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Abstract: The slow group-velocity pulse in fiber described
by nonlinear Schrödinger equation were demonstrated and
investigated extensively. We derive a more generalized non-
linear Schrödinger equation as the superposition of mono-
chromatic waves and numerically study the propagations of
2.5-fs fundamental and 5-fs second-order solitons. It is found
that, for a slow-group velocity fiber, the magnitude of time
shift is related with the group velocity and the more general-
ized NLSE is more suitable than the conventional general-
ized NLSE. When the pulse is slow down to 50% of normal
group velocity (c=n0), the effect of the higher nonlinear
terms is significant.
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1. Introduction

The versatile nonlinear phenomena described by the
nonlinear Schrödinger equation (NLSE) were widely in-
vestigated. The optical solitons maintain its shape un-
changed after propagating long distance under the bal-
ance of group velocity dispersion (GVD) and self-phase
modulation (SPM) [1, 2]. For higher order nonlinear
terms, the pulse edge arises because resulting from the
term associated with an intensity-dependent group velo-
city. It could be realized as self-steeping phenomena [3–
6], which processes a temporal pulse distortion and
asymmetry in pulse spectrum. It can develop optical
shock, understood as an extremely sharp in tailing edge.
Novel phenomenons of pulses slowing down are ex-

tensively investigated in various topics of physics, such
as resonant active medium, Bose-Einstein condensa-
tion medium and periodic structure medium etc.. They
would be roughly cataloged as the nonlinear processes
of interaction between the pulse and medium. There-
fore, we investigate the slow light based on the NLSE
and study the propagation characteristic of nonlinear
pulse in slow-group medium.

An accurate wave equation beyond the slowly vary-
ing envelope approximation for femtosecond soliton
propagation in an optical fiber [7] was suggested. The
derived equation contains higher nonlinear terms than
the generalized nonlinear Schrödinger equation ob-
tained previously. The optical shock terms are cor-
rected and associated with group velocity. For a slow-
group velocity fiber, the validity of the conventional
generalized NLSE becomes questionable.
In this paper, we investigate the propagation of ul-

trashort pulses along the slow-group velocity fiber. We
derive a more generalized nonlinear Schrödinger equa-
tion as the superposition of monochromatic waves [8]
and numerically study the propagations of 2.5-fs funda-
mental and 5-fs second-order solitons. For a slow-
group velocity fiber, the phenomenon of the propaga-
tion pulse is different for different group velocity and
the more generalized NLSE is more suitable than the
conventional generalized NLSE. When the pulse is
slow down to 50% of normal group velocity (c=n0), the
effect of the higher nonlinear terms is significant.

2. Derivation of propagation equation

We derive the propagation of the ultrashort light pro-
pagation with third-order nonlinearity based on scalar
electric filed Eðt; zÞ in one dimension:

@2Eðt; zÞ
@z2

� 1
c2

@2Dðt; zÞ
@t2

¼ 4p
c2

@2Pð3Þðt; zÞ
@t2

; ð1Þ

where c is the light velocity in vacuum. The linear elec-
tric induction Dðt; zÞ and the nonlinear third-order po-
larization Pð3Þðt; zÞ are

Dðt; zÞ ¼
Ð
eðt0; zÞ Eðt � t0; zÞ dt0 ; ð2Þ

Pð3Þðt; zÞ ¼ Eðt; zÞ
Ð
Rðt0ÞjEðt � t0; zÞj2 dt0 ; ð3Þ

where eðt; zÞ and RðtÞ are linear and nonlinear re-
sponse function of the medium, respectively, and RðtÞ
consists of the instantaneous electronic and delayed
Raman responses. The electronic field Eðt; zÞ can be
separated as a superposition of monochromatic waves,

Eðt; zÞ ¼
Ð
Eðw; zÞ exp ðibðwÞ z� iwtÞ dw : ð4Þ
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Substituting eqs. (2)–(4) into eq. (1), one can obtain

@2

@z2
þ i2bðwÞ @

@z

� �
Eðw; zÞ

¼ 4pw2

c2

ZZ
Eðw0; zÞ Eðw00; zÞ Eðw0 þ w00 � w; zÞ

� cð3Þðw� w0Þ exp ðiDbzÞ dw0 dw00 ; ð5Þ

here Db ¼ bðw0Þ � bðw00Þ � bðw0 þ w00 � wÞ, and
cð3ÞðwÞ ¼

Ð
RðtÞ exp ðiwtÞ dt is the third-order suscept-

ibility. cð3ÞðwÞ is a complex value. The real part of
which is responsible for parametric and self-phase
modulation effects, and the imaginary part of which is
responsible for the Raman effect. Considering the
propagation of ultrashort pulse, we retain the term
of @2Eðt; zÞ=@z2. By substituting ~EEðDw; zÞ
¼ Eðw; zÞ exp ði½bðwÞ � b0� zÞ into eq. (5), one can ob-
tain

@ ~EEðDw; zÞ
@z

� i½bðwÞ � b0� ~EEðDw; zÞ

¼ ipw2

2c2bðwÞ

ð
dw0

ð
dw00 ~EEðDw0; zÞ ~EEðDw00; zÞ

� ~EEðDw0 þ Dw00 � DwÞ cð3ÞðDw� Dw0Þ

þ 1
2bðwÞ

@2 ~EEðDw; zÞ
@z2

: ð6Þ

Expanding bðwÞ about w0 and correcting to the mth
order,

bðwÞ ¼ b0 þ b1 Dwþ b2 Dw
2=2þ b3 Dw

3=6þ . . .

þ bmDw
m=m! ; ð7Þ

Dw ¼ w� w0 ; bm ¼ @mbðwÞ
@wm

����
w¼w0

: ð8Þ

Expanding and simplifying eq. (6) about Dw,

@ ~EEðDw; zÞ
@z

� i½b1 Dwþ b2 Dw
2=2þ b3 Dw

3=6� ~EEðDw; zÞ

¼ ijw2
0

2c2b0
1þ 2

w0
� b1
b0

� �
Dw

�

� 1

w2
0

� 2b1
w0b0

þ b21
b20

� b2
2b0

 !
Dw2

!

�
ð
dw0

ð
dw00 ~EEðDw0; zÞ � ~EEðDw00; zÞ

� ~EEðDw0 þ Dw00 � DwÞ cð3ÞðDw� Dw0Þ

þ 1
2bðwÞ

@2 ~EEðDw; zÞ
@z2

: ð9Þ

We use the iteration method to derive the wave equa-
tion beyond the slowly varying envelope approxima-
tion (SEVA) [9]. The iteration method only modified
the nonlinear terms, which higher than the last terms

in eq. (9). It is verified that this terms could be negligi-
ble for 2.5-fs fundamental soliton by using finite differ-
ence time domain method [7]. Normalizing eq. (9), we
obtain

@

@z
wðt; zÞ � i

2
@2

@t2
wðt; zÞ � b3

6jb2jT0

@3

@t3
wðt; zÞ

¼ iwðt; zÞ
ð
jwðt � t0Þj2 rðt0Þ dt0

� a1
@

@t
wðt; zÞ

ð
jwðt � t0Þj2 rðt0Þ dt0

� �

� ia2
@2

@t2
½wðt; zÞ

ð
jwðt � t0Þj2 rðt0Þ dt0� ; ð10Þ

where

z ¼ z

LD
; t ¼ t � b1z

T0
; LD ¼ T2

0

jb2j
; T0 is pulse duration:

u ¼ ~EEðDw; zÞ ; rðtÞ ¼ RðtÞÐ
Rðt0Þ dt0 ;

a1 ¼
2
w0

� b1
b0

� �
1
T0

; a2 ¼
1

w2
0

� 2b1
w0b0

þ b21
b20

� b2
2b0

 !
1

T2
0

;

wðt; zÞ ¼
~EEðt; zÞ
E0

, E0 ¼
2cjb2j
w0n2T2

0

, n2 is the nonlinear re-

fractive index.
The relation of a1 and a2 to b1 is shown in fig. 1.
We obtain the more generalized nonlinear Schrödin-

ger equation with more nonlinear terms. The coeffi-
cient a1 and a2 is corrected and different with the
NLSE, we conventional used. The factor of the stee-
pening effect a1 also describes the Stokes losses asso-
ciated with the material excitation during the Raman
self-scattering process. In the conventional condition,
carry frequency of the propagation waves far away re-
sonant frequency of the dipole. It makes the constraint
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Fig. 1. The relation of a1 and a2 to b1 is shown.



b1
b0

� 1
w0

and obtains the a1 approaching to
1

w0T0
, just

the same as the conventional nonlinear Schrödinger
equation.

@

@z
wðt; zÞ � i

2
@2

@t2
wðt; zÞ � b3

6jb2jT0

@3

@t3
wðt; zÞ

� ib4
24jb2jT2

0

@4

@t4
wðt; zÞ

¼ iwðt; zÞ jwðt; zÞj2 � 1
w0T0

@

@t
ðwðt; zÞ jwðt � t0Þj2Þ :

ð11Þ

3. Numerical result and discussion

The fiber parameters used to numerically solve eqs.
(10) and (11) are: soliton wavelength l ¼ 1.55 mm,
b2 ¼ �20 fs2/mm and n2 ¼ 3:2� 10-20 m2/W. Eqs. (10)
and (11) are solved by using split-step Fourier method
with the initial condition uðz ¼ 0; tÞ ¼ sec hðtÞ.
To show the validity of the propagating phenomen-

on described by the more generalized NLSE for the
slow-group velocity fiber, we simulate the propaga-
tions of 2.5-fs fundamental and 5-fs second-order soli-
tons without the third-order dispersion and without
Raman effect. The power evolution of pulse shapes for
the different group velocity vg ¼ 1=b1 over 10Ld along
the slow-group velocity fiber simulated by using the
more generalized NLSE (eq. (10)) and conventional
generalized NLSE (eq. (11)) are shown in fig. 2. The
thick solid line, thin dotted line, and thin dashed line
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Fig. 2. Pulse shapes of 2.5-fs fundamental soliton propagate
over 10Ld . The thick solid line, thin dotted line, and thin
dashed line are simulated by using the more generalized non-

linear Schrödinger equation for b1 ¼ 2
n0
c
, 3

n0
c
, and 4

n0
c
, re-

spectively. The thin solid line is simulated by conventional

nonlinear Schrödinger equation for b1 ¼ 2
n0
c
.

Fig. 3. a) The peak power, b) FWHM, and c) time shift evo-
lution of 2.5-fs fundamental soliton versus the propagation dis-
tance. Square, circle, up-triangle, and down-triangle present
the cases simulated by using the more generalized NLSE for

b1 ¼
n0
c

(normal velocity), 2
n0
c
, 3

n0
c
, and 4

n0
c
, respectively.



are simulated by using the more generalized NLSE for

b1 ¼ 2
n0
c
, 3

n0
c

and 4
n0
c
, respectively. The thin solid

line is simulated by conventional generalized NLSE. It
is seen that, for the thin solid line in fig. 2, the pulses
have shift for the tailing side. Obviously, it makes no
difference that the propagation of ultrashort pulses si-
mulated by using conventional generalized NLSE in
any group velocity. The propagating phenomenon si-
mulated by using the more generalized NLSE is differ-
ence for the different group velocity. Comparing these
results, it is found that the validity of the conventional
generalized NLSE becomes questionable when the
propagations of ultrashort pulses along the slow-group
velocity fiber. The more generalized NLSE is more sui-
table to describe these cases. Figs. 3 shows a) the peak
power, b) FWHM, and c) time shift evolution of 2.5-fs
fundamental soliton versus the propagation distance.
Square, circle, up-triangle, and down- triangle present

the cases simulated by using the more generalized

NLSE for b1 ¼
n0
c

(normal velocity), 2
n0
c
, 3

n0
c
, and

4
n0
c
, respectively. Comparing the cases of b1 ¼

n0
c

and

3
n0
c
, the changes of the peak power, FWHM, and time

shift are same except for the direction of time shift.

The b1 ¼
n0
c

case is shift for tailing side and the

b1 ¼ 3
n0
c

case is shift for leading side. In b1 ¼ 2
n0
c

case, the shock terms are canceled. The phenomenon
of time shift is not produced and the changes of the
peak power and FWHM are very small. One can see

that, for b1 ¼ 4
n0
c

case, the pulse broaden larger than

the other cases and the pulse shift rapidly for the lead-
ing side. The time shift is related with the group velo-

city. For the group velocity of 0:5
c

n0
, the shock terms

are just canceled. To understand the effect of the high-
er nonlinear terms, we show pulse shapes of a) 2.5-fs
fundamental soliton and b) 5-fs second order soliton
simulated by using the more generalized NLSE propa-
gates over 10Ld with (solid line) and without (dot
line) a2 in figs. 4. One can see that the effect of the
higher nonlinear terms symmetrically compresses
pulse shape. For the 5-fs second soliton case, the pro-
pagation pulse is much narrower than the initial one,
i.e., the effect of the higher nonlinear terms must be
consider.

4. Conclusion

The propagation of ultrashort pulses along the slow-
group velocity fiber is investigated. We derive a more
generalized nonlinear Schrödinger equation as the
superposition of monochromatic waves and numeri-
cally study the propagations of 2.5-fs fundamental and
5-fs second-order solitons. It is found that, for a slow-
group velocity fiber, the magnitude of time shift is re-
lated with the group velocity and the more generalized
NLSE is more suitable than the conventional general-
ized NLSE. When the pulse is slow down to 50% of
normal group velocity (c=n0), the effect of the higher
nonlinear terms is significance.
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