessary and sufficient condition to exist real 
numbers (T~;.., ar (0 < < ... < U~ I T )  for satisfying (15) is 
that the following Gramian matrix has full rank (see Lemma 3 in 
the Appendix). 

kTqi(-cr, 0)[C( - (T) D( - a ) G (  - (T)]' 

.[C( - U )  D( - (T)G( - u)]'€'~( - (T, 0) d a .  (23) 

Similarly, a necessary and sufficient condition to exist real 
numbers (T~;.., cg (0 < u1 < ... < ug I T )  for satisfying 
rank[M,] = n is that the following Gramian matrix has full rank 

/OT47( - c+,o)cr( - q>c( - (T)+( - g ,  0) do. (24) 

Remark 3: It is interesting to compare the presented approach 
with a multirate output feedback control given as follows (e.g., 
MI: 

u ( k ~  + r/ f+ e )  = L&T) (25) 

where f is a positive integer, 0 E [0, T / f ) ,  and L,  E R m X r ,  
i = 0,1,2;.., f - 1 are the piecewise output feedback gains. 
From the theoretical viewpoint, the converted generalized 
sampled-data hold control (18) [or (2111 is really an optimal 
solution of the continuous-time LQR control problem, it pro- 
duces the least cost and arises no intersample ripple. On the 
other hand, a multirate output feedback control can be consid- 
ered as a suboptimal approach using convenient structure. A 
significant advantage of this approach is that the minimization 
problem of the index (2) subject to the multirate structure can 
be converted into a discrete-time LQR control problem, in 
particular, if the system has complete state information, then the 
optimal solution can simply be solved from a discrete-time 
algebraic Riccati equation (see [ 11). Besides, a multirate output 
feedback control scheme is easier for practical implementation 
because it only uses a zero-order hold and needs less output 
measurements. 

/ - 0.8090 - 0.5878 - 0.3979 - 0.2891 ' 
-0.8090 0.5878 -0.6651 0.4832 - - 

0.3090 0.9511 0.3787 1.1656 
1.oooO 0.0OOO 1.7183 -0.O000, 

111. EXAMPLE 
Consider the optimal control problem of the following linear 

periodic system 

Ch( - 1.01, ' 

y ( t )  = [cos(27rt) sin (2n t> lx ( t )  (26.b) 

to minimize a quadratic performance index as follows: 

J = j T x T ( t ) x ( t )  + u r ( t ) u ( t )  dt. (27) 

By solving the periodic Riccati equation (3.~1, one obtains the 
optimal periodic control as follows: 

- c o s ( 2 ~ t )  s in (2 r t )  ( -s in(2r t )  -cos(27~t) d t ) .  (28) 1 u ( t )  = 

This control scheme yields the following closed-loop system: 

, 

(29) 

-1.705 2.065 -1.279 0.686 
-0.719 -1.308 

y ( k T  - 0.6) 
y ( k T  - 0.8) 

\ y ( k T -  1.0) 

and by (171, one obtains 

= ( -0.7196 -1.3087 0.3641 -0.7535) (31) 
-1.7058 2.0658 -1.2796 0.6866 ' 

thus, the converted generalized sampled-data hold control (18) is 
given by 

' (32) 

This converted control scheme is checked by simulation as 
shown in Fig. 1. 

IV. CONCLUSIONS 

In this note, a conversion method to convert the analog 
optimal periodic control to a generalized sampled-data hold 
output feedback control for a linear periodic system is devel- 
oped. Such a conversion enables us to implement the optimal 
periodic control scheme in the presence of incomplete state 
measurement. Besides, the converted control scheme can use 
the delayed output feedback to offer a leisure time for on line 
computation, so that it can provide ability to tolerate the time 
delay (such as: measurement delay, computation time lag, etc). 
Such a conversion algorithm is also applicable to a linear time- 
invariant system just by considering the system as a periodic 
model with an arbitrary periodic time. 

APPENDIX 
Lemma 1: We only have to show that 
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1 -  

1.5 

0.5 

(Only if) Assume R, is positive definite, and consider arbitrary 
finite points al, v2;.., uf of (0, TI, if the given matrix (AS) has 
not full row rank, then one can find [ E R”* and uf+ , E (0, TI, 
such that 

[Waf+ 1 )  + 0 (A.7) 

*,, 

- - ’,~,, 

:,~ 

- and 

[‘[H(a,):  H(a , ) :  ... : H ( 4  = 0. (A.8) 

This implies that some columns of H( af+ ,) cannot be expressed 
as a linear combination of columns of matrix (AS), so that it is 
true that 

rank[H(a,):  H(a2):...:H(af): H(a f+ , ) l  
1 2 

..-_..___._.._..--_ ----- - 

- 

- 

Fig. 1. The response of the periodic system (26) with the converted 
control scheme (321, where one assumes x(0) = [x,(0)xz(O)l’ = [2 31’. 

and 

% w t ,  e )  - + ( t ,  e ) )  =m){wt, e)  - W ,  e ) )  
dt 

+ B ( t ) G ( t ) q ( t ,  6 ) .  (A.2) 
Thus, the equality can be obtained by checking the differential 

Lemma 2: If f ( k T )  = x ( k T ) ,  then the control (10) equals to 

Proog With the control (lo), the state of the periodic sys- 

equation (7) directly. 13 

(3.a) on [ kT,  ( k  + 1)T). 

tem (1) becomes 

x ( k ~  + e) = +(e ,o)x(kT)  + /e4(e, s ) ~ ( s ) u ( k ~  + s) ds 

= 4(e,o)x(kz-)  

+ ie4(e,  s ) B ( s ) G ( s ) W s ,  0 ) 3 ( k T )  ds 

= 4 ( e , o ) x ( k T )  + B + ( e , O ) f ( k T )  

= 4 ( e , o ) ( x ( k T )  - 2 ~ ) )  + w e , o ) f w )  ( ~ . 3 )  

6 E [0, T).  0 
Thus, if f ( k T )  = x(kT),  then x(kT + 0 )  = f ( k T  + 0 )  for all 

Lemma 3: Assume H ( t )  is a continuous matrix function from 
[0, TI into Rnlxnl ,  then the following Gramian matrix 

By giving the extending procedure at most n ,  times, one can 
finally find (a,, a,;.., af, af+ 

rank[H(a,):  H ( a 2 ) :  ... : H ( a f ) :  H ( a f + , ) :  . . - : H ( C T ~ + ~ ) ]  = n,. 
0 

af+J c (0, TI, such that 

[51 

[61 
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On Discrete Spectral Factorizations-A 
Unify Approach 

M. C. Tsai 

R, = / T H ( t ) H T ( t )  dt (A.4) 

is positive definite, if and only if there exist finite points a,, 
aZ;.., 9 of (0, TI, such that 

[ H ( a , ) :  H ( a 2 ) :  ... :H(af)l (AS) 

has full row rank. 
Proog (10 If there exist finite points a,, u2;.., af of (0, TI, 

such that the given matrix (AS) has full row rank, then for any 
nonzero vector 6 E R”1, one can find at least a point a, E 
{a,, a,;.., af), such that tTH(q) f 0. Since H ( t )  is continuous, 
this implies 

[‘R,[= / o r f T H ( t ) H ‘ ( r ) [  dt > 0 (A.6) 

so that R, is positive definite. 

Abstract-This note summarizes state-space formulae for all key spec- 
tral factorizations appearing in the discrete-time H */H” optimization. 
The factorization problems are categorized into three p u p s .  The con- 
struction of solutions is formulated into finding special coprime factors 
of a given transfer matrix by the associated discrete algebraic Riccati 
equation. Solution procedures for the three groups are in general the 
same, and under that we may lead to yield a unify approach. 
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