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Abstract. Fu, Hwang, Jimbo, Mutoh, and Shiue [J. Statist. Plann. Inference, to appear]
introduced the concept of a grid-block design, which is defined as follows: For a v-set V , let A be a
collection of r×c arrays with elements in V . A pair (V,A) is called an r×c grid-block design if every
two distinct points i and j in V occur exactly once in the same row or in the same column. This
design has originated from the use of DNA library screening. They gave some general constructions
and proved the existence of 3 × 3 grid-block designs. Meanwhile, the existence of 2 × 3 grid-block
designs was shown by Carter [Designs on Cubic Multigraphs, Ph.D. thesis, McMaster University,
Hamilton, ON, Canada, 1989] by decomposing Kv into cubic graphs. In this paper, we show the
existence of 2× 4 grid-block designs.
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1. Introduction. A graph G is a pair of sets (V,E), where V is a finite set, and
E is a set of unordered pairs of elements of V . The elements of V are called vertices
of G and the elements of E are called edges of G. If x and y are vertices of a graph
G, we say that x is adjacent to y if there is an edge between x and y. Kv is the
graph with v vertices such that every vertex is adjacent to every other vertex. For a
v-set V , let A be a collection of r × c arrays with elements in V . Each array in A is
called a grid-block. For a graph G = (V,E), a pair (V,A) is called an r × c grid-block
design with respect to G denoted by Dr×c(G) if every two distinct points i and j in
V such that {i, j} ∈ E occur exactly once in the same row or in the same column.
We used the terminology “grid-block design” to avoid the confusion with the “grid
design” defined by Lamken and Wilson [9]. Here we show an example of a D3×3(K9).
Example 1. The following two grid-blocks form a D3×3(K9).

1 2 3
4 5 6
7 8 9

1 6 8
9 2 4
5 7 3

A grid-block design was introduced by Fu et al. [7]. It is easy to show the following
necessary conditions for the existence of a Dr×c(Kv).
Lemma 1.1. Necessary conditions for the existence of a Dr×c(Kv) are
(i) (r + c− 2)|(v − 1) and
(ii) rc(r + c− 2)|v(v − 1).
Combinatorial designs were used as an efficient way of group testing in fields such

as medical science and pharmaceutical science (see Du and Hwang [6]). Recently, a
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combinatorial design has come to be applied to DNA library screening to discover the
required DNA sequences by testing every row and every column in a microtiter plate
at the same time.

In DNA library screening, a popular group testing method is a two-stage test. In
this method, every row and every column in a microtiter plate is tested at the same
time in the first stage, and each individual segment with positive response is tested
in the second stage. See Figure 1.1 for demonstration. To reduce the number of tests
and to improve the efficiency of experiments, several methods of screening have been
studied by many authors.

Berger, Mandell, and Subrahmanya [1] evaluated the efficiency for the two-stage
test from the point of view of information theory, while Fu et al. [7] introduced a
combinatorial method based on a grid-block design.

1st stage : group test

r times

tests in r+c times

c times

c

r

2nd stage : individual test

C

R

: positive response

Fig. 1.1. The demonstration of DNA library screening.

In this paper, we start with a recursive construction for a grid-block design. Then,
by utilizing this recursive construction together with those given by Fu et al. [7], we
will prove the existence of 2×4 grid-block designs which satisfy the necessary condition
v ≡ 1 (mod 32).

2. General constructions. In this section, we prepare a proposition and lem-
mas to use in the next section. First, we define a block design. For sets of positive
integers K and M , let V be a set of v points, let G be a partition of V such that each
G has m points for m ∈ M , and let B be a collection of k-subsets (blocks) of V for
k ∈ K. A triple (V,G,B) is called a group divisible design, denoted by GD[K,λ,M ; v],
if every two distinct points contained in different groups occur in exactly λ blocks and
if every two distinct points contained in the same group do not occur together in any
blocks. Especially, a GD[{k}, λ, {m}; v] is written by GD[k, λ,m; v] for simplicity of
notation.

Suppose that the set of st vertices are partitioned into s subsets of size t each.
Let Ks(t) be the complete multipartite graph such that (i, j) is an edge if i and j are
not in the same subset. A grid-block design Dr×c(Ks(t)) is called a group divisible
grid-block design. It is easy to see that the following lemma holds.
Lemma 2.1. Necessary conditions for a Dr×c(Ks(t)) to exist are
(i) (r + c− 2)|(s− 1)t and
(ii) rc(r + c− 2)|(s− 1)st2.
Fu et al. [7] proved the following construction.
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THE EXISTENCE OF 2× 4 GRID-BLOCK DESIGNS 175

Table 3.1
Table of the existence of group divisible designs.

v K Group type u Exceptions Ref.
0, 1 (mod 4) {4, 5} 1u 0, 1 (mod 4) 12 [2]

12 4 34 − − [4]
12 (mod 12) 4 2u 1 (mod 3) − [4]
3 (mod 12) 4 3u 1 (mod 4) − [4]
6 (mod 12) 4 6u Anything 18 [4]
7 (mod 12) 4 711u 0 (mod 12) 19 [3]
10 (mod 12) 4 711u 3 (mod 12) − [3]
11 (mod 12) 4 512u 0 (mod 3) − [3]

Proposition 2.2 (Fu et al. [7]). A Dr×c(Kst+1) exists if a Dr×c(Kt+1) and a
Dr×c(Ks(t)) exist.

We give a recursive construction by utilizing a group divisible design, group di-
visible grid-block designs, and grid-block designs.

Lemma 2.3. A Dr×c(Kvt+1) exists if a GD[K, 1,M ; v] exists and if a Dr×c(Kk(t))
and a Dr×c(Kmt+1) exist for any k ∈ K and for any m ∈ M .

Proof. For a v-set V , let a triple (V,G,B) be a GD[K, 1,M ; v], where B =
{B1, B2, . . . , Bb} is a collection of blocks and G = {G1, G2, . . . , Gn} is a family of
group sets. Let T = {0, 1, . . . , t−1} and V ∗ = (V ×T )∪{∞}. For each block Bi of size
k ∈ K, let (Bi×T,Hi, Ei) be the ingredient design Dr×c(Kk(t)), where Ei is a collection
of grid-blocks and Hi is a family of group sets {{bi1} × T, {bi2} × T, . . . , {bik} × T}
for bij ∈ Bi. We define a collection of grid-blocks A1 = E1 ∪ E2 ∪ · · · ∪ Eb. Also,
for each group Gi of size m ∈ M , let ((Gi × T ) ∪ {∞},Fi) be the ingredient design
Dr×c(Kmt+1), where Fi is a collection of grid-blocks. We define another collection of
grid-blocks A2 = F1 ∪F2 ∪ · · · ∪ Fn and let A = A1 ∪A2. Then a pair (V ∗,A) is the
desired Dr×c(Kvt+1).

In fact, if two distinct elements x and y in V are not contained in the same group
set Gj , then x and y occur together exactly once in a Bi. Hence (x, α1) and (y, α2)
occur exactly once in the same row or in the same column of a grid-block in A1 and
do not occur in A2 for any α1, α2 ∈ T . Otherwise, two elements x and y in V are
contained in the same group set Gj including the case of x = y. In this case, (x, α1)
and (y, α2) occur exactly once in the same row or in the same column of a grid-block
in A2 and do not occur in A1. Finally, ∞ and (x, α) for any x ∈ V and α ∈ T occur
exactly once in the same row and in the same column of a grid-block in A2.

3. The existence of a 2× 4 grid-block design. In this section we apply the
results obtained in the previous section to prove the following theorem.

Theorem 3.1. The necessary condition v ≡ 1 (mod 32) for the existence of a
D2×4(Kv) is also sufficient.

This existence theorem is shown by utilizing a recursive construction. First, we
give an existence of a group divisible design.

Lemma 3.2. For any integer v ≥ 12, there exists a GD[K, 1,M ; v], where K =
{4, 5} and M = {1, 2, . . . , 7}.

Proof. According to Brouwer [3], Brouwer, Schrijver, and Hanani [4], and Beth,
Jungnickel, and Lenz [2], we know the existence of a GD[K, 1;M ; v] for any v ≥ 12
except for v = 18 and 19 as is listed in Table 3.1 (see also Kreher and Stinson [8] and
Mullin and Gronau [10]). In Table 3.1, the notation tu1

1 tu2
2 of a group type implies

that V is divided into u1 groups with group size t1 and u2 groups with group size t2.
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Table 3.2
Table of the base grid-blocks of group divisible grid-block designs.

Base grid-blocks

D2×4(K4(32))
0 1 6 15
13 30 3 48

0 21 58 47
22 63 20 97

0 25 74 55
63 56 17 122

D2×4(K5(32))
0 1 7 3
11 27 48 39

0 31 17 63
22 73 129 30

0 66 47 133
13 149 105 51

0 111 52 23
84 15 141 102

Table 3.3
Table of the base grid-blocks of grid-block designs.

Base grid-blocks

D2×4(K33)
0 1 3 9
12 5 23 28

D2×4(K65)
0 1 3 7
5 13 22 38

0 10 21 45
47 32 60 9

D2×4(K97)
0 1 3 7
5 13 22 33

0 10 23 41
33 65 86 3

0 15 37 61
39 55 84 12

D2×4(K193)
0 36 65 60
89 155 152 153

0 46 180 153
186 23 71 169

0 55 108 73
114 77 133 81

0 14 97 165
102 52 40 134

0 105 54 44
75 34 178 55

0 76 67 148
39 189 73 174

D2×4(K225)
0 104 76 167
67 137 121 209

0 189 223 92
156 74 167 199

0 221 77 194
41 94 42 16

0 122 177 140
212 190 106 67

0 15 220 111
95 76 55 46

0 7 10 24
38 82 206 32

0 87 161 99
79 192 102 13

Moreover, it is known that GD[5, 1, 4; 20] exists, which is obtained by delet-
ing one parallel class of lines and five points on a line in the parallel class from
AG(2, 5). By deleting a single point of a GD[5, 1, 4; 20], we can show the existence of
a GD[{4, 5}, 1, {3, 4}; 19]. Similarly, by deleting two points from the same group of a
GD[5, 1, 4; 20], we obtain a GD[{4, 5}, 1, {2, 4}; 18], which proves the case of v = 18
and 19. Thus, the lemma is proved.

Second, we give two group divisible grid-block designs which are obtained by
computer.
Lemma 3.3. There exists a D2×4(Kk(32)) for k = 4 and 5.
Proof. For V = Z128, let

A0 =
0 1 6 15
13 30 3 48

, B0 =
0 21 58 47
22 63 20 97

, and

C0 =
0 25 74 55
63 56 17 122

,

which are listed in Table 3.2. Here A0, B0, and C0 are called a base grid-block or a
starting grid-block. For each base grid-block, let Ai = A0 + i (mod 128), Bi = B0 + i
(mod 128), and Ci = C0 + i (mod 128). Now we define

A = {A0, A1, . . . , A127, B0, B1, . . . , B127, C0, C1, . . . , C127};
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Table 3.4
Table of the base grid-blocks of grid-block designs (continued).

Base grid-blocks

D2×4(K257)
0 51 168 216
148 147 81 37

0 22 230 37
30 211 187 193

0 58 61 234
200 118 101 154

0 107 73 14
50 79 202 176

0 169 42 98
63 61 96 216

0 132 246 124
20 41 72 162

0 171 210 65
202 190 197 206

0 75 178 247
72 255 210 185

D2×4(K289)
0 217 34 207
28 188 253 168

0 199 54 19
105 282 236 183

0 228 8 13
86 35 165 189

0 179 122 4
209 37 211 284

0 241 47 244
124 191 110 98

0 27 256 218
248 182 225 98

0 185 148 163
128 186 216 180

0 133 271 227
166 14 150 206

0 25 32 213
77 255 266 164

D2×4(K321)
0 235 247 257
310 101 228 133

0 3 101 281
76 105 212 309

0 35 186 37
244 138 264 16

0 160 1 265
158 66 291 221

0 26 317 9
269 178 228 315

0 7 157 25
23 205 143 74

0 146 61 16
283 288 174 115

0 315 211 33
206 78 146 254

0 279 200 255
34 105 272 308

0 240 165 294
313 59 255 175

D2×4(K353)
0 286 267 129
198 149 219 118

0 133 95 248
22 20 275 113

0 81 72 26
82 257 147 261

0 294 142 15
34 173 198 1

0 88 76 247
71 222 144 194

0 337 109 217
66 150 2 211

0 340 7 343
195 5 234 264

0 169 254 122
316 229 17 59

0 193 8 44
352 103 127 76

0 52 23 154
45 192 134 4

0 186 40 83
236 298 201 293

then (Z128,A) is the desired D2×4(K4(32)). In fact, by calculating the differences of
two elements in the same row or in the same column of A0, B0, and C0, any difference
except for multiples of 4 occurs exactly once.

Similarly, for V = Z160, by utilizing four base grid-blocks in Table 3.2, we obtain
a D2×4(K5(32)). In fact, by calculating the differences of two elements in the same
row or in the same column of A0, B0, C0, and D0 any difference except for multiples
of 5 occurs exactly once.

Third, we give some grid-block designs which are obtained by computer.

Lemma 3.4. There exists a D2×4(K32m+1) for any m = 1, 2, . . . , 11.

Proof. By utilizing the base grid-blocks in Tables 3.3 and 3.4, we obtain the
desired D2×4(K32m+1)’s for m = 1, 2, 3, 6, 7, . . . , 11. By applying Proposition 2.2 to a
D2×4(K4(32)) and a D2×4(K5(32)) in Lemma 3.3 and a D2×4(K33), D2×4(K32m+1)’s
are obtained for m = 4 and 5.

Now we will show the main theorem.

Proof of Theorem 3.1. By Lemma 1.1, it is easy to show that the necessary
condition for the existence of a D2×4(Kv) is v ≡ 1 (mod 32). Now we write v =
32w + 1; then there exists a D(K32w+1) for w ≤ 11 by Lemma 3.4. By Lemma 3.2,
a GD[K, 1,M ;w] exists for w ≥ 12, where K = {4, 5} and M = {1, 2, . . . , 7}. And a
D(Kk(32)) exists for k = 4 and 5 by Lemma 3.3. Thus by Lemma 2.3 a D(K32w+1)
exists for any w ≥ 12, which prove the main theorem.
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