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Automatic Interconnection Rectification for SoC Design
Verification Based on the Port Order Fault Model

Chun-Yao Wang, Shing-Wu Tung, and Jing-Yang Jou

Abstract—Embedded cores are being increasingly used in large
system-on-a-chip (SoC) designs. The high complexity of SoC designs
lead the design verification to be a challenge for system integrators. This
paper presents an automatic interconnection rectification (AIR) technique
based on the port order fault model to detect, diagnose, and correct the
misplacements of interconnection that occurred in the integration of a SoC
design automatically. The experiments are conducted on combinational
and sequential benchmarks. Experimental results show that the AIR can
correct the misplaced interconnection exactly within reasonable efforts
and, therefore, accelerates the integration verification of SoC designs.

Index Terms—Automatic interconnection rectification (AIR), character-
istic vector (CV), correction, detection, diagnosis, port order fault (POF),
system-on-a-chip (SoC), undetected port sequence (UPS), verification.

I. INTRODUCTION

Spurred by process technology leading to the availability of more
than one million gates per chip and more stringent requirements upon
time-to-market and performance constraints, system-level integration
and platform-based design [1] are evolving as a new paradigm
in system designs. A multitude of components that are needed to
implement the required functionality make it hard for a company to
design and manufacture an entire system in time and within reasonable
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Fig. 1. Reconvergent paths model for both verification and testing.

cost. Hence, design reuse and reusable building blocks (cores) trading
is becoming popular in the system-on-a-chip (SoC) era. However,
present design methodologies are not enough to deal with cores which
come from different design groups and are mixed and matched to
create a new system design. In particular, verifying whether a design
satisfies all requirements is one of the most difficult tasks.

Verification is a process used to demonstrate the functional correct-
ness of a design. Testing is a process that verifies whether the design
was manufactured correctly. Fig. 1 shows the reconvergent paths model
for both verification and testing [2]. The purpose of the verification is
to ensure that a design meets its functional intent. But during testing,
the finished silicon is reconciled with the netlist that was submitted for
manufacturing. Therefore, when a design is claimed to be fully tested,
i.e., 100% fault coverage, under a fault model, such as stuck at fault
(SAF) model, that means it is manufactured correctly. However, de-
signers still cannot guarantee that the chip satisfies the design spec-
ification if they do not verify it properly before manufacturing. The
chip may be manufactured correctly but designed incorrectly. Thus,
designers offer about 70% of their efforts to verification. But design
verification is still on the critical path of the design flow [2].

Usage of cores divides the IC design community into two groups:
core providers and system integrators. In traditional system-on-board
(SoB) design, the components that go from provider to system
integrator are ICs, which are designed, verified, manufactured, and
tested. The system integrator verifies the design by using these
components as fault-free building blocks. SoB verification is limited
to detecting faults in the interconnection among the components.
Similarly, in SoC design, the components are cores. The system
integrator verifies the design by using the cores as design error free
building blocks. SoC verification focuses on the interaction among
these pre-verified cores. This higher level of abstraction decreases
the complexity of design verification on a system chip and reduces
the time spent on design verification of the entire system.

The focus of core-based design verification should be on how the
cores communicate with each other [3]. However, before the interface
verification, the interconnection between the cores in an SoC have to be
verified first. This is because the SoC integrator has to connect a large
number of ports (hundreds or even thousands of ports) in an SoC. The
likelihood of interconnection misplacements between the cores is high.
Furthermore, the correct interconnection between the cores is the min-
imum requirement to verify the interface protocols. If the interconnec-
tions between the cores are misplaced, the process of the verification
on the interface between the cores will be in vain. Thus, the intercon-
nection verification can be conducted as the first step to the interface
verification between the cores in an SoC design.

Fig. 2(a) and (b) shows the schemes to demonstrate the processes of
interconnection testing and interconnection verification, respectively.
In the interconnection testing, the test engineers focus on the success
of implementation of interconnected wires between the block1 and
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(a) (b)

Fig. 2. Schemes of (a) interconnection testing and (b) interconnection verification.

block2. The testing patterns and corresponding responses are applied
and observed at the ends of the interconnects to check whether the
interconnects are manufactured correctly. On the other hand, in the
interconnection verification, the system integrators verify whether
the interconnection between the block1 and block2 are located in the
correct ports. The verification patterns and corresponding responses
are applied and observed in primary inputs (PIs) and primary outputs
(POs) of the integrated design instead.

By creating the testbenches at a higher level, a connectivity-based
design fault model, port order fault (POF), is proposed [4] and the
corresponding automatic verification pattern generation (AVPG) is
developed [5], [6]. The AVPG algorithms are effective in gener-
ating the verification pattern set for detecting the misplacements
of interconnection in an SoC design. However, the diagnosis and
correction issues on the misplaced interconnection are even more
important for SoC verification. Thus, in this paper, we present an
automatic interconnection rectification (AIR) algorithm, which not
only detects the erroneous interconnection among the cores, but also
diagnoses and corrects them automatically during the integration of
an SoC design.

Traditional diagnosis and correction algorithms in the logic level
can be divided into two categories with respect to the underlying
techniques: those based on symbolic techniques [7]–[11] and those
based on simulation techniques [12]–[15]. The approaches based on
symbolic techniques can return valid correction and handle circuits
with multiple errors well, however, they are not applicable to circuits
that have no efficient ordered binary decision diagram (OBDD) [16]
representation. Thus, to verify the interconnection among the IP cores
with all description levels (soft, firm, and hard cores) embedded
into a system, the AIR algorithm has to deal with IP cores that are
described in different levels, for example, logic level, register transfer
(RT) level, or even behavioral level. Consequently, the symbolic
approach is inadequate to this application and the simulation-based
AIR algorithm is presented.

On the other hand, the simulation-based design error diagnosis and
correction techniques in the logic level locate the design errors from
the erroneous POs by backtracking processes via the sensitized paths.
However, without knowing the internal structure of IP cores, the back-
tracking methods are not applicable to the AIR algorithm. The only
information obtained from the IP cores is the functional outputs by the
patterns simulation, or the simulation model. Thus, the AIR simulates
the design with the valid verification patterns, which are generated by
AVPG [5], [6]. Then it compares the simulation results in POs with the
expected ones to detect the possibly misplaced ports. Finally, the iden-
tified misplaced ports are switched to rectify the interconnection.

In [15], Pomeranzet al. proposed an error correction algorithm for
macro-based designs, which considered two error classes, macro errors
and interconnection errors. This approach can identify the macro errors
and the interconnection errors in the macro-based designs by using the
error counts technique. However, for interconnection errors, it cannot

indicate the correct interconnection for further correction. In the AIR
algorithm, since the IP cores are assumed to be preverified, it does not
consider the macro errors. For the interconnection errors, though, it
not only detects, but also diagnoses and corrects the erroneous inter-
connection among the cores automatically during the integration of an
SoC design.

The AIR is integrated into the SIS [17] environment. Experiments
are conducted on combinational and sequential benchmarks, such as
ISCAS-85, ISCAS-89, MCNC, and ITC-99 benchmarks. Experimental
results show that the AIR can exactly rectify the misplaced intercon-
nection in an SoC design.

The remainder of this paper is organized as follows. The port order
fault (POF) model and some relevant definitions are introduced in
Section II. The AIR algorithm is presented in Section III. Section IV
presents experimental results. Section V concludes the paper.

II. PRELIMINARY

The POF model belongs to the group of pin-faults models [18],
which assumes that a faulty cell has at least two I/O ports misplaced.
It also assumes that the components are fault free and only the
interconnection among the components could be faulty. There are
three types of POFs [4].

Definition 1: The type-I POF is at least one output misplaced with
an input. The type-II POF is at least two inputs misplaced. The type-III
POF is at least two outputs misplaced.

Example 1: A fault-free 4-bit adder is shown in Fig. 3(a). The func-
tion of the adder isfCout; S(3 : 0)g = A(3 : 0)+B(3 : 0)+Cin. An
example of the type-I POF is shown in Fig. 3(b). InputB0 is misplaced
with outputS0. Fig. 3(c) shows an example of the type-II POF. Input
A(3 : 0) are misplaced. Fig. 3(d) shows an example of the type-III
POF. OutputS(3 : 0) are misplaced.

It has been proven that the type-II POF dominates the other two types
of POFs [5]. Hence, in this paper, the AIR focuses on the type-II POF
solely.

Definition 2: A port sequence is an input port numbers permutation
that indicates the relative positions among these input ports.

Definition 3: The fault-free port sequence (FFPS) is a port sequence
where none of the input ports is misplaced. For anN -input core, the
input ports are numbered from 1 toN . The number of the input port
numbers permutation isN ! and theseN ! permutations represent theN !
port sequences of the core. Except for the FFPS, the remaining (N !�1)
port sequences represent the core with some particular POFs and are
called faulty port sequences (FPSs). In this paper, the POFs and the
FPSs are used exchangeably.

Example 2: Given a 4-input core, the input ports are numbered from
1 to 4. Any input port numbers permutation is a port sequence of the
core. It has 4! port sequences totally. The only one FFPS is 1234, the
remaining (4!� 1) port sequences are FPSs. The FPS 1423 represents
the port 4 of the prior core IP1 is connected to the location of port 2
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(a) (b)

(c) (d)

Fig. 3. POF model examples.

(a) (b)

Fig. 4. Schematic representation of (a) FFPS 1234 and (b) FPS 1423.

of IP2, the port 2 of IP1 is connected to the location of port 3 of IP2
and the port 3 of IP1 is connected to the location of port 4 of IP2. The
schematic representations of FFPS 1234 and FPS 1423 are shown in
Fig. 4(a) and (b), respectively.

The undetected port sequences (UPSs) representation used in the
AVPG [5], [6] is to implicitly represent the UPSs remained in the fault
set. Since it is also used in the AIR algorithm, we introduce it here
briefly. The detailed description can be found in [5]. We use Example 3
to demonstrate this implicit UPSs representation.

Example 3: Given an 8-input core, the input ports are numbered
from 1 to 8. The UPSs representation (12345678) represents the UPSs
that were caused by all possible misplacements among the port num-
bers in the same group, i.e., port 1 to port 8. The number of undetected
POFs is8! � 1 and the 1 in the8! � 1 accounts for the fault-free port
sequence. The UPSs representation (125)(4)(3678) indicates the UPSs
that were caused by all possible misplacements among the port num-
bers 1, 2, and 5 and/or all possible misplacements among the port num-
bers 3, 6, 7, and 8. The number of the undetected POFs is3!�1!�4!�1.
Please note that the port number 4 is the only one element in the second
group. It means that the port sequences whose port number 4 was in
the wrong position are not represented by this UPSs representation.
The order of the groups in the UPSs representation is irrelevant, as is
the order of the numbers in each UPSs group. For example, the UPSs
(125)(4)(3678) can also be expressed as (4)(215)(8763). The UPS rep-
resentation (1)(2)(3)(4)(5)(6)(7)(8) has eight groups and each group
has only one element, therefore, no misplacement could have occurred
in each group. The number of the undetected POFs is1!�1!�1!�1!�

1!� 1!� 1! � 1!� 1 = 0. Hence, (1)(2)(3)(4)(5)(6)(7)(8) represents
8!�1POFs are all detected. If the UPSs representation is induced from
(12345678) to (1)(2)(3)(4)(5)(6)(7)(8), all POFs are detected.

Fig. 5. Abbreviations and the corresponding full titles.

For better representation, Fig. 5 lists the abbreviations and the cor-
responding full titles of the terminologies used in the paper.

III. AIR A LGORITHM

A. AIR Overview

The input to the AIR is the simulation model of an IP core, which is
given by the core providers and is used for verifying the functionality
of the core without revealing the design expertise. The four stages of
AIR are pattern generation, fault detection, fault diagnosis, and fault
correction as shown in Fig. 6. The general steps of each stage are also
shown in this figure. In addition to these four stages, an instantaneous
UPSs representation is associated with the AIR. This UPSs represen-
tation can indicate the currently remaining UPSs and guides the gen-
eration of further verification patterns. If the UPS is empty, the AIR is
terminated and the interconnection in the integrated design is correct.

Definition 4: The initial UPSs are denoted as�0, the remaining
UPSs after the verification patterns set Pi is applied to verify the inter-
connection are denoted as�i.

In the pattern generation stage, when a pattern setPi is selected as
the verification pattern set, some FPSs will be detected byPi and the
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Fig. 6. AIR flow.

Fig. 7. Relationship of , FPSs( ) and remaining UPSs� .

corresponding UPSs will be reduced from�i�1 to�i. Then the pattern
generation stage generates further verification patterns in the next iter-
ation according to the remaining UPSs�i. Thus, eachPi corresponds
to a set of FPSs and is responsible for detecting them. The FPSs which
are detected byPi are denoted as FPSs(Pi). The relationship ofPi,
FPSs(Pi) and the remaining UPSs�i is shown in Fig. 7. In Fig. 7, the
initial UPSs are denoted as�0 and we assume the pattern setPi�1 is
generated beforePi. After P1 is generated and applied, the remaining
UPSs are�1. After the last pattern setPt is generated and applied, the
remaining UPSs is�t and it is the FFPS. The union of FPSs(Pi) sat-
isfies the following identity:

t

i=1

FPSs (Pi) [ FFPS = 	 (1)

where	 is the universal set ofN ! port sequences. Equation (1) presents
thatN ! � 1 FPSs are composed of FPSs(Pi) disjointedly. The port
sequence� of the real interconnection of the integrated design is one
of N ! port sequences.

If the integrated design is qualified by applying all verification pat-
tern sets in the fault detection stage, the interconnection is the FFPS.
However, if the integrated design is qualified byPj but failed byPi,
wherej < i, in the fault detection stage, then the port sequence� 2
FPSs(Pi). At this time, the fault diagnosis stage is conducted to iden-
tify the misplaced ports.

Finally, in the fault correction stage, the identified misplaced ports
are exchanged. The intention of the fault diagnosis and correction
stages is to rectify the FPS� to �0 that 2 UPSs�i. However, the
diagnosis and correction stages usually cannot accomplish it in one
iteration. Thus, the corrected FPS�0 has to be verified (detection,
diagnosis, and correction) byPi again until the fault effect disap-
pears after the fault detection stage. At this time, the corrected FPS
�0 2 UPSs�i. These iterative procedures are presented with bold
lines in the AIR flow as shown in Fig. 6. If the corrected FPS�0 is not
the FFPS yet, it will be detected and corrected by the other verification
patternsPk, wherek > i, in the subsequent iterations. Please note that
since the FPS� will be corrected to one that2 UPSs�i and UPSs�i

will be reduced to�t = FFPS eventually, we can claim that the FPS
� will be rectified to the FFPS at the end of AIR.

B. Pattern Generation

Definition 5: For anN -input combinational core, the exhaustive
pattern set is defined as�N . The size of�N is the number of patterns
in �N , is denoted asj�N j andj�N j equals 2N .

Definition 6: The set that consists of all patterns withm 1s and
(N � m) 0s is denoted as�N

m, wherem 2 [0; 1; 2; . . . ; N � 1; N ].
The size of�N

m is the number of patterns in�N
m and is denoted asj�N

mj

andj�N
mj equals

N

m
where

N

m
= N !=(m!(N �m)!).

The following paragraphs are going to introduce the three steps in the
pattern generation stage: fault activation, fault propagation, and UPSs
calculation.

a) Fault Activation: Fault activation is the most important pro-
cedure in the pattern generation stage. If the fault effect is not
activated, it surely cannot be propagated out. To activate a POF, the
logic assignments of the corresponding input ports cannot all be
the same. For example, to activate the FPS 1243, the assignments
of port 3 and port 4 have to be different, either port 3 is assigned
0, port 4 is assigned 1, or vice versa. AllN ! � 1 POFs have to
be activated in the pattern generation stage. The following theorem
states the completeness of the POF activation.

Theorem 1: �N
m can activate all (N ! � 1) POFs where

m 2 [1; 2; . . . ; N � 2; N � 1].
Proof: Please refer to [5].
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Fig. 8. Simulation outputs of applying� .

b) Fault Propagation: The simulation results of the applied pat-
terns are observed to determine which activated POFs are propagated
to POs. The fault effects are propagated to POs if there exists different
responses among these input patterns.

c) UPSs Calculation: If the verification pattern setPi is gen-
erated, we have to figure out the remaining UPSs�i to guide the
generation of further verification patterns. The detailed description
of this step is presented within the following example.

We use an example to demonstrate the details of pattern generation
stage (fault activation, fault propagation, and UPSs calculation). This
example will be used to demonstrate the fault detection, fault diagnosis,
and fault correction stages as well as in the subsequent sections. Given
an 8-input core, according to the UPSs representation, the initial UPSs
�0 are (12345678). The simulation results of�8

1 are shown in Fig. 8
and are represented in symbolic output representation. The simulation
results depend on the functionality of the core. The patterns with the
same output are grouped into one set.�8

1 patterns can be grouped into
two sets,S1 andS2, as shown in Fig. 8 (fault activated and propagated).
When we select the smaller setS1 as the verification pattern setP1,
the corresponding remaining UPSs�1 have to be derived as well. The
following paragraphs describe how to calculate the remaining UPSs�i

whenPi is selected.
Definition 7: Given a set of patternsS with the same length, we

count the number of digits 1 in the same bit position to form a vector
with the same length. This vector is called the characteristic vector
(CV) of S and is denoted as CVS [19].

Definition 8: Given two pattern setsS0 andS, if the patterns in
S0 andS are all identical, we saidS0 = S, otherwiseS0 6= S. If
the corresponding bits in CVS0 and CVS are all the same, we said
CV S0 = CV S, otherwise CVS0 6= CV S.

Lemma 1: Assume a set ofn-bit patternsS0 � �Nm. If the pattern
setS0 turns to the pattern setS after applying a FPS�, then CVS is
a permutation of CVS0 by the FPS�.

Theorem 2: A pattern setS0, which consists of all patterns2 �Nm
with same outputs, turns to another pattern setS after a FPS�. If
CV S0 6= CV S, the FPS� will be detected byS0.

Proof: Please refer to [5].
Lemma 2: Given a set ofn-bit patternsS0, assumeS0 turns to the

pattern setS after applying a FPS�; CV S will be equal to CVS0 if
and only if the FPS� only switches the ports with the same digits in
CV S0.

Example 4: Given a pattern setS0 with 4 bits and CVS0 is 1010.
The 1st and 3rd digits of CVS0 are both 1. The 2nd and 4th digits of
CV S0 are both 0. If the FPS� only switches the ports between port 1
and port 3 or between port 2 and port 4, CVS0 remains intact. On the
contrary, to keep CVS0 being intact, the� can only switch port 1 with
port 3 or switch port 2 with port 4.

In Fig. 8, we selectedS1 as the verification pattern setP1 and
according to Theorem 2, any port misplacement which changes
CV S1 will be detected byS1 patterns. Thus, the port misplacements
that cannot change CVS1 are regarded as the remaining UPSs�1.
According to Lemma 2, the port misplacements with the same digits in
CV S1 cannot change CVS1. Thus, the port misplacements among
the same digits in CVS1 are UPSs�1 and can be expressed as
(1)(2345678) in the implicit UPSs representation. This result is stated
in Corollary 1.

Corollary 1: If a pattern setS is selected as the verification pattern
setPi, UPSs�i can be obtained by applying the same grouping result
of CVS over UPSs�i�1.

WhenS1 is selected as the verification pattern setP1. The grouping
result of CVS1 is (1)(0000000). Therefore, according to Corollary 1,
we can figure out UPSs�1 by the same grouping of CVS1 over�0 =
(12345678) directly and�1 become (1)(2345678). These results are
also shown in Fig. 8. Since the grouping result of CVS2 is the same
as that of CVS1 and cannot reduce UPSs�1, S2 is not selected as the
verification pattern set.

In this iteration, the remaining UPSs are reduced from (12345678)
to (1)(2345678) whenP1 is generated. This means that if the port
sequence� of the real interconnection in the integrated design=2
UPSs (1)(2345678), when applyingP1 into the integrated design,
the port sequence� will be detected.

The system integrators do not know how cores are connected exactly
in the actual integrated design. However, to demonstrate the intercon-
nection detection, diagnosis and correction procedures, we assume the
FPS� of this example is given as 83762451. This FPS will be corrected
to the FFPS 12345678 at the end of the AIR algorithm to demonstrate
the success of the AIR algorithm.

C. Fault Detection

We applyP1 {10000000} into the design with the FPS� 83762451
and find that the corresponding output ofP1 is B0 as shown in the
first row of Fig. 9(a). Since the fault-free output is A0, the fault effect
appears and� is detected byP1.

D. Fault Diagnosis

We applyP1 into the integrated design and realize by observing the
unexpected output B0 that the real applied input is notP1. Since there
are seven patterns that produce B0 output, we do not know exactly
what the actual applied pattern is. Nevertheless, we know the actual
applied pattern produces A0 output instead. We simulate�8

1 patterns
with the FPS 83 762 451 and observe the outputs until the output is
A0. These results are shown in Fig. 9(a). From Fig. 9(a), we find that
when the last pattern {00000001} is applied into the integrated design,
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Fig. 9. Rectification processes of� .

Fig. 10. One correction operation of the FPS 83762451.

the output becomes A0. This result implies that the FPS� turns the
pattern {00000001} to {10000000}. We put the pattern {00000001}
intoS10 and assumeS1 is {10000000}. Then we calculate CVS10 =
00000001 and CVS1 = 10000000. Afterward, the misplaced ports
can be identified by comparing CVS10 and CVS1.

E. Fault Correction

Definition 9: The exchange of two ports is defined as a 2_switch.
The exchange of portx and porty is denoted as2 switch(x; y).

Comparing CVS10 and CVS1, we observe that the first and eighth
digits of CV S10 and CVS1 are different. Thus, we switch port 1 with
port 8 to let CVS1 be the same as CVS10. Then the corrected FPS be-
comes 13 762 458 and is shown in Fig. 9(b). This correction operation
in the actual integration verification process is also shown in Fig. 10.

The following lemmas and theorem state the convergency of fault
correction procedure, i.e., the fault correction stage will correct the mis-
placed ports within finite iterations.

Theorem 3: The correct ports in an FPS� will not be rectified to
faulty ones in the fault correction stage.

Proof: CV values of correct ports in an FPS are the same as that
of FFPS and they will not be identified as the possible faulty ports in
the fault diagnosis stage. Thus, they will be remained intact in the fault
correction stage. Q.E.D.

Lemma 3: There exists a finite sequence of 2-switches to convert the
FFPS into an FPS�.

Lemma 4: Assume a port sequence�1 turns to another port
sequence�2 after applying a finite sequence of 2-switches, then
the �2 will turn back to �1 after applying the reversed order of
the same sequence of 2-switches.

Definition 10: Given a set ofn-bit patternsS0, when a 2-switch
is applied onS0 and CVS0 is invariant, the 2-switch is called a CV
invariant fault ofS0 (CVIF(S0)). Otherwise, it is called a CV variant
fault of S0 (CVVF(S0)).

Theorem 4: Given a set ofn-bit patternsS0 and a FPS�, there
exists a finite sequence of 2_switches,2 switch1 � 2 switchl, to
convert the FFPS into� and this sequence of 2_switches must be
in one of the following three categories:

I) 2 switch1 � 2 switchl are all CVIFs(S0)
II) 2 switch1 � 2 switchi are CVIFs(S0) and

2 switchi+1 � 2 switchl are CVVFs(S0) where
1 � i � l � 1

III) 2 switch1 � 2 switchl are all CVVFs(S0).

Proof: We assume the pattern setS0 turns to the pattern setS
after applying a FPS�. According to Lemma 1, CVS is a permutation
of CV S0, hence, CVS0 and CVS could be equal or not.

If CV S0 = CV S,
(I): According to Lemmas 2 and 3,� is a finite sequence of

CVIFs(S0). Thus,2 switch1 � 2 switchl are all CVIFs(S0).
If CV S0 6= CV S,
(II): According to Lemmas 2 and 3, there exists a finite sequence of

CVVFs(S0) �1 that switches CVS0 to CV S. According to Lemma
4, the reversed order of�1 applied on CVS can turn CVS to be
equal to CVS0. At this time, the situation is the same as (I), the re-
maining possible 2_switches are a finite sequence of CVIFs(S0) �2.
The concatenation of�2 and�1 is a finite sequence of 2_switches
which constructs�, where2 switch1 � 2 switchi are CVIFs(S0)
and2 switchi+1 � 2 switchl are CVVFs(S0), 1 � i � l � 1.

(III): Similar as (II). However, if�2 is empty, then2 switch1 �
2 switchl is a finite sequence of CVVFs(S0). Q.E.D.

In this example, the 2_switch(1,8) is a CVVF(S10). Therefore,
according to Theorem 4, the corrected FPS�0 is a sequence of
CVIFs(S10). Theorem 4 guarantees that the CVIF(S10) are the only
possible faults which we have to deal with in the succeeding iteration.

Since eachPi corresponds to a set of FPSs, FPSs(Pi) and is respon-
sible for detecting them. If the corrected FPS�0 =2 FPSs(Pi),Pi is not
able to detect and correct any other faulty ports in�0. At this time, fur-
ther verification pattern setPk, wherek > i, are generated to detect
and correct the other faulty ports in�0. However, how can we know the
corrected FPS�0 2 �i and cannot be corrected byPi anymore? The
following corollary states the condition that has to be satisfied so that
the corrected FPS�0 =2 FPSs(Pi) (or 2 UPSs�i).

Corollary 2: If the actual outputs are consistent with the expected
ones when applyingPi into the integrated design with a corrected FPS
�0, then the corrected FPS�0 2 UPSs�i.

Therefore, according to Corollary 2, we applyP1 into the integrated
design again with the corrected FPS�0 13 762 458 to see whether the
�0 can be further corrected byP1. In Fig. 9(c), we find that the outputs
of P1 in the integrated design with the�0 13 762 458 is A0, which is
the same as the expected one, Thus,�0 2 UPSs�1 (1)(2345678). At
this time, we move to the next iteration to generate further verification
pattern setsPk (k > 1) to detect and correct the remaining faulty ports.
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Fig. 11. Simulation outputs of applying� .

(a)

(b)

(c)

Fig. 12. Rectification processes of� (1/2).

F. Succeeding Iterations in the AIR

Definition 11: A single element group (SEG) is a group that con-
tains only one port number in the UPSs representation. A multiple ele-
ment group (MEG) is a group that contains more than one port numbers
in the UPSs representation.

The group (1) in UPSs�1 = (1)(2345678) is an SEG and the
group (2345678) in�1 is an MEG. The physical meaning of the
SEG is that the remaining undetected port sequences are all irrelevant
to the port in the SEG and further pattern generation does not have
to activate any POFs related to the port in the SEG. Therefore,
when we search�8

7 for further verification patterns, we find that
the pattern {01111111} cannot activate any remaining POFs in�1.
This is because the logic assignments in the ports 2� 8 of pattern
{01111111} are all the same. Therefore, we exclude it from�8

7 to
minimize the number of simulation patterns. The other patterns in
�8

7 and their simulation outputs are shown in Fig. 11. We put anX

in the output of the pattern {01111111} to indicate the exclusion
of this pattern from�8

7 simulation. The remaining patterns in�8

7

are grouped into two groups,S3 = f10111111; 11011111g and
S4 = f11101111;11110111;11111011;11111101;11111110g,

(a)

(b)

(c)

Fig. 13. Rectification processes of� (2/2).

according to their outputs. These groups are sorted by size in ascending
order. To select a group as the verification pattern set, we always
choose the group with the smallest size if it indeed can detect new
FPS. Thus, in this example,S3 is selected as the verification pattern
setP2. After the selection ofS3, we find CV S3[1 : 8] = 21122222.
Since�1 are (1)(2345678), the POFs related to the port in the SEG
side are all detected, therefore, we only consider CVS3[2 : 8] when
analyzing the remaining UPSs. The grouping result of CVS3[2 : 8]
is (11)(22222). Thus, according to Corollary 1,�2 becomes
(1)(23)(45678).

WhenP2 is generated, we have to apply it to the integrated design
to verify the interconnection immediately. The outputs ofP2 with the
FPS 13762458 differ from the expected ones as shown in the first row of
Fig. 12(a). Thus, the FPS 13762458 is detected byP2. Now, we correct
the faulty ports of�0 in the same way as mentioned in the previous
paragraphs.

In Fig. 12(a), we simulate the integrated design with FPS 13762458
and find that the patterns {11011111, 11111101} of�8

7 produce A1
output. Let these patterns be inS30 and compare CVS30 and CVS3
as shown in Fig. 12(b). We can easily identify that ports 2 and 7 are
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Fig. 14. Simulation outputs of applying� .

misplaced. After the 2_switch(2, 7), the FPS becomes 15 762 438 and,
according to Theorem 4, CVVF(S30) are corrected. The remaining
possible faulty ports are CVIF(S30) and they can be expressed as
[124568][37]. This representation means the port numbers in the same
bracket are possibly mutually misplaced ports. We applyP2 to the
integrated design again with the corrected FPS 15762438 and show
the outputs in Fig. 12(c). Since they are different from the expected
ones, the FPS 15762438 has to be further corrected.

In Fig. 13(a), we simulate the integrated design with FPS 15762438
and find that the patterns {11110111, 11111101} of�8

7 produce A1
output. Let these patterns be inS50 and we renameS3 asS5 for clear-
ance of explanation. We compare CVS50 and CVS5 as shown in
Fig. 13(b) and find that there are two choices to correct the misplaced
ports, either port 2 with port 5 and port 3 with port 7, or port 2 with
port 7 and port 3 with port 5. According to the result of last iteration,
CVIF(S30) = [124568][37] are possibly mutually misplaced ports.
We find that port 2 and port 5 are in the same bracket as well as ports
3 and 7. Thus, we switch port 2 with port 5 and port 3 with port 7
as shown in Fig. 13(b). Now, the FPS becomes 12365478. Fig. 13(c)
shows the outputs ofP2 with the corrected FPS 12365478. Since the
outputs are identical, according to Corollary 2, the corrected FPS2 �2

(1)(23)(45678).
ForS4 in Fig. 11, since it has no contribution in reducing the size of

UPSs�2 further, it is not selected as the verification pattern set.

Fig. 15. Fault free for P3 verification.

Thereafter, the verification pattern search for�2 (1)(23)(45678) is
continued.�2 have three groups that are numbered fromG1 toG3, i.e.,
G1 is (1),G2 is (23) andG3 is (45678).G1 is an SEG andG2 � G3
are MEGs. Please note that if�2 = (1)(23)(45678)can be reduced to
�t = (1)(2)(3)(4)(5)(6)(7)(8),the remaining POFs are all detected.

Then�8

2 are simulated. The patterns in�8

2 have two 1s and six 0s.
These two 1s in each pattern can be placed in the SEGs, the MEGs,
or both. The SEG and MEG groups are placed side by side and all
combinations of�8

2 patterns are listed in Fig. 14. In Y1, the MEG
side assignments are�7

1, therefore, all remaining POFs are activated
according to Theorem 1. The outputs of Y1 are not all the same, thus,
the activated fault effects are propagated. The smaller pattern setS6
is selected asP3 and UPSs�3 become (1)(2)(3)(45678). We apply
P3 into the integrated design with FPS 12365478 and observe that the
corresponding output is the same as A2 as shown in Fig. 15. Thus, FPS
12365478 2 �3.
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Y2 does not activate any undetected POF, therefore, we have no
need to simulate it. SinceG2 = (23) is grouped into two SEGs in
�3, Y3 and Y4 have to be analyzed separately. For Y3, the outputs
are all A3, thus, the activated fault effects ofG3 = (45678), are not
propagated to POs. For Y4, the outputs are all A4, thus, the activated
fault effects ofG3 are not propagated to POs, either. For Y5, we group
these patterns into three groupsS8 � S10 according to their outputs.
S10 is selected asP4 and�4 become (1)(2)(3)(48)(5)(67). We apply
P4 into the integrated design with FPS 12365478, the outputs ofP4
are shown in the last two rows of Fig. 16(a). Since the outputs are not
all C5, the FPS 12365478 is detected byP4. In Fig. 16(a), we simu-
late the integrated design with FPS 12365478 and find that the patterns
{00011000, 00001010} of Y5 produce C5 output. Let these patterns
in S100 and compare CVS100 with CV S10 as shown in Fig. 16(b).
We can identify that ports 4 and 6 are misplaced. After the 2_switch(4,
6), the FPS becomes 12345678 and it is the FFPS. However, we do not
know the FPS has been rectified to the FFPS already in practical veri-
fication process. Thus, the AIR processes are continued. We applyP4
into the integrated design again with the FPS 12345678 and their out-
puts are shown in Fig. 16(c). Since the outputs are identical, according
to Corollary 2, the corrected FPS12345678 2 �4 (1)(2)(3)(48)(5)(67).

WhenS8 is selected asP5, �5 becomes (1)(2)(3)(4)(5)(6)(7)(8).
Similarly, we applyP5 into the integrated design and observe that
the outputs are the same as A5 as shown in Fig. 17. Thus, the FPS
12345678 2 �5 and is the FFPS. Since�5 is the empty UPS, the AIR
is terminated.

Now, the original FPS 83762451 is corrected as the FFPS 12345678
as desired at the end of AIR algorithm. This result demonstrates that the
AIR algorithm can rectify the misplaced interconnection to the correct
interconnection in the integrated design.

From the description above, we know that if the pattern generation
stage can generate the verification pattern setsP1 � Pt with the UPSs
�t = FFPS, then the other stages of AIR can rectify the faulty in-
terconnection to the fault-free one. Thus, the success of AIR strongly
depends on the pattern generation stage. Since the pattern generation
stage will search all�N

m, form = 1; 2; . . . ; N � 1 if necessary, it is a
complete algorithm. This complete pattern generation algorithm leads
the AIR algorithm to be complete as well.

G. Sequential AIR

The development of the sequential AIR is based on the same
assumption as the combinational AIR, i.e., the circuit under verification
(CUV) is preverified and fault free. The fault occurs only at the
interconnection between the cores. For the testability concern, most
sequential cores are designed with scan chains. Thus, we assume
here that the sequential cores in the experiments are scan-testable.
These sequential cores can be set in arbitrary state and therefore they
can be seen as combinational ones. Consequently, the AIR algorithm
used in the combinational cores is applicable to the sequential ones.
The only difference is that the sequential cores have to be set to
a state by sequential AIR before evaluating outputs.

The sequential AIR sets the simulation model of a sequential core
to a stateSi and simulates one�N

m. If the outputs of the selected�N
m

are all the same, it chooses anotherm for �N
m simulation, otherwise,

the valid patterns are generated. If all�N
m (for m = 1 � N � 1) are

simulated in stateSi and the POF coverage is not 100% yet, sequential
AIR sets another stateSj , whereSj 6= Si and repeats the same�N

m

simulation to conduct the pattern generation and so on [5]. When the
valid patterns are generated with stateSi, they are applied into the de-
sign with stateSi to verify and rectify the misplaced interconnection
just as the combinational AIR did mentioned in Sections III-C–III-F.
The sequential AIR will set the sequential core to every possible state
to generate the verification patterns until the POF coverage is 100%.

(a)

(b)

(c)

Fig. 16. Rectification processes of� .

Fig. 17. Fault free for P5 verification.

H. Heuristic AIR

Definition 12: An untestable POF is a POF which cannot be
detected after applying�N .

The untestable POF is harmless for the integrated design, therefore,
they do not have to be corrected in the AIR. The possibility of existing
untestable POFs in the CUV makes the pattern generation stage very
time consuming. Therefore, a heuristic pattern generation algorithm is
proposed to replace the complete one in the AIR to trade off between
the performance and the execution time. Here we only address the
heuristic combinational AIR. This is because the combinational AIR
is the basis of the sequential AIR.

We review Fig. 14, which shows the outputs of�8

2 simulation in
the complete pattern generation algorithm. In this figure, the pattern
sets Y1, Y3� Y5 are generated and simulated. However, according to
Theorem 1, any one of them can activate all remaining POFs and has
the possibility to reduce the size of the remaining UPSs. Hence, the
heuristic approach is to arbitrarily simulate one of them in one itera-
tion instead of all pattern sets. For example, it can only simulate Y1
or Y3. If the generated patterns are valid, the correction processes are
conducted. Otherwise, the pattern generation stage proceeds to the next
�N
m. This heuristic algorithm also sets an iteration counter to bound the

processing time.
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TABLE I
EXPERIMENTAL RESULTS OF THEHEURISTIC AIR ON

COMBINATIONAL BENCHMARKS

IV. EXPERIMENTAL RESULTS

The heuristic AIR has been integrated into the SIS [17] environment
which was developed at the University of California at Berkeley.
Experiments are conducted over a set of ISCAS-85, ISCAS-89, MCNC,
and ITC-99 benchmarks. These benchmarks are in Berkeley Logic
Interchange Format (BLIF) which is a netlist level design description.
However, we only use the simulation information to conduct the
experiments and, therefore, arbitrary level of design description can
be used for conducting POF verification. The simulation information
of the BLIF benchmarks imitate the simulation model of IP cores. The
functionalities of these benchmarks include ALU (c5315), multiplier
(c6288), processors (b14, b15), and some ASIC designs, thus, the
experiments can represent the realistic SoC design appropriately to
some degree.

Table I summarizes the experimental results of the heuristic AIR on
combinational benchmarks. The first three columns show the parame-
ters of each benchmark, including name,jPIj and the gate counts (gcs).
The jPIj represents the number of inputs and the size of the POFs set
is jPIj! � 1. The gcs indicates the scale of a benchmark. The column
a=b presents “number of corrected ports/number of faulty ports”. These
faulty ports in the experiments are caused by the blind connection and
the guided connection, respectively. To imitate the actual interconnec-
tion faults in the integration, the FPS in the experiment is generated
as follows. For the blind connection, that means all ports are possibly
misplaced, therefore, for each porti, i from 1 toN , we assign a rea-
sonable random number (2 [1 � N ]) to it. If the number has been
assigned to portj, where1 � j < i, we generate another random
number to the porti until it is not repeated. This process is similar to the
real interconnection process with blindness and therefore the number
of faulty ports is nearly the same asjPIj. For the guided connection, we
assume only about 20% ports within two ports tolerance are possibly
misplaced. Then these possibly misplaced ports adopt the same FPS
generation procedure used in the blind connection to obtain the FPSs.
Since the FPSs in the blind connection and guided connection experi-
ments are generated randomly, the generated FPSs quantify the inject
out of order permutations.

The iteration bound in the experiment was set to 100. The CPU time
is measured on an Ultra Sparc II workstation in second. The AIR algo-
rithm will be terminated automatically if the iteration counter is over

TABLE II
EXPERIMENTAL RESULTS OF THEHEURISTIC AIR ON

SEQUENTIAL BENCHMARKS

the bound or the remaining UPS becomes empty. Please note that since
we are greatly concerned about how many faulty ports are injected and
corrected rather than the number of the generated verification patterns
in the experiments, we do not report the number of the verification pat-
terns in the experimental results.

According to Table I, the faulty ports of each benchmark in the
blind connection and guided connection are all corrected by the AIR
(a = b) and the processing time of most benchmarks is acceptable.
Meanwhile, the CPU time of blind connection is longer than that
of guided connection as expected. For c7552 and des benchmarks
in the blind connection, however, the CPU time is much longer
than that of the other benchmarks. This is because the c7552 and
des experiments have hundreds of faulty ports. These large amount
of faulty ports involve more diagnosis and correction operations in
the experiments and spend much time. Furthermore, a benchmark
with more gate counts also consumes longer simulation time in
the experiments and degrades the AIR performance. Nevertheless,
this timing cost can be alleviated if the number of faulty ports is
decreased or the untestable POFs are specified/given.

Table II summarizes the experimental results of the heuristic AIR
on sequential benchmarks. The fourth column lists the number of flip-
flops in a benchmark. Table II also demonstrates that the faulty ports
in each benchmark except s420, s5378, and s13207 are all corrected
within acceptable CPU time. These uncorrected faulty ports in s420,
s5378, and s13207 are caused by the tradeoff between the performance
and execution time in the heuristic pattern generation stage.
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V. CONCLUSIONS

In the SoC era, the embedded cores are mixed and integrated to create
a system chip. System designers integrate those cores manually and
have the possibility of incorrect integration due to the misplaced I/O
ports. Furthermore, without the knowledge of the internal structures
of the embedded cores, system designers have a difficult time trying to
locate the position of the erroneous interconnection. The AIR technique
provides a solution to integrate the cores with correct interconnection
automatically. Therefore, this technique can reduce the time on design
verification in core-based design methodology.

REFERENCES

[1] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L.
Todd, Surviving the SoC Revolution—A Guide to Platform-Based
Design. Norwell, MA: Kluwer, 1999.

[2] J. Bergeron, Writing Testbenches-Functional Verification of HDL
Model. Norwell, MA: Kluwer, 2000.

[3] J. A. Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,”
in Proc. Design Automation Conf., June 1997, pp. 178–183.

[4] S.-W. Tung and J.-Y. Jou, “A logic fault model for library coherence
checking,”J. Inform. Sci. Eng., vol. 14, no. 3, pp. 567–586, Sept. 1998.

[5] C.-Y. Wang, S.-W. Tung, and J.-Y. Jou, “On automatic verification pat-
tern generation for SoC with port order fault model,”IEEE Trans. Com-
puter-Aided Design, vol. 21, pp. 466–479, Apr. 2002.

[6] , “An improved AVPG algorithm for SoC design verification using
port order fault model,” inProc. Asian Test Symp., Nov. 2001, pp.
431–436.

[7] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng, “Incremental logic rectifi-
cation,” inProc. VLSI Test Symp., 1997, pp. 143–149.

[8] M. Fujita, Y. Tamiya, Y. Kukimoto, and K.-C. Chen, “Application of
Boolean unification to combinational synthesis,” inProc. IEEE/ACM
Int. Conf. Computer-Aided Design, 1991, pp. 510–513.

[9] P.-Y. Chung, Y.-M. Wang, and I. N. Hajj, “Logic design error diagnosis
and correction,”IEEE Trans. VLSI Syst., vol. 2, pp. 320–332, Sept. 1994.

[10] P.-Y. Chung and I. N. Hajj, “Diagnosis and correction of multiple design
errors in digital circuits,”IEEE Trans. VLSI Syst., vol. 5, pp. 233–237,
June 1997.

[11] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng, “Error correction based on
verification techniques,” inProc. ACM/IEEE Design Automation Conf.,
1996, pp. 258–261.

[12] A. Veneris and I. N. Hajj, “Design error diagnosis and correction via
test vector simulation,”IEEE Trans. Computer-Aided Design, vol. 18,
pp. 1803–1816, Dec. 1999.

[13] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng, “Errortracer: Design error
diagnosis based on fault simulation techniques,”IEEE Trans. Computer-
Aided Design, vol. 18, pp. 1341–1352, Sept. 1999.

[14] S.-Y. Huang, K.-C. Chen, K.-T. Cheng, and J. Y. J. Lu, “Fault simulation
based design error diagnosis for sequential circuits,” inProc. ACM/IEEE
Design Automation Conf., 1998, pp. 632–637.

[15] I. Pomeranz and S. M. Reddy, “On error correction in macro-based cir-
cuits,” IEEE Trans. Computer-Aided Design, vol. 16, pp. 1088–1100,
Oct. 1997.

[16] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computer, vol. C-35, pp. 677–691, Aug. 1986.

[17] E. M. Sentovich, K. T. Singh, C. Moon, H. Savoj, R. K. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and
optimization,” inProc. IEEE Int. Conf. Comput. Design, Oct. 1992, pp.
328–333.

[18] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. Rockville, MD: Computer Science,
1990, p. 95.

[19] D. I. Cheng and M. Marek-Sadowska, “Verifying equivalence of func-
tions with unknown input correspondence,” inProc. European Conf. De-
sign Automation With the European Event in ASIC Design, Feb. 1993,
pp. 81–85.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


