
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 27 April 2014, At: 20:38
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computer Integrated
Manufacturing
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcim20

An enhanced knowledge representation for decision-
tree based learning adaptive scheduling
Yeou-Ren Shiue & Chao-Ton Su
Published online: 08 Nov 2010.

To cite this article: Yeou-Ren Shiue & Chao-Ton Su (2003) An enhanced knowledge representation for decision-tree
based learning adaptive scheduling, International Journal of Computer Integrated Manufacturing, 16:1, 48-60, DOI:
10.1080/713804978

To link to this article:  http://dx.doi.org/10.1080/713804978

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcim20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/713804978
http://dx.doi.org/10.1080/713804978
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


An enhanced knowledge representation for
decision-tree based learning adaptive
scheduling

YEOU-REN SHIUE and CHAO-TON SU

Abstract. The classical decision tree (DT) learning approach
to constructing DT knowledge bases is usually not considered
if there exist some irrelevant and redundant attributes in the
problem domain. Since the essential attributes are uncertain
in manufacturing systems, how to select important manufac-
turing attributes to improve the generalization ability of
knowledge bases and avoid overfitting training data in DT-
based learning is a crucial research issue for the adaptive
scheduling problem domain. In this study, we will first develop
an attribute selection algorithm based on the weights of
artificial neural networks (ANNs) to identify the importance of
system attributes. Next, we will use the C4.5 DT learning
algorithm to learn the whole set of training examples with
important attributes in order to enhance knowledge repre-
sentation. This hybrid ANN/DT approach is called an
attribute selection DT (ASDT) based learning adaptive
scheduling system. The results from the case study show that
the use of an attribute selection algorithm to build scheduling
knowledge bases delivers better generalization ability than in
the absence of the attribute selection procedure in terms of
the size of DTs under various performance criteria. Consistent
conclusions are drawn from the resulting prediction accuracy
of unseen data. The resulting prediction accuracy of unseen
data also reveals that scheduling knowledge bases by the
proposed attribute selection approach to constructing DTs can
avoid overfitting the training data compared with the classical
DT learning approach.

1. Introduction

In the dynamic manufacturing environment, sche-
duling decisions are usually implemented through
dispatching rules that assign priority indices to various
jobs waiting at a machine (or buffer) where the job with

the highest priority is performed next. Many research-
ers (Blackstone et al. 1982, Baker 1984, Montazeri and
Van Wassenhove 1990, Sabuncuoglu 1998) have been
studying dispatching rules in a variety of configurations
since the 1960s. They have come to the major
conclusion that no single dispatching rule has been
shown to consistently produce better results than other
rules under a variety of shop configuration conditions
and performance criteria.

Since the values of manufacturing attributes change
continually in a dynamic system, Baker (1984) suggested
that it is possible to improve system performance by
implementing a scheduling policy rather than a single
dispatching rule. Such a scheduling policy should be
enabled with adaptively scheduling heuristics at various
time points. This technique is called the adaptive
scheduling approach because it should be able to
discover the current status of the manufacturing system,
and then determine the most appropriate dispatching
rule to be used for the next scheduling period.

Using the decision tree (DT) learning approach in
an adaptive scheduling mechanism to improve the
production performance of a manufacturing system has
displayed outstanding outcomes in recent research
(Shaw et al. 1992, Park et al. 1992, Kim et al. 1998, Arzi
and Iaroslavitz 2000). DT learning is one of the most
widely used and practical methods for inductive
inference. It is a method to approximate the numeric
or symbolic valued target function that is robust to noisy
data and capable of learning disjunctive expressions.
The major advantages of the DT learning approach to
constructing an adaptive scheduling mechanism can be
stated as follows.

(1) The concept (knowledge) learned from train-
ing examples can not only classify the given
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examples accurately but can also predict the
unseen examples very well.

(2) The learned function can be represented by
either a DT or sets of it ± then rules in order to
improve human readability. It can also be easily
coded into a control mechanism.

(3) DT learning methods are robust to errors in
classification of the training examples and errors
in the attribute values that describe these
examples.

(4) DT learning methods can be used even when
the values of some training examples are
unknown.

These capabilities of DT learning methods satisfy
the needs generated by the dynamic nature of the
manufacturing environment. Therefore, the DT-based
learning approach used for online scheduling is
applicable to decision problems in the manufacturing
environment. Such problems, which classify training
examples into one of a discrete set of possible
categories (scheduling rules), are often referred to as
classification problems.

Most algorithms that have been developed for
learning DT are variations of a core algorithm that
employs a top-down, greedy search through the space
of possible DTs. This approach, exemplified by the ID3
algorithm (Quinlan 1986) and its successor C4.5
(Quinlan 1993), forms the primary focus of research
in DT learning.

Generalization is an important ability specific to DT
learning that predicts unseen data with a high accuracy,
based on learned concepts from training examples.
Like other inductive learning methods, ID3 employs a
top-down, divide-and-conquer strategy that partitions
the given set of training examples into smaller and
smaller subsets, in steps, as the tree grows to the depth
just enough for perfect classification of the training
examples. This is a fairly reasonable strategy in some
cases. However, it can cause difficulties when there is
noise in the data (or even when the training examples
are noise-free), or when the number of training
examples is too small to produce a representative
sample of the true target function. In either of these
cases, the DT algorithm can produce trees that overfit
the training examples. This phenomenon is usually
called overfitting.

In order to avoid overfitting and improve the
generalization ability in DT learning, one quite
successful method for finding high accuracy hypotheses
uses a technique called rule post-pruning. However,
due to the existence of irrelevant and redundant
attributes in manufacturing systems, overfitting is still
a problem that needs to be resolved in the selection of

proper attributes to describe the training examples that
represent hypothesis space in an early stage. Even
though ID3 uses information gain to measure the
effectiveness of an attribute in classifying the training
data (Quinlan 1986), it still creates DTs that are too
long to fit training examples. Mitchell (1997) indicated
that the ID3 algorithm could characterize its inductive
bias approximately by its preference for short DTs to
complex trees. The term inductive bias here is the set of
assumptions that, together with the training data,
deductively justify the classifications assigned by the
learner to future instances. From the above discussion,
since the essential attributes are uncertain in manufac-
turing systems, how to select proper attributes for
adaptive scheduling so as to enhance knowledge
representation in the DT learning approach is worth
studying in the adaptive scheduling problem domain.

In order to capture the scheduling knowledge
concept, we need to determine the mapping function
between system attributes and the indices of dispatch-
ing rules under various performance criteria. The
artificial neural networks (ANNs) as learning tools have
demonstrated the ability to capture the general
relationships among variables that are difficult or
impossible to relate to each other analytically by
learning and generalizing from training patterns or
data. Hence, using ANNs as the mapping function in
scheduling knowledge provides a reasonable solution
tool to abstract proper attributes.

This study aims to develop a hybrid ANN/DT
approach to enhance the knowledge representation of
the DT learning approach in the adaptive scheduling
problem domain, which is called an attribute selection
decision tree (ASDT)-based learning adaptive schedul-
ing system. The proposed approach requires less
computation efforts and possesses the enhanced gen-
eralization ability of inductive bias. In addition, it can
avoid overfitting training examples. In the long run, the
ASDT-based adaptive scheduling system can be ex-
pected to outperform classical DT-based learning
adaptive scheduling in the absence of an attribute
selection procedure under various production perfor-
mance criteria.

2. Literature review

2.1. The strategies to enhance knowledge representation in DT
learning

For a detailed description of the ID3 algorithm and
C4.5, see Quinlan's (1986, 1987, 1993) works. In brief,
the approach begins with a set of training examples
consisting of an attribute-value list. Each example
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belongs to a particular known class. The goal is to
develop a series of rules that will further classify the
examples correctly into one of these classes, when only
the values of the attributes of the examples are known.
The algorithm examines each attribute in turn and
measures by information gain how attributes differenti-
ate between classes. The best attribute is chosen, and
the data are partitioned into subsets according to the
values of that attribute. This process is recursively
applied to each subset until all the examples are
correctly classified. The result is a tree in which nodes
represent attributes and branches represent all possible
attribute values or ranges of values. Terminal nodes
(leaves) of the tree correspond to the sets of examples
in the same class.

One important advantage of inductive learning
from examples is its ability to generalize and apply to
new situations. Generalization begins where learning
ends. The concept learned from a number of examples
can induce a complete function that often works well
on unseen data. That is, the concept learned from
examples can not only explain the given examples, but
also predict unseen data with high accuracy.

There are two important criteria on generalization
ability for evaluating decision learning (Mingers 1989a,
b):

(1) Size. It is generally accepted that shorter trees
are preferred to longer trees. This is particularly
true in the case with statistical models, in which
complexity usually improves explanatory power
on the training data, but deteriorates the
predictive ability of the model on independent
test data.

(2) Accuracy. This refers to a DT's predictive ability
to classify an independent set of test data. It is
measured by the error rate, i.e. the proportion of
incorrect predictions that a tree makes on the
test data.

There are three phases to rule induction in DT
learning: first, create an initial, large rule tree from
the sets of examples based on attribute selection
measures; second, prune this tree by removing the
branches with little statistical validity; and third,
process the pruned tree to improve its understand-
ability. The generalization ability in DT learning can
be enhanced through the first two phases even if
there may be errors in the classifications of the
training examples and errors in the attribute values
that describe these examples.

In the tree creation phase, the central task in the
ID3 algorithm is selecting the most useful attributes for
classifying examples to test at each node. What is a good

quantitative measure of the worth of an attribute?
Quinlan (1986) proposed an evaluation function called
information gain that measures how well a given attribute
separates the training examples according to the target
classification. ID3 uses this information gain to select
among the candidate attributes at each step while
growing the tree.

There is a natural bias in the information gain
measure in that it favours the attributes with many
values over those with few values. One alternative
measure that has been used successfully is the gain ratio
(Quinlan 1986). The gain ratio measure penalizes
attributes by incorporating the normalizing factor,
called split information, which is sensitive to how broadly
and uniformly the attribute splits the data.

Mingers (1989a) provided an experimental analysis
of the relative effectiveness of several measures for
selecting attributes over a variety of problems. He
reported significant differences in the size of the
unpruned trees produced by the different selection
measures. However, in his experimental domains, the
choice of attribute selection measure appears to have a
smaller impact on final accuracy than the post-pruning
method.

Owing to its underlying characteristics, the ID3
algorithm can lead to difficulties when there is noise in
the data. When ID3 classifies such data, the resulting
tree tends to be very large. However, many branches
reflect the chance of occurrence of particular data
rather than representing underlying relationships.
These relationships are very unlikely to occur in further
examples. In this situation, the ID3 algorithm will
produce trees that overfit the training examples.

In the pruning trees phase, the least reliable
branches are identified and removed. Pruning a tree
will increase the number of classification errors made
on the training data, but should decrease the error rate
on independent test data.

One quite popular tree pruning method is called
rule post-pruning. A variant of this pruning method is
used by C4.5. Rule post-pruning involves the following
steps.

(1) Infer the DT from the training set, grow the tree
until the training data are fit as well as possible,
and allow overfitting to occur.

(2) Convert the learning tree into an equivalent set
of rules by creating one rule for each path from
the root node to a leaf node.

(3) Prune each rule by removing any preconditions
that will improve its estimated accuracy.

(4) Sort the pruned rules by their estimated
accuracy, and consider them in this sequence
when classifying subsequent instances.

Y.-R. Shiue and C.-T. Su50
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One method to estimate rule accuracy is to use a test
set of examples disjoint from the training set. This DT
pruning technique comes from Quinlan's (1987)
reduced-error pruning approach that produces a series
of pruned trees by using the test data directly, rather
than merely selecting the best tree. It can produce the
smallest version of the most accurate tree with respect
to the test set.

Another method used by C4.5 is to evaluate
performance based on the training set itself, using a
pessimistic error pruning method proposed by Quin-
lan (1986). It aims to avoid the requirement for a
separate test data set. In this approach, C4.5
calculates its pessimistic estimate by calculating the
rule accuracy over the training examples to which it
applies and then calculates the standard deviation in
this estimated accuracy, assuming a binomial distribu-
tion. For a given confidence level, the lower-bound
estimate is then taken as the measure of rule
performance. When the presence of a leaf node
leads to a greater number of predictable errors it is
pruned from the tree.

So far, most research works have been focusing on
the impact of generalization ability in DT learning
where the hypothetical attributes are limited and
given in advance. However, due to the existence of
irrelevant and redundant attributes in manufacturing
systems, how to select the appropriate attributes to
describe the training examples and represent knowl-
edge bases in early stage is still a problem that needs
to be resolved. If too many irrelevant attributes are
used in describing the training examples, longer DTs
will be created to fit the training examples and thus
the generalization ability of knowledge bases will be
hurt. Due to the fact that the essential attributes are
uncertain in manufacturing systems, how to select
important manufacturing attributes to enhance the
generalization ability of a knowledge base's general-
ization ability and avoid overfitting in DT learning is
a crucial research issue for an adaptive scheduling
problem domain.

2.2. Attribute selection approaches

Siedlecki and Sklansky (1988) gave an overview of
combinatorial feature selection methods, described
the limitations of the methods such as artificial
intelligence (AI) methods using graph searching
techniques or branch-and-bound search algorithms,
and indicated these methods are not feasible for
large-scale problems (they considered a 20-element
selection problem to be a large-scale domain). To
handle large-scale problems, they described the

potential benefits of Monte Carlo approaches, such
as simulated annealing and genetic algorithms (GAs).
In data mining of inputs for the neural networks
approach, several researchers (Garson 1991, Wong et
al. 1995) examined the use of the weight matrix of
the trained neural network itself to determine which
inputs are significant.

In the adaptive scheduling problem domain, Chen
and Yih (1996) proposed a neural network based
approach to identify the essential attributes for a
knowledge-based scheduling system. In their approach,
a penalty function was developed to measure how much
the performance of the network will degrade from the
upper bound when the information of an attribute is
omitted. The major conclusion of their experiment is
that the scheduling knowledge bases using the set of
selected attributes are superior in choosing desired
dispatching rules under unknown production condi-
tions, compared with the knowledge bases built by
other sets of attributes. A weakness of Chen and Yih's
(1996) approach is that the attribute reduction process
requires extensive computational effort and each
dispatching rule has equal weight in the significant
score function when chosen for the next control
period.

Chen and Yih (1999) proposed a FSSNCA (feature
subset selection based on nonlinear correlation analy-
sis) procedure not only to select essential attributes, but
also to generate important attributes to facilitate the
development of knowledge bases and enhance the
generalization ability of resulting knowledge bases.
However, their experimental results did not indicate
whether the FSSNCA procedure could avoid overfitting
the training data. Moreover, their approach did not
verify whether FSSNCA is robust under various perfor-
mance criteria.

3. The architecture of the ASDT-based adaptive
scheduling system

Figure 1 illustrates the ASDT-based adaptive sche-
duling system. The proposed system includes three
phases: building the simulation model to obtain
training examples, developing the attribute selection
algorithm to select important attributes, and generating
adaptive scheduling knowledge for the online schedul-
ing control mechanism.

In this section, we will first give an overview of the
basic concept of the ASDT-based adaptive scheduling.
Next, we will describe the specifications of the training
examples. Finally, we will discuss the attribute selection
algorithm as the core mechanism of ASDT-based
adaptive scheduling.
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3.1. Overview of the ASDT-based adaptive scheduling system

The first phase is to collect a set of training
examples in the ASDT-based adaptive scheduling
system. The input data of this stage include the
specifications of the manufacturing system, production
data, and training examples (to be described in section
3.2), and the training example collection mechanism to
build the simulation model for offline learning training
examples. In this phase, the training example collection
mechanism must provide a comprehensive initial
knowledge base, which represents a wide range of
possible system states. In order to reach this goal, we use
a multi-pass simulation (Wu and Wysk 1989) approach
as a tool of the training example collection mechanism.

The second phase is an important attribute genera-
tion phase. In this phase, the set of training examples is
put into the BP neural network for offline learning. The
task of the training phase is to determine the weights of
neural networks so that the input/output (system
attributes/dispatching rules) mapping functions can
be captured by neural networks. When the values of
network weights are generated, we then calculate the
weights of neural networks (to be described in section
3.3) to identify important system attributes. This stage
concludes with the set of training examples with
important attributes.

In the third phase, the DT learning algorithm (e.g.
C4.5) learns the whole set of training examples with
important attributes obtained from the second stage in
order to generate scheduling knowledge bases. When

DT learning is completed, the manufacturing system
will receive a scheduling control period signal from the
online adaptive scheduling control mechanism and
then input the current system status into a DT rule-base
for online scheduling control. Under this architecture,
the ASDT-based adaptive scheduling system can easily
identify important attributes to build sound adaptive
scheduling knowledge bases and enhance the general-
ization ability of inductive bias. Furthermore, the ASDT-
based adaptive scheduling system can significantly
improve the performance of the manufacturing system
compared with the classical DT-based learning adaptive
scheduling in the absence of an attribute selection
procedure under various criteria in the long run.

3.2. Presentation of training examples

A set of training examples is provided as system
information to learn the concept representing each
class. A given training example consists of a vector of
attribute values and the corresponding class. A concept
learned can be described by a rule determined by the
machine learning approach, such as DT learning. If a
new set of input attributes satisfies the conditions of this
rule, then it belongs to the corresponding class. Baker
(1984) indicated that the relative effectiveness of a
scheduling rule depends on the state of the system,
given performance criteria. Hence, in order to build
the scheduling knowledge bases, training examples
must have enough information to reveal this property.

In adaptive scheduling knowledge bases, a set of
training examples can be represented by triplet {P, S,
D}. P denotes the user-defined management perfor-
mance criteria; S is the set of system status; D represents
the best dispatching rule under such performance
criteria and system status.

Three kinds of performance criteria are usually
studied in adaptive scheduling research: throughput
based, flow-time based, and due-date based. In order to
compare the efficiency of the adaptive scheduling
system with that of other dispatching rules with respect
to different performance criteria, four performance
criteria are used in this study as illustrated in table 2 (to
be described later in section 4).

In the manufacturing environment, jobs arrive
randomly and system attributes change over time.
Because of the exponentially growing complexity of
the underlying optimization problem, scheduling deci-
sions in such systems are usually specified in terms of
dispatching rules. Whenever a machine becomes idle,
which job should be processed next on the machine
must be determined. This selection is done by assigning
a priority index to various jobs competing for the given

Y.-R. Shiue and C.-T. Su52

Figure 1. The architecture of the ASDT-based adaptive
scheduling system.
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machine. The job with the highest priority will be
selected. Dispatching rules differ in how they assign
these priority indices. The need for adaptive dispatch-
ing rules arises from the fact that no single dispatching
rule has been proven to be optimal for a manufacturing
environment (Blackstone et al. 1982, Baker 1984,
Montazeri and Van Wassenhove 1990, Sabuncuoglu
1998). That is, no dispatching rule has shown to
consistently cost less in total than all other rules under
a variety of shop configurations and operating condi-
tions. Therefore, it is not necessary to spend excessive
efforts in studying the best dispatching heuristics in
different environments. We select nine dispatching
rules that have been found to be effective for the
objective in terms of the four performance criteria in
this study. Table 3 (to be described later in section 4)
lists these nine dispatching rules selected in this study.

This study aims to identify important system
attributes under different performance criteria. There-
fore, we have exhaustively examined all possible system
attributes. The 30 candidate attributes examined in this
study are listed in table 4 (to be described in section 4).
The selection criteria for system attributes are based on
previous research (Cho and Wysk 1993, Chen and Yih
1996, Arzi and Iaroslavitz 2000), which used machine
learning methodology to develop scheduling knowl-
edge bases, and the case study in this research.

3.3. Attribute selection algorithm

The Back Propagation (BP) neural network model
excels in function approximation (Rumelhart et al.
1986); hence, it is used in this study to capture the
mapping function of adaptive scheduling knowledge
bases. The architecture of BP neural network is shown
in figure 2. The model can establish the relationships
between the system state attributes and the dispatching
rules under various performance criteria.

When the BP neural network training process is
completed, the values of network weights are gener-
ated. The interconnections of all the neurons provide
essential information on the BP network architecture.
The weight wij represents the strength of the synapse
(called the connection or link) connecting neuron i
(source) to neuron j (destination). Positive weights
have an excitatory influence whereas negative values
of weight have an inhibitory influence. A zero value
in weights means no connection between the two
neurons. In the BP network, the output of the
network depends on both the weights from input to
hidden and the weights from hidden to output.
Therefore, combining these two sets of weights into a
measure of the importance of input neurons is
reasonable.

Based on the above viewpoint, we use the following
measure, proposed by several researchers (Garson
1991, Wong et al. 1995), on the proportional contribu-
tion of an input to a particular output:

Qik �
X

j

� jwij jP
i jwij j �

jwjk jP
j jwjk j

�
; �1�

where i is the input layer neuron index; j is the hidden
layer neuron index; k is the output layer neuron index;
wij is the weight from the input layer of neuron i to the
hidden layer of neuron j; wjk is the weight from the
hidden layer of neuron j to the output layer of neuron k.

The measure of the input neuron introduced here
is an extension of equation (1). We can define the
attribute selection score of input neuron i by:

ASi �
P

k Qik

k
�2�

where k is the output layer neuron index and also
represents the number of dispatching rules used in this
study.

In equation (2), a higher score means that the
attribute is more important to this specific input
neuron. A major problem is how many attributes
should be brought in to the BP network model for
training. The relevant research offers no definite
answer. In this study, we set a threshold value that is
equal to the reciprocal of the value of studied attributes.
If the attribute selection score is below this threshold
value, the corresponding input neuron can be deleted
from the BP model.

Based on the assumptions discussed above, the
attribute selection algorithm selects important attri-
butes by the procedures summarized below.

Step 1. According to the specifications of training
examples from phase 1, build the BP neural

Decision-tree based learning adaptive scheduling 53

Figure 2. The BP neural network model.
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network configuration for each performance
criterion.

Step 2. Conduct BP neural network training to capture
the mapping function of adaptive scheduling
knowledge bases.

Step 3. For each BP neural network under various
performance criteria, calculate the attribute
selection score based on equations (1) and (2).

Step 4. If ASi51/N then select attribute i into the
subset of important attributes, where N is the
number of studied attributes.

4. Study case description

The study case is a modification of the model used
by Montazeri and Van Wassenhove (1990). The FMS
case in the study consists of three machine families (F1,
F2 and F3), three load/unload stations, three AGVs, an
input buffer and a central WIP buffer with limited
capacity, and a computer-controlled local area network.
The first two machine families have two machines and
the third family has one machine. There are 11
different types of parts to be produced in this model
and their processing times are identical to those used by
Montazeri and Van Wassenhove (1990). In order to
achieve different conditions in terms of machine load
and shifting bottleneck, we design five types of product
mix ratios as shown in table 1, which will be
continuously changed over constant time periods.

Several related operating assumptions are listed
below.

(1) It is assumed that the raw materials for each type
of part are readily available.

(2) Each job order arrives at random at the FMS and
consists of only one part with an individual due
date.

(3) A part with a pallet travels to each machine or
load/unload station in order to achieve opera-
tion flexibility, and the part ± type match for one
specific pallet problem is not considered.

(4) Each machine can execute only one job order at
a time.

(5) Each machine is subject to random seed failures.
(6) Processing times are assumed to be pre-deter-

mined.
(7) An idle machine in a family has a higher priority

than other machines to process a part. If there is
no idle machine in the family, then the part goes
to the machine of the lowest utilization.

(8) When the part finishes each step of the process,
it must return to one of the available load/
unload stations for reorientation. Otherwise, it
will go to the central WIP buffer to wait for the
next operation (part reorientation in load/
unload stations).

(9) An AGV can carry only one piece of a part at a
time and move in the counter-clockwise direc-
tion only.

(10) All material movements not using the AGV
system are assumed to be negligible.

Based on our case study, the following notation will
be useful for defining training examples. The perfor-
mance criteria, system attributes, and dispatching rules
from this study are summarized in tables 2, 3 and 4,
respectively.

Notation Definition
t Time when a decision is to be made.
i Job index.
j Operation index.
k Machine index (K=number of machines).
a AGV index (A=number of AGVs).
l Load/unload station index

(L=number of load/unload stations).
p Pallet buffer index (P=number of pallet

buffers).

Y.-R. Shiue and C.-T. Su54

Table 1. Part mix ratio used in this study.

Part ID Part mix ratio (%)
Type 1 Type 2 Type 3 Type 4 Type 5

1 11.00 14.00 6.00 9.00 14.00
2 11.00 14.00 6.00 9.00 14.00
3 11.00 15.00 6.00 9.00 14.00
4 12.00 10.00 15.00 8.00 15.00
5 6.00 12.00 15.00 13.00 7.00
6 8.00 8.00 9.00 12.00 5.00
7 8.00 5.00 8.00 3.00 5.00
8 7.00 3.00 8.00 9.00 4.00
9 7.00 3.00 7.00 8.00 4.00

10 2.50 1.00 4.00 1.00 6.00
11 16.50 15.00 16.00 19.00 12.00

Table 2. Performance criteria used in this study.

Performance Mathematical
criteria Description definition

TP Throughput jSF j

MF Mean Flow Time

P
i2SF Fi
jSF j

MT Mean Tardiness �T �
P

i2SF Ti
jSF j

NT Number of the tardy parts
P

Ti>0 1
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Table 3. FMS system attributes used in this study.

System
attribute

Description Mathematical definition

NJ Number of the jobs in the system jSJj

MeUM The mean utilization of machines

P
k
Wk

K

SdUM The standard deviation of machine utilization
�����������������������������P

k
�WkÿMeUM�2

Kÿ1

q
MeUL The mean utilization of load/unload stations

P
l
Wl

L

MeUB The mean utilization of pallet buffers

P
p
Wp

P

MeUA The mean utilization of AGVs

P
a
Ba

A

MiOT The minimum imminent operation time of candidate jobs within the
system

mini2SJfPijg

MaOT The maximum imminent operation time of candidate jobs within the
system

maxi2SJfPijg

MeOT The mean imminent operation time of candidate jobs within the
system

P
i2SJ Pij
jSJ j

SdOT The standard deviation of the imminent operation time of candidate
jobs within the system

����������������������������������P
i2SJ

�PijÿMeOT�2
jSJ jÿ1

q
MiPT The minimum total processing time of candidate jobs within the

system
mini2SJ

�P
j Pij

	
MaPT The maximum total processing time of candidate jobs within the

system
maxi2SJ

�P
j Pij

	
MePT The mean total processing time of candidate jobs within the system

P
i2SJ
P

j
Pij

jSJ j

SdPT The standard deviation of the total processing time of candidate jobs
within the system

�������������������������������������������P
i2SJ

��
P

j
Pij�ÿMePT�2
jSJ jÿ1

r
MiRT The minimum remaining processing time of candidate jobs within the

system
mini2SJ

�P
j2SRi

Pij

	
MaRT The maximum remaining processing time of candidate jobs within the

system
maxi2SJ

�P
j2SRi

Pij

	
MeRT The mean remaining processing time of candidate jobs within the

system

P
i2SJ
P

j2SRi
Pij

jSJ j

SdRT The standard deviation of the remaining processing time of candidate
jobs within the system

�������������������������������������������������P
i2SJ

��
P

j2SRi
Pij�ÿMeRT�2
jSJ jÿ1

r
MiST The minimum slack time of candidate jobs within the system mini2SJfSLig

MeST The mean slack time of candidate jobs within the system

P
i2SJfSLig
jSJ j

SdST The standard deviation of the slack time of candidate jobs within the
system

�������������������������������������P
i2SJ

��SLi�ÿMeST�2
jSJ jÿ1

q
MaTA The maximum tardiness of candidate jobs within the system maxi2SJfTig

MeTA The mean tardiness of candidate jobs within the system

P
i2SJfTig
jSJ j

Continued
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Wk Percentage of work time on machine k
in the simulation period.

Wa Percentage of work time on AGV a in
the simulation period.

Wl Percentage of work time on load/unload
station l in the simulation period.

Wp Percentage of work time on pallet buffer
p in the simulation period.

Pij Processing time of the jth operation of
job i.

Pk
ij Processing time of the jth operation of

job i in machine k.
P l
ij Processing time of the jth operation of

job i in load/unload station l.
ARi Time when job i arrives at the system.
Di Due date of job i.
Ci Time when job i is completed and leaves

the system.
SJ Set of jobs within the system.
SF Set of finished jobs.
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Table 3. (Continued).

System
attribute

Description Mathematical definition

SdTA The standard deviation of the tardiness of candidate jobs within the
system

�����������������������������������P
i2SJ

��Ti�ÿMeTA�2
jSJ jÿ1

q
MaWL The maximum workload in front of any machine/station within the

system
maxk[l

�P
i2SJ

P
j2SRi

Pk
ij [

P
i2SJ

P
j2SRi

Pl
ij

	
ToWL The total workload in front of any machine/station within the system

P
i2SJ

P
j2SRi

Pij

MeSO The mean sojourn time of candidate jobs within the system
P

i2SJ
tÿARi

jSJ j

SdSO The standard deviation of the sojourn time of candidate jobs within
the system

�����������������������������������������P
i2SJ

��tÿARi�ÿMeSO�2
jSJÿ1j

q
MeTD The mean time now until due date of candidate jobs within the system

P
i2SJ

Diÿt
jSJ j

SdTD The standard deviation of the time now until due date of candidate
jobs within the system

����������������������������������������P
i2SJ

��Diÿt�ÿMeTD�2
jSJÿ1j

q

Table 4. Dispatching rules used in this study.

Dispatching rule Description Mathematical definition

FIFO Select the job according to the first-in first-out rule mini2SJfARig

SPT Select the job with the shortest processing time mini2SJ

�P
j Pij

	
SIO Select the job with the shortest imminent operation time mini2SJfPijg

SRPT Select the job with the shortest remaining processing time mini2SJ

�P
j2SRi

Pij
	

CR Select the job with the minimum ratio between time now until
due-date and its remaining processing time

mini2SJ

�
DiÿtP
j2SRi

Pij

�

DS Select the job with minimum slack time mini2SJ

�
Di ÿ t ÿPj2SRi

Pij

	
EDD Select the job with the earliest due-date mini2SJfDig

MDD Select the job with the minimum modified due-date mini2SJ

�
max�Di; t �Pj2SRi

Pij�
	

MOD Select the job with the minimum modified operation due-date mini2SJ

�
max�Di ÿ

P
j2SRi

Pij ; t �
P

j2SRi
Pij�
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SRi Set of remaining operations of job i.
|SJ | The cardinality of SJ.
|SF | The cardinality of SF.
Fi Flowtime of the job i (Fi=Ci-ARi).
Ti Tardy time of the job i (Ti=max(0,Ci-Di)).
SLi Slack time of the job i

�SLi � Di ÿ t ÿPj2SRi
Pij�:

5. Experiment

5.1. Simulation model construction and training example
generation

To verify the proposed methodology, a discrete
event simulation model is used to generate training
examples. The simulation model was built and exe-
cuted using SIMPLE++ (2000) object-oriented simula-
tion language and was run on a Pentium III PC with
Windows 2000 system.

Several parameters are determined by a preliminary
simulation run. The time between job arrivals is
exponentially distributed with a mean of 31 minutes.
The due date of each job is randomly assigned from 6
to 10 times the total processing time and is uniformly
distributed. The maximum number of pallets (jobs)
that are allowed to be within the FMS system is limited
to 100 pallets. The proportions of part types vary
continuously every 20 000 minutes in this study.

The training examples are generated by executing a
simulation run for every dispatching rule given the
same initial state of the system attribute and arriving job
stream, according to the declaration by Arzi and
Iaroslavitz (2000). In addition, in order to provide
comprehensive training examples, which will represent
the wide breadth of possible system states, the
technique of multi-pass simulation is utilized to collect
the training examples, including the state variable of
the system attribute recorded at the decision point and
the performance measure of each dispatching rule
recorded at the end of the scheduling point.

To generate a large number of various training
examples, we used 40 different random seeds and
chose, from the simulation clock, 1000 to 5000
minutes (1000 minutes for one unit) to generate

200 different job arriving patterns. The warm-up
period for each run is 10 000 minutes followed by
10 multi-pass scheduling periods, each of which is
10 000 minutes (after the warm-up period) depending
on a trial-and-error process for each performance
criterion. There are 2000 training examples collected
in total, which are then divided into the training set
and test set arbitrarily. Each set contains 1000
training examples.

5.2. Mapping function formation for BP network learning
and important attribute selection

In this phase, neural networks are used to capture
the mapping function between the attributes of the
system state and the dispatching rules under various
performance criteria. The BP neural network model
used in this study is implemented by NeuralWorks
Professional II Plus (2000) software. Some important
experimental parameters in the BP network model
used in this study are described in the following:

The initial network connection weights: [70.5, +0.5]
Learning rate: 0.3, 0.4, and 0.5
Momentum: 0.4 and 0.9
Initial bias: 0.5
Learning rule: generalized delta-rule
Transfer function: sigmoid
Scaled input neuron network range: [73, +3]
Scaled output neuron network range: [0, +1]
Hidden layer neuron range: [3, 25]
Maximum iterations: 100 000

Based on the above, the training process is
implemented 138 times in total for each performance
criterion. Next, the training examples are put into BP
network models for offline learning. Table 5 shows the
topology and learning parameters of BP network
models after a training process is chosen to provide
the mapping function of adaptive scheduling knowl-
edge bases.

The values of network weights are generated after
the training process. We use the proposed attribute
selection algorithm to identify important system attri-
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Table 5. The design parameters of selected BP network models in the attribute selection process.

Performance criteria Topology Learning rate Momentum RMS error of testing data

TP 30-21-9 0.4 0.9 0.0756
MF 30-8-9 0.5 0.4 0.0577
MT 30-25-9 0.4 0.9 0.0380
NT 30-15-9 0.4 0.9 0.0567
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butes. The scores of system attributes for each perfor-
mance criterion are presented in table 6 and the results
of the selected attributes are shown in table 7.

5.3. DT knowledge base development and generalization
ability verification

In order to verify whether the selected attributes for
a case study can provide greater generalization ability in
building scheduling knowledge bases, we design two
groups of attribute subsets for the training examples,

one of which includes all 30 attributes whereas the
other one includes only the important attributes
selected from the attribute selection algorithm. In this
study, we use C4.5 program code (Quinlan 1993) as the
DT learning tool to build scheduling knowledge bases.
To achieve greater generalization ability by means of
the post-pruning technique in knowledge bases for
each DT learning procedure concerned in this study,
C4.5 can be tuned by two parameters: confidence level
of pruning (C parameter) and the minimal number of
examples represented at any branch of any feature-
value test (M parameter). We use default settings for
the two parameters under this study and the two
parameters are described in the following:

(1) The C parameter denotes the confidence level
of pruning, which ranges between 0% and
100%. This parameter is used in a heuristic
function that estimates the predicted number of
misclassifications of unseen instances at the leaf
nodes, by computing the binomial probability
(i.e. the confidence limits for the binomial
distribution) of misclassifications within the set
of instances represented at those nodes. If the
presence of a leaf node leads to a higher
predicted number of errors than its absence,
then it is pruned from the tree. By default,
C=25%; set at 100%, no pruning occurs. The
more pruning is performed, the less information
about the individual example is remembered in
the abstracted decision tree.

(2) The M parameter determines the minimum
number of instances represented by a node. By
setting M41, C4.5 can avoid the creation of long
paths involving the minority of obscure indivi-
dual instances that most likely represent noise.
By default, M=2. With M=1, C4.5 builds a path
for every single instance not yet disambiguated.
A higher value of M leads to an increasing level
of abstraction and therefore less recoverable
information about individual instances.

To verify the generalization ability in the ASDT-
based adaptive scheduling system, we divide the 2000
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Table 7. The results of selected attributes for each performance criterion.

Performance criteria Important attribute subset No. of attributes
selected

TP {NJ, MeUM, SdUM, MeOT, SdOT, MaPT, SdPT, MeRT, SdRT, MiST, MaTA, ToWL} 12
MF { NJ, MeOT, SdOT, MePT, SdPT, MeRT, SdRT, MaWL, ToWL} 9
MT { NJ, SdUM, SdOT, MaPT, MePT, SdPT, MeRT, ToWL} 8
NT { NJ, MeUM, SdOT, MePT, MiRT, MeRT, SdRT, ToWL} 8

Table 6. The attribute selection score for each performance
criterion

Attribute selection score
System attri-
bute

TP MF MT NT

NJ 0.0408 0.0651 0.0897 0.0939
MeUM 0.0361 0.0198 0.0260 0.0361
SdUM 0.0494 0.0309 0.0365 0.0185
MeUL 0.0282 0.0135 0.0174 0.0256
MeUB 0.0241 0.0204 0.0258 0.0231
MeUA 0.0142 0.0198 0.0179 0.0197
MiOT 0.0257 0.0323 0.0315 0.0211
MaOT 0.0262 0.0176 0.0201 0.0308
MeOT 0.0335 0.0342 0.0178 0.0171
SdOT 0.0364 0.0388 0.0460 0.0471
MiPT 0.0294 0.0198 0.0331 0.0275
MaPT 0.0369 0.0316 0.0336 0.0269
MePT 0.0264 0.0773 0.0381 0.0686
SdPT 0.0478 0.0544 0.0580 0.0271
MiRT 0.0308 0.0241 0.0315 0.0339
MaRT 0.0269 0.0253 0.0232 0.0230
MeRT 0.0821 0.0450 0.0665 0.0634
SdRT 0.0688 0.0691 0.0266 0.0721
MiST 0.0344 0.0191 0.0321 0.0247
MeST 0.0195 0.0293 0.0222 0.0261
SdST 0.0226 0.0218 0.0286 0.0237
MaTA 0.0362 0.0256 0.0294 0.0287
MeTA 0.0230 0.0322 0.0256 0.0178
SdTA 0.0217 0.0214 0.0272 0.0210
MaWL 0.0189 0.0445 0.0233 0.0109
ToWL 0.0897 0.0582 0.0613 0.0783
MeSO 0.0169 0.0317 0.0254 0.0227
SdSO 0.0223 0.0194 0.0311 0.0257
MeTD 0.0155 0.0305 0.0248 0.0230
SdTD 0.0177 0.0263 0.0298 0.0216
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training examples into a learning set and an unseen
(test) set arbitrarily. Each set contains 1000 training
examples. The learning set is used to build scheduling
knowledge bases. The unseen set is only used to
estimate the generalization ability after the attribute
has been selected and the scheduling knowledge base
has been constructed. Table 8 displays the size of DTs
for learning (or unseen) data with or without using the
attribute selection algorithm under various perfor-
mance criteria. The results show that even if the post-
pruning procedure is applied to each DT learning
procedure, an even smaller DT can be created by using
the attribute selection algorithm to select important
attributes.

Table 9 shows the accuracy of the DT tree for
learning and unseen data with or without using the
attribute selection algorithm under various perfor-
mance criteria. Although the attribute selection
algorithm deteriorates the predictive ability of the
learning data, as table 9 indicates, the generalization
ability of knowledge bases using the proposed
attribute selection algorithm can provide higher
accuracy in unseen data based on all criteria. A
further implication is that the proposed ASDT-based
approach to constructing DTs can avoid overfitting
training data compared with the classical DT learning
approach to constructing DTs. Moreover, implemen-
tation results (as shown in tables 8 and 9) show that
the ASDT-based approach can generate better in-
ductive bias in DT learning by producing DTs of
smaller size compared with the classical DT learning
approach. Hence, the ASDT-based approach can
provide greater prediction accuracy in unseen data
under various performance criteria.

In order to demonstrate the robustness of the
constructed knowledge bases in adaptive scheduling in
dynamic manufacturing environment for a long run, we
used another 25 different random seeds to generate 25

different job arriving patterns. The warm-up period for
each run was 10 000 minutes followed by 20 multi-pass
simulation scheduling periods, each of which was
10 000 minutes; hence, a stream of arriving jobs each
of a 200 000 minute simulation run was generated by
using a different set of random seeds. Table 10 shows
the accuracy of DTs for unseen data in different system
scenarios using the ASDT-based approach or the
classical DT-based approach to construct knowledge
bases (the same knowledge bases as in tables 8 and 9)
under various performance criteria. As table 10
indicates, the generalization ability of knowledge bases
using the proposed attribute selection algorithm can
achieve superior accuracy in unseen data compared
with that realized by the generation ability of knowledge
bases without using the attribute selection algorithm
under all criteria.

6. Conclusions

Some classical DT learning approaches, such as ID3
and C4.5, have provided several measures for attribute
selection in the tree creation phase and for rule post-
pruning to enhance the generalization ability in
inductive bias. However, these DT learning approaches
to construct DT knowledge bases are usually not
considered when there exist some irrelevant and
redundant attributes in the problem domain. In this
study, we have developed the ASDT-based learning
approach for online dispatching in dynamic manufac-
turing systems. The proposed attribute selection algo-
rithm can easily measure the important system
attributes that can be utilized to enhance knowledge
representation. Moreover, less effort is required to
build scheduling knowledge bases by using reduced
system attributes. The experiment's results show that
the use of the attribute selection algorithm to build
scheduling knowledge bases delivers better general-
ization ability than in the absence of an attribute
selection procedure in terms of the size of DTs under
various performance criteria. Consistent results have
been obtained from the prediction accuracy of unseen
data in various scenarios, which also reveals that
scheduling knowledge bases through the proposed
ASDT-based learning approach can avoid overfitting
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Table 8. Size of DTs under various performance criteria.

TP MF MT NT

ASDT-based approach 122 132 155 75
Classical DT-based approach 154 161 203 179

Table 9. Accuracy of DTs under various performance criteria.

Learning data Unseen data
TP MF MT NT TP MF MT NT

ASDT-based approach 0.874 0.856 0.838 0.750 0.6840 0.612 0.618 0.650
Classical DT-based approach 0.914 0.918 0.914 0.925 0.612 0.534 0.488 0.606
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compared with the classical DT learning approach to
constructing DTs.

The practicability of the attribute selection algo-
rithm can be further studied. Moreover, how to
improve the generalization ability of scheduling knowl-
edge bases corresponding to the continuously changing
environment of the product mix is another important
issue for further research.
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Table 10. Accuracy of DTs in unseen data (different system
scenarios).

TP MF MT NT

ASDT-based approach 0.6640 0.6040 0.5580 0.6560
Classical DT-based approach 0.5760 0.5440 0.4220 0.5860
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