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Error-Tolerant Pooling Designs with Inhibitors

FK. HWANG and Y.C. LIU

ABSTRACT

Pooling designs are used in clone library screening to efficiently distinguish positive clones
from negative clones. Mathematically, a pooling design is just a nonadaptive group testing
scheme which has been extensively studied in the literature. In some applications, there is a
third category of clones called “inhibitors” whose effect is to neutralize positives. Specifically,
the presence of an inhibitor in a pool dictates a negative outcome even though positives are
present. Sequential group testing schemes, which can be modified to three-stage schemes,
have been proposed for the inhibitor model, but it is unknown whether a pooling design
(a one-stage scheme) exists. Another open question raised in the literature is whether the
inhibitor model can treat unreliable pool outcomes. In this paper, we answer both open prob-
lems by giving a pooling design, as well as a two-stage scheme, for the inhibitor model with
unreliable outcomes. The number of pools required by our schemes are quite comparable
to the three-stage scheme.
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1. INTRODUCTION

SEQUENCING A SET OF CLONES OFTEN RELIES on identifying the clones which contain a given probe. For
examples, in physical mapping, the probe can be a sequence-tagged site which is a unique subsequence
in the target sequence. The identification of a clone containing this probe essentially locates the clone. In
a DNA array, a probe is a given /-tuple and a positive identification confirms the existence of such an
[-tuple in the target sequence. We will assume that the setting is in the first application, namely, to identify
which clones in the given set contain the probe. A clone is called a positive if it contains the probe, and a
negative if not. A pool is a subset of clones put together for a joint assay with two possible outcomes: a
negative pool signifies that there’s no positive in the pool, a positive pool signifies otherwise, namely, that
there is at least one positive in the pool. A pooling design is a 0-1 matrix where the columns are the set
of clones, the rows are the set of pools, and a 1-entry in cell (i, j) signifies that clone j is in pool i.

In some biological applications, there is a third category of clones called inhibitors whose presence
in a pool dictates a negative outcome, regardless of the presence of a positive in the pool. While the
pooling design corresponds to the classical nonadaptive group testing problem (Du and Hwang, 2000), the
presence of inhibitors presents a new group testing model not considered in the group testing literature.
Farach et al. (1997) first introduced this model. Let n denote the total number of clones including at
most d positives and at most 7 inhibitors. They gave a randomized algorithm to identify all positives in
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O((d + r)logn) tests, assuming d + r < n. Bonis and Vaccaro (1998) gave a deterministic algorithm
in O((V2 + d)logn) tests. However, both algorithms are sequential in natural; specifically, tests cannot
be performed in parallel (as some tests depend on the results of other tests). It is possible to convert the
De Bonis and Vaccaro algorithm into a three-stage algorithm (tests in a given stage can be performed in
parallel) by increasing the number of tests to O ((r> +d?)logn). But it remains an open question whether
there exists a pooling design (1-stage) for the inhibitor model. Further, experimental or recording errors
may be made. De Bonis and Vaccaro raised the open problem of treating errors in the inhibitor model.
In this paper, we answer both open problems by proving the existence of an error-tolerant pooling design
with O((d?> +r? +¢*) logn) tests when there are at most e unreliable outcomes. We also give a two-stage
algorithm in O((d2 +r2+e?) logn) tests; each stage can have at most e errors.

2. PRELIMINARY

Since a pooling design is a 0-1 matrix, whether we can identify positives from negatives and inhibitors
by decoding the pooling outcomes apparently depends on the structure of this matrix. Indeed, when there
are only positives and negatives, the case corresponding to the nonadaptive group testing problem, we can
identify positives from negatives by a 0-1 matrix with some particular structure.

Consider a ¢ x n 0-1 matrix M where R; and C; denote row i and column j. A 1-entry in cell (i, j) is
covered by a set X of columns if at least one column in X has a 1-entry in row i. A set A of columns is
covered by a set B of columns if every l-entry in A is covered by B. M is called d-disjunct if no union,
or Boolean sum, of up to d columns covers any other column.

Note that a set of d columns can be viewed as a candidate set of positives; while the union of this
candidate set, also a binary vector, then corresponds to the set of pools which give positive outcomes.
Since the d-disjunct property guarantees that all negatives have at least a 1-entry not covered by the set of
positive pools, we can then identify those covered by the set of positive pools as positives. It is well known
(Hwang and S6s, 1987) that an upper bound of the number of pools in a d-disjunct matrix is O (d? logn).
Figure 1 gives an example of a 2-disjunct matrix.

As we mentioned in Section 1, the inhibitors present a new group testing model not considered before.
We prove in Section 4 that a (d +r 4 2e)-disjunct matrix can be used as the pooling design for the inhibitor
model with e errors. We also give a two-stage method in Section 3. It contains an (r + 2e)-disjunct and
a (d + 2e)-disjunct matrix in the first and second stage, respectively. Note that the test numbers of both
our methods have the same complexity as the three-stage method of De Bonis and Vaccaro and is only
slightly more than their sequential method.

Before introducing our methods, some lemmas about the structure of disjunct matrices are needed. A
column C; in a 0-1 matrix is isolated if there exists one row that contains C; only. A l-entry has a
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FIG. 1. This is a 2-disjunct matrix. Any union of up to two columns doesn’t cover any other column. Then suppose
C> and Cj are the positives; all negatives have at least a 1-entry (those appear with an underline) not covered by the
union of C» and Cs.
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1-outcome (0-outcome) if it lies in a positive (negative) pool. A column has m 1-outcomes (0-outcomes)
if m of its one-entries has 1-outcomes (0-outcomes).

Note that the deletion of the isolated column and rows that contain it in a disjunct matrix does not
destroy the disjunctness. Further, it’s easy to determine whether an isolated clone is a positive. We assume
that a disjunct matrix has no isolated column. D’yachkov and Rykov (1982) proved the following.

Lemma 2.1. Every column should have column weight at least m + 1 in a m-disjunct matrix.

Lemma 2.2. Let K denote a set of k row indices. There exists a set of at most k columns whose union
covers K.

Proof. For each row index in K, select any columns with a one-entry in that row. Then the set of at
most k chosen columns covers K. |

Suppose there are at most d positives, r inhibitors, and e errors. Then we have the following.
Lemma 2.3. A positive should have at least (m —r — e + 1) 1-outcomes in a m-disjunct matrix.

Proof. Suppose there is a positive C which has at most m —r — e 1-outcomes. By Lemma 2.2, there
exists a set of at most m — r — e columns that are different from C because there’s no isolated column,
covering the row indices of these 1-outcomes. Further, all its other (at least 7 +e+ 1) one-entries are covered
by the r inhibitors and the up to e errors. Since there exists a set E of e columns, C ¢ E when there’s no
isolated column, covering the row indices of the up to e errors. Hence, at most (m —r —e)+ (r +e) =m
columns cover C, contradicting the m-disjunct property. |

Lemma 2.4. A negative should have at least (im — d — e + 1) 0-outcomes in a m-disjunct matrix.

Proof. Suppose to the contrary that a negative ¢ has only (m — d — e) 0-outcomes. Let E be defined
as in Lemma 2.3. Then all the 1-entries of ¢ with 1-outcomes are covered by at most d 4+ e columns, and
all with 0-outcomes by at most (m — d — e) columns, leading to the conclusion that ¢ is covered by m
columns, a contradiction to the m-disjunctness. [ |

Lemma 2.5. An inhibitor should have at most e 1-outcomes in any disjunct matrix.

Proof. An inhibitor should have no 1-outcome if there is no error. Those e errors can result in at most
e 1-outcomes for an inhibitor. [ |

3. THE 2-STAGE METHOD

In this section, we will first state our algorithm, then prove its correctness.

The first stage:

Pooling: Use an (r + 2e)-disjunct matrix.

Decoding: Collect all clones which have at most e 1-outcomes as a set Al.
Take the complement of Al as PN.

The second stage:

Pooling: Use a (d + 2e)-disjunct matrix on clones in the set PN.

Decoding: Collect all clones which have at most e 0-outcomes as a set P.
Output the set P as our positives.

Lemma 3.1. The set Al contains all inhibitors and no positives.
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Proof. By Lemma 2.3, a positive should have at least (e+1) 1-outcomes in an (r +2e)-disjunct matrix;
hence, no positive will appear in AI. Further, since all clones with at most e 1-outcomes are chosen into
Al, by Lemma 2.5, all inhibitors are contained in Al. [ |

Theorem 3.2. The set P contains all positives and nothing else.

Proof. By Lemma 2.4, a negative should have at least (¢ + 1) 0-outcomes; hence, those with at most
e 0-outcomes can not be a negative. They are all positives. |

Actually, what we do in the first stage is leave all inhibitors in the set Al and collect all positives into
the set PN. But there can be negatives in P N; hence, we need a second stage. Since there is no inhibitor
in PN, we can then do the classical group testing in the second stage to find all positives.

4. THE 1-STAGE METHOD

Pooling: Use a (d 4 r + 2e)-disjunct matrix.
Decoding:
Step I: Partition the clones into 4 sets:
P consists of those with at most r + e 0-outcomes
N consists of those with at least e + 1 but at most d + e 1-outcomes
O consists of those with at most e 1-outcomes
R consists of the rest
Step II: If R # &
Denote the outcome vector as V.
For all possible r-subsets of O
a. denote the union of the r-subset as V.
b. let V union V' be U.
c. if clone ¢ in R has at most e 0-outcomes under U, then put it into P.
Step III: Output P as our set of positives.

Lemma 4.1. After Step I, N is contained in the set of all negatives, and P is contained in the set of
all positives. O contains all inhibitors and no positives.

Proof. By Lemma 2.3, a clone with at most d 4 e 1-outcomes cannot be positive. An inhibitor has at
most e 1-outcomes. So an inhibitor cannot appear in N. Hence, there are only negatives in N.

By Lemma 2.4, a clone with at most r + e 0-outcomes cannot be negative. Further, the column weight
is at least (d +r +2e+1) in a (d +r + 2e)-disjunct matrix; these clones then have at least (d +e+1) > e
1-outcomes. By Lemma 2.5, inhibitors will not appear in P either.

By Lemma 2.4, a clone with at most e 1-outcomes cannot be a positive. An inhibitor cannot have more
than e 1-outcomes. Hence, O contains all inhibitors but no positives. [ |

Lemma 4.2. A clone c in R is positive < there exists at least one r-subset of O such that ¢ has at
most e 0-outcomes under U.

Proof. (=) Since O contains all inhibitors (whose number is at most r), some chosen r-subset in
Step II should contain all inhibitors. Then the vector V' formed by such an r-subset corrects the false
negative outcomes caused by the inhibitors. If ¢ is positive, then every pool containing ¢ has positive
outcome except at most e pools with unreliable outcomes. Thus c is in P.

(<) Suppose a clone ¢ in R is negative. We can view U as the union of d +r clones. Then [c\ U| > e
for otherwise ¢ can be covered by UU E, where E is a set of e columns, a contradiction to the (d +r 4 2e)-
disjunctness since |[U U E| <d +r +e. [ |

Corollary 4.3. The set P contains all positives and nothing else.
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In this one-stage method, we first partition all clones into four parts. After Step I, part P contains only
positives, N contains only negatives, and O contains all inhibitors and no positives. This is guaranteed by
Lemmas 2.3, 2.4, and 2.5. Clones in part R maybe either positives or negatives; hence, we need Step II.
Then what we do in Step II is to recover the false negative outcomes caused by inhibitors by trying all
possible r-subsets in O. By Lemma 4.1, at least one of these r-subset will contain the true inhibitor-subset.
Then each positive in R will be covered by this U and thus collected into P. On the other hand, due to
the sufficiency part in Lemma 4.2, we can always keep negatives in R from P. Since there may be more
than one r-subset that can recover the false negative outcomes correctly, we cannot recognize which one
contains the true inhibitors-subset.

Then, we estimate the time complexity of this method. Most disjunct matrices are constructed by using
some combinatorial designs (see Du and Hwang [2000] for a general introduction) which treats the clone
symmetrically. In particular, most such designs have a constant column weight k; i.e., each column has
exactly k 1-entries. The partition into P, N, O, and R requires one to count for each column how many
of its 1-entries have 0-outcomes and how many have 1-outcomes. Thus, the partition takes O (kn) time.

Next, we estimate the time complexity of Step II. We first give a case for which Step II is not needed.

Corollary 4.4. R = o after Step 1 if the (d + r + 2e)-disjunct matrix has constant column weight
d+r+2e+1).

Proof. By Lemma 2.4, we put a clone into P in Step I when it has at most r +¢ 0-outcomes. That is, it
is a sufficient condition for a positive. However, in a matrix with constant column weight (d 4r 4 2e+ 1),
a clone with at most r + e 0-outcomes implies it has at least (d + e+ 1) 1-outcomes, and by Lemma 2.3,
this is the necessary condition for a positive. That is, all positives are collected into P. A similar argument
works for negatives. |

Assume R # &; then the time complexity of Step II is O((‘?‘)klRl). To estimate |O| and |R|, we need
to be more specific about the (d + r + 2e)-disjunct matrix. A popular construction is to have constant
column weight k > d 4+ r 4 2e 4 1, while each pair of columns intersect the same row (having a 1-entry)
at most once (called the I-intersection property). Then p = é is approximately the probability of the
appearance of a l-entry in the matrix. We will give a rough analysis by assuming that the distribution of
1-entries in the rows is random.

We first estimate |R|. A positive C is in R if it has at least r + e + 1 0-outcomes, which is impossible
if the (d +r + 2e)-disjunct matrix has the 1-intersection property since the r inhibitors can cause at most
r O-outcomes, leaving a total of at least e + 1 0-outcomes. Even all e errors occur in these rows, there is
still 1 0-outcome unexplained.

The above argument is very conservative in explaining the 0-outcomes. So even if a (d +r 42¢)-disjunct
matrix does not have the 1-intersection property, we expect |R| to be small.

For |R| # 0, we compute the probability that a negative ¢ is in O, i.e., the probability that it has at
most e 1-outcomes.

Without errors, ¢ gets a 0-outcome at a row if either an inhibitor is present or none of the positive is
present in that row. The probability P(c™) of this is

P(c)=1-(1-p1—(1-p)QlL

Hence the probability that ¢ has z 0-outcomes is
k —\Z —\\k—z
f@)= ZP(C)(l—P(c )N

However, there are ¢ errors present where ¢ <e. Suppose i of them make the z 0-outcomes of ¢ become
1-outcomes, and j of them make the k — z 1-outcomes become 0-outcomes. Let ¢; denote the number of
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1-outcomes. Then

e ORI
Paza=Y3 Y jo- L llex

t 9
z=0 i=0 j=k—z+i—e ,
e

because we need at least k—z+i —e 1-outcomes become 0-outcomes such that ¢ has less than e 1-outcomes.
Therefore,

E(|O)=r+m—d—r)-P(ci <e).

For ¢ = 0, then ¢ € O if and only if z = k. The probability is P (c™).

5. CONCLUSION

In this paper, we offer an error-tolerant 1-stage method to solve the inhibitor model. This solves the
existence problem for a pooling design with inhibitors and errors. As in the classical group testing problem,
we use disjunct matrices as our pooling designs. But the decoding algorithm is slightly more complicated
than that in the classical group testing problem. Fortunately, by Corollary 4.4 and the analysis of |R| and
|O|, we can still decode quickly if the disjunct matrices we use as pooling designs have a certain constant
column weight, and many well-studied (Du and Hwang, 2000) methods for constructing disjunct matrices
actually do yield constant column weight.

After the submission of the paper, the authors became aware of a recent conference paper by D’yachkov
et al. (2001) which gave a 1-stage method for the inhibitor model without error. Besides the errorless
assumption, their method exhaustively checks all (r"/), r <r, r -subsets of the n clones for each clone,
and hence could be too computation intensive for practical use for large n and moderate r.
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