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9 Verification is a process used to demonstrate the functional correct-
ness of a design. Testing is a process that verifies whether the design
was manufactured correctly. Fig. 1 shows the reconvergent paths model
for both verification and testing [2]. The purpose of the verification is
to ensure that a design meets its functional intent. But during testing,
the finished silicon is reconciled with the netlist that was submitted for
manufacturing. Therefore, when a design is claimed to be fully tested,
i.e., 100% fault coverage, under a fault model, such as stuck at fault
(SAF) model, that means it is manufactured correctly. However, de-
signers still cannot guarantee that the chip satisfies the design spec-
ification if they do not verify it properly before manufacturing. The
chip may be manufactured correctly but designed incorrectly. Thus,
designers offer about 70% of their efforts to verification. But design
Abstract—Embedded cores are being increasingly used in large yerification is still on the critical path of the design flow [2].

system-on-a-chip (SoC) designs. The high complexity of SoC designs . . oo )
lead the design verification to be a challenge for system integrators. This Usage of cores divides the IC design community into two groups:

paper presents an automatic interconnection rectification (AIR) technique  COre providers and system integrators. In traditional system-on-board
based on the port order fault model to detect, diagnose, and correct the (SoB) design, the components that go from provider to system
misplacements of interconnection that occurred in the integration of a SoC jntegrator are ICs, which are designed, verified, manufactured, and
design automatically. The experiments are conducted on combinational ;~ciaq  The system integrator verifies the design by using these
and sequential benchmarks. Experimental results show that the AIR can . P
correct the misplaced interconnection exactly within reasonable efforts components as fault-free building blocks. SoB verification is limited
and, therefore, accelerates the integration verification of SoC designs. to detecting faults in the interconnection among the components.
Similarly, in SoC design, the components are cores. The system
integrator verifies the design by using the cores as design error free
building blocks. SoC verification focuses on the interaction among
these pre-verified cores. This higher level of abstraction decreases
the complexity of design verification on a system chip and reduces
the time spent on design verification of the entire system.
Spurred by process technology leading to the availability of more The focus of core-based design verification should be on how the
than one million gates per chip and more stringent requirements uggtes communicate with each other [3]. However, before the interface
time-to-market and performance ConstraintS, system_|eve| integratMﬁfiﬁcation, the interconnection between the cores in an SoC have to be
and p|atform_based design [1] are evolving as a nhew paradigfﬁriﬁed first. This is because the SoC integrator has to connect a |al’ge
in system designs. A multitude of components that are neededngmber of ports (hundreds or even thousands of ports) in an SoC. The
implement the required functionality make it hard for a company t#kelihood of interconnection misplacements between the cores is high.
design and manufacture an entire System in time and within reasondﬁpéthermore, the correct interconnection between the cores is the min-
imum requirement to verify the interface protocols. If the interconnec-

tions between the cores are misplaced, the process of the verification
Manuscript received March 18, 2002; revised June 20, 2002. This wdPk the interface between the cores will be in vain. Thus, the intercon-
was supported in part by the R.O.C. National Science Council under Graxction verification can be conducted as the first step to the interface
NSC89-2215-E-009-073. This paper was recommended by Associate Editerification between the cores in an SoC design.
K. Chakrabarty. . . o __Fig. 2(a) and (b) shows the schemes to demonstrate the processes of
The authors are with the Department of Electronics Engineering, Nat'oq%erconnection testing and interconnection verification, respectively.
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Fig. 2. Schemes of (a) interconnection testing and (b) interconnection verification.

block2. The testing patterns and corresponding responses are appfiditate the correct interconnection for further correction. In the AIR
and observed at the ends of the interconnects to check whether algorithm, since the IP cores are assumed to be preverified, it does not
interconnects are manufactured correctly. On the other hand, in ttensider the macro errors. For the interconnection errors, though, it
interconnection verification, the system integrators verify wheth@ot only detects, but also diagnoses and corrects the erroneous inter-
the interconnection between the blockl and block2 are located in t@nnection among the cores automatically during the integration of an
correct ports. The verification patterns and corresponding responSeeC design.

are applied and observed in primary inputs (PIs) and primary outputsThe AIR is integrated into the SIS [17] environment. Experiments
(POs) of the integrated design instead. are conducted on combinational and sequential benchmarks, such as

By creating the testbenches at a higher level, a connectivity-bad&€CAS-85, ISCAS-89, MCNC, and ITC-99 benchmarks. Experimental
design fault model, port order fault (POF), is proposed [4] and thresults show that the AIR can exactly rectify the misplaced intercon-
corresponding automatic verification pattern generation (AVPG) igction in an SoC design.
developed [5], [6]. The AVPG algorithms are effective in gener- The remainder of this paper is organized as follows. The port order
ating the verification pattern set for detecting the misplacemerftault (POF) model and some relevant definitions are introduced in
of interconnection in an SoC design. However, the diagnosis aBéction Il. The AIR algorithm is presented in Section Ill. Section IV
correction issues on the misplaced interconnection are even mpresents experimental results. Section V concludes the paper.
important for SoC verification. Thus, in this paper, we present an
automatic interconnection rectification (AIR) algorithm, which not
only detects the erroneous interconnection among the cores, but also
diagnoses and corrects them automatically during the integration ofThe POF model belongs to the group of pin-faults models [18],
an SoC design. which assumes that a faulty cell has at least two I/O ports misplaced.

Traditional diagnosis and correction algorithms in the logic levét also assumes that the components are fault free and only the
can be divided into two categories with respect to the underlyinigterconnection among the components could be faulty. There are
techniques: those based on symbolic techniques [7]-[11] and thdisee types of POFs [4].
based on simulation techniques [12]-[15]. The approaches based obefinition 1: The type-1 POF is at least one output misplaced with
symbolic techniques can return valid correction and handle circuds input. The type-ll POF is at least two inputs misplaced. The type-Iil
with multiple errors well, however, they are not applicable to circuitBOF is at least two outputs misplaced.
that have no efficient ordered binary decision diagram (OBDD) [16] Example 1: A fault-free 4-bit adder is shown in Fig. 3(a). The func-
representation. Thus, to verify the interconnection among the IP cotis of the adderigCout, S(3:0)} = A(3:0)+B(3:0)+Cin.An
with all description levels (soft, firm, and hard cores) embeddezkample of the type-I POF is shown in Fig. 3(b). Infift is misplaced
into a system, the AIR algorithm has to deal with IP cores that avdth outputS0. Fig. 3(c) shows an example of the type-Il POF. Input
described in different levels, for example, logic level, register transfef(3 : 0) are misplaced. Fig. 3(d) shows an example of the type-IlI
(RT) level, or even behavioral level. Consequently, the symbolROF. OutputS(3 : 0) are misplaced.
approach is inadequate to this application and the simulation-basedt has been proven that the type-ll POF dominates the other two types
AIR algorithm is presented. of POFs [5]. Hence, in this paper, the AIR focuses on the type-1l POF

On the other hand, the simulation-based design error diagnosis aottly.
correction techniques in the logic level locate the design errors fromDefinition 2: A port sequence is an input port numbers permutation
the erroneous POs by backtracking processes via the sensitized paiiad.indicates the relative positions among these input ports.

However, without knowing the internal structure of IP cores, the back- Definition 3: The fault-free port sequence (FFPS) is a port sequence
tracking methods are not applicable to the AIR algorithm. The onilyhere none of the input ports is misplaced. ForMsinput core, the
information obtained from the IP cores is the functional outputs by theput ports are numbered from 1 £6. The number of the input port
patterns simulation, or the simulation model. Thus, the AIR simulatesimbers permutation i§! and theséV! permutations represent ti&

the design with the valid verification patterns, which are generated pgrt sequences of the core. Except for the FFPS, the remaiihg 1)

AVPG [5], [6]. Then it compares the simulation results in POs with thport sequences represent the core with some particular POFs and are
expected ones to detect the possibly misplaced ports. Finally, the idealled faulty port sequences (FPSs). In this paper, the POFs and the
tified misplaced ports are switched to rectify the interconnection. FPSs are used exchangeably.

In [15], Pomeranzt al. proposed an error correction algorithm for Example 2: Given a 4-input core, the input ports are numbered from
macro-based designs, which considered two error classes, macro ertdrs4. Any input port numbers permutation is a port sequence of the
and interconnection errors. This approach can identify the macro erroese. It has 4port sequences totally. The only one FFPS is 1234, the
and the interconnection errors in the macro-based designs by usingréreaining ¢! — 1) port sequences are FPSs. The FPS 1423 represents
error counts technique. However, for interconnection errors, it canrthe port 4 of the prior core IP1 is connected to the location of port 2

Il. PRELIMINARY
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Fig. 3. POF model examples.
Pl P2 IP1 P2 Abbreviation Full Title
1 1 1 1 AIR Automatic Interconnection Rectification
2 2 2 2 POF Port Order Fault
3 3 3 3 UPS Undetected Port Sequence
4 4 4 4 AVPG Automatic Verification Pattern Generation
FFPS = 1234 FPS = 1423 CvV Characteristic Vector
@ (b) FFPS Fault Free Port Sequence
Fig. 4. Schematic representation of (a) FFPS 1234 and (b) FPS 1423. FPS Faulty Port Sequence
CUvV Circuit Under Verification
of IP2, the port 2 of IP1 is connected to the location of port 3 of IP2 Cv.§ Characteristic Vector of §
and the port 3 of IP1 is connected to the location of port 4 of IP2. The CVIE(S) | CV Invariant Fault of S
schematic representations of FFPS 1234 and FPS 1423 are shown in CVVE(S) | CV Variant Fault of $
Fig. 4(a) and (b), respectively. SEG Single Element Group
The undetected port sequences (UPSs) representation used in the MEG Multiple Element Group

AVPG [5], [6] is to implicitly represent the UPSs remained in the fault
set. Since it is also used in the AIR algorithm, we introduce it heggg. 5. Abbreviations and the corresponding full titles.
briefly. The detailed description can be found in [5]. We use Example 3
to demonstrate this implicit UPSs representation.

Example 3: Given an 8-input core, the input ports are numbered For better representation, Fig. 5 lists the abbreviations and the cor-
from 1 to 8. The UPSs representation (12345678) represents the UFESgonding full titles of the terminologies used in the paper.
that were caused by all possible misplacements among the port num-
bers in the same group, i.e., port 1 to port 8. The number of undetected . AIR A LGORITHM
POFs is8! — 1 and the 1 in th&! — 1 accounts for the fault-free port .
sequence. The UPSs representation (125)(4)(3678) indicates the UPs&IR Overview
that were caused by all possible misplacements among the port nuniFhe input to the AIR is the simulation model of an IP core, which is
bers 1, 2, and 5 and/or all possible misplacements among the port ngiwen by the core providers and is used for verifying the functionality
bers 3, 6, 7, and 8. The number of the undetected PG¥Fsid x4!—1.  of the core without revealing the design expertise. The four stages of
Please note that the port number 4 is the only one element in the secAfRf are pattern generation, fault detection, fault diagnosis, and fault
group. It means that the port sequences whose port number 4 wasarrection as shown in Fig. 6. The general steps of each stage are also
the wrong position are not represented by this UPSs representatighmown in this figure. In addition to these four stages, an instantaneous
The order of the groups in the UPSs representation is irrelevant, abJBSs representation is associated with the AIR. This UPSs represen-
the order of the numbers in each UPSs group. For example, the URS®Bn can indicate the currently remaining UPSs and guides the gen-
(125)(4)(3678) can also be expressed as (4)(215)(8763). The UPS mpation of further verification patterns. If the UPS is empty, the AIR is
resentation (1)(2)(3)(4)(5)(6)(7)(8) has eight groups and each growpminated and the interconnection in the integrated design is correct.
has only one element, therefore, no misplacement could have occurreBefinition 4: The initial UPSs are denoted &k, the remaining
in each group. The number of the undetected POFs<{d! x 1! x 1! x  UPSs after the verification patterns set Pi is applied to verify the inter-
1% 1! x 1! x 11 — 1 = 0. Hence, (1)(2)(3)(4)(5)(6)(7)(8) representsonnection are denoted &5.
8!—1 POFs are all detected. If the UPSs representation is induced fronin the pattern generation stage, when a patteriPsét selected as
(12345678) to (1)(2)(3)(4)(5)(6)(7)(8), all POFs are detected. the verification pattern set, some FPSs will be detecte®bgnd the
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Fig. 6. AIR flow.

Finally, in the fault correction stage, the identified misplaced ports

pattern remaining
set detected FPSs UPSs are exchanged. The intention of the fault diagnosis and correction
stages is to rectify the FP$ to \' that e UPSsII;. However, the
i —_— ITo= ini. UPSs diagnosis and correction stages usually cannot accomplish it in one
iteration. Thus, the corrected FPS has to be verified (detection,
P FPSs( P 1) I diagnosis, and correction) b¥; again until the fault effect disap-
P, FPSs( P 2) > pears after the fault detection stage. At this time, the corrected FPS

A € UPSsII;. These iterative procedures are presented with bold
P3 FPSs( P 3) K lines in the AIR flow as shown in Fig. 6. If the corrected FFSs not

: : : the FFPS yet, it will be detected and corrected by the other verification
patternsP,, wherek > i, in the subsequent iterations. Please note that

Pt FPSs( P+) Il: =FFPS since the FPS will be corrected to one that UPSsII; and UPS4I;
_ _ _ o will be reduced tdI, = FFPS eventually, we can claim that the FPS
Fig. 7. Relationship of?;, FPS¢P;) and remaining UPSHL;. A will be rectified to the FFPS at the end of AIR.

corresponding UPSs will be reduced frén_; toIl;. Then the pattern
generation stage generates further verification patterns in the next il%r-
ation according to the remaining UPBS. Thus, eact?’; corresponds  pefinition 5: For an N'-input combinational core, the exhaustive
to a set of FPSs and is responsible for detecting them. The FPSs whigltern set is defined @ . The size of” is the number of patterns
are detected by’; are denoted as FPS3). The relationship o, i 3 is denoted agb™| and|®"| equals .

FPS$P) and the remaining UPS$; is shown in Fig. 7. InFig. 7, the  pefinition 6: The set that consists of all patterns with 1s and
initial UPSs are denoted dk and we assume the pattern $8t1 IS (x — 1) 0s is denoted a®., wherem € [0,1,2,...,] N —1,N].

ma

generated befor®;. After P, is generated and applied, the remainingrhe sjze 0P is the number of patterns @), and is denoted 4"

Pattern Generation

UPSs ardl, . After the last pattern sdf, is generated and applied, the ; N N v v
- - e - and|®% | equals where = N!/(m!{(N —m)!)
remaining UPSs i§l; and it is the FFPS. The union of FR%%) sat- m| € m m ) s e
isfies the following identity: The following paragraphs are going to introduce the three stepsin the
pattern generation stage: fault activation, fault propagation, and UPSs
calculation.

J FPSs(P)UFFPS =¥ (1)

=1

a) Fault Activation: Fault activation is the most important pro-
cedure in the pattern generation stage. If the fault effect is not
whereV is the universal set a¥! port sequences. Equation (1) presentactivated, it surely cannot be propagated out. To activate a POF, the
that N! — 1 FPSs are composed of FR®s) disjointedly. The port logic assignments of the corresponding input ports cannot all be
sequence of the real interconnection of the integrated design is orthe same. For example, to activate the FPS 1243, the assignments
of N! port sequences. of port 3 and port 4 have to be different, either port 3 is assigned

If the integrated design is qualified by applying all verification patd, port 4 is assigned 1, or vice versa. AMl! — 1 POFs have to
tern sets in the fault detection stage, the interconnection is the FFB8.activated in the pattern generation stage. The following theorem
However, if the integrated design is qualified By but failed by P;, states the completeness of the POF activation.
wherej < ¢, in the fault detection stage, then the port sequenee Theorem 1:0Y can activate all (V! — 1) POFs where
FPS$PF;). At this time, the fault diagnosis stage is conducted to idemr € [1,2,...,N — 2, N — 1].
tify the misplaced ports. Proof: Please refer to [5].
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s1
10000000
initial UPSs=(12345678) CV_S1= 10000000 CV_S1 grouping
1A DA 0. DI S ANL T  (1(0000000)
01000000 ->B0 52
00100000 ->B0 01000000 CV_S2 grouping
00010000 ->B0 gg(l)‘l’gggg — O)1111111)
00001000 ->B0
00000100 ->B0 00001000 N
00000010 ->B0 00000100 remaining UPSs IT1=(1)(2345678)
00000001 ->B0 00000010

00000001 veri. pattern set P 1 ={ 10000000 }
CV_S2=01111111

Fig. 8. Simulation outputs of applyin@$.

b) Fault Propagation: The simulation results of the applied pat- In Fig. 8, we selectedb1 as the verification pattern sd?, and
terns are observed to determine which activated POFs are propagaistbrding to Theorem 2, any port misplacement which changes
to POs. The fault effects are propagated to POs if there exists differ€\_S1 will be detected by51 patterns. Thus, the port misplacements
responses among these input patterns. that cannot change C¥1 are regarded as the remaining UASs

c) UPSs Calculation: If the verification pattern seP; is gen- According to Lemma 2, the port misplacements with the same digits in
erated, we have to figure out the remaining URSsto guide the CV_S1 cannot change CM1. Thus, the port misplacements among
generation of further verification patterns. The detailed descriptidhe same digits in C\51 are UPSslI; and can be expressed as
of this step is presented within the following example. (1)(2345678) in the implicit UPSs representation. This result is stated

We use an example to demonstrate the details of pattern generatio@orollary 1.
stage (fault activation, fault propagation, and UPSs calculation). ThisCorollary 1: If a pattern sef is selected as the verification pattern
example will be used to demonstrate the fault detection, fault diagnosist P;, UPSSII; can be obtained by applying the same grouping result
and fault correction stages as well as in the subsequent sections. GoE@V.S over UPSHI;_;.
an 8-input core, according to the UPSs representation, the initial UPS#/henS1 is selected as the verification pattern gt The grouping
Il, are (12345678). The simulation results®f are shown in Fig. 8 result of C\.51 is (1)(0000000). Therefore, according to Corollary 1,
and are represented in symbolic output representation. The simulatieacan figure out UPSHE; by the same grouping of C\$1 overTl, =
results depend on the functionality of the core. The patterns with thE2345678) directly andIl; become (1)(2345678). These results are
same output are grouped into one ¥.patterns can be grouped intoalso shown in Fig. 8. Since the grouping result of GY is the same
two setsS1andS2, as shownin Fig. 8 (fault activated and propagatedas that of C\.S1 and cannot reduce UP8s, S2 is not selected as the
When we select the smaller s€1 as the verification pattern sét, verification pattern set.
the corresponding remaining UPBs have to be derived as well. The In this iteration, the remaining UPSs are reduced from (12345678)
following paragraphs describe how to calculate the remaining URSsto (1)(2345678) wherP; is generated. This means that if the port
when F; is selected. sequence\ of the real interconnection in the integrated design
Definition 7: Given a set of patternS with the same length, we UPSs (1)(2345678), when applying into the integrated design,
count the number of digits 1 in the same bit position to form a vecttine port sequence will be detected.
with the same length. This vector is called the characteristic vectorThe system integrators do not know how cores are connected exactly
(CV) of S and is denoted as C¥ [19]. in the actual integrated design. However, to demonstrate the intercon-
Definition 8: Given two pattern set§’ and S, if the patterns in nection detection, diagnosis and correction procedures, we assume the
S’" and S are all identical, we sai¢’ = S, otherwiseS’ # S.If FPSA ofthis example is given as 83762451. This FPS will be corrected
the corresponding bits in C\8’ and C\.S are all the same, we said to the FFPS 12345678 at the end of the AIR algorithm to demonstrate
CV_§' = CV_S, otherwise C\VS’ # CV_S. the success of the AIR algorithm.
Lemma 1: Assume a setefbit patternsS’ C ©%. If the pattern
setS’ turns to the pattern sef after applying a FPS\, then C\S is  C. Fault Detection

a permutation of C\S’ by the FPS\. . . .
. : . . AN We applyP; {10000000} into the design with the FPS83762451
Theorem 2: A pattern seéf, which consists of all patterns ©,, and find that the corresponding output Bf is BO as shown in the

with same outputs, turns to another pattern Seafter a FPSA. If . ; .
CV.S' % CV.S, the FPS\ will be detected by’ first row of Flg. 9(a). Since the fault-free output is A0, the fault effect
appears and is detected byP; .

Proof: Please refer to [5].

Lemma 2: Given a set af-bit patternsS’, assumes’ turns to the
pattern setS after applying a FPS\; CV_S will be equal to C\S’ if
and only if the FPS\ only switches the ports with the same digits in We applyP; into the integrated design and realize by observing the
CV.S. unexpected output BO that the real applied input isiAotSince there

Example 4: Given a pattern se&’ with 4 bits and C\/S’ is 1010. are seven patterns that produce BO output, we do not know exactly
The 1st and 3rd digits of C\6’ are both 1. The 2nd and 4th digits ofwhat the actual applied pattern is. Nevertheless, we know the actual
CV_S’ are both 0. If the FPS only switches the ports between port lapplied pattern produces A0 output instead. We sim@§tgatterns
and port 3 or between port 2 and port 4, GV remains intact. On the with the FPS 83762451 and observe the outputs until the output is
contrary, to keep C\S' being intact, the\ can only switch port 1 with  AO. These results are shown in Fig. 9(a). From Fig. 9(a), we find that
port 3 or switch port 2 with port 4. when the last pattern {00000001} is applied into the integrated design,

D. Fault Diagnosis
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Outputs Proof: CV values of correct ports in an FPS are the same as that
Patte i i i i i
m Fault Free FPS 83762451 of FFPS gnd they will not be |dent|f|eq as the po.ssml.e fault'y ports in
the fault diagnosis stage. Thus, they will be remained intact in the fault
10000000 A0 BO correction stage. Q.E.D.
01000000 BO BO Lemma 3: There exists a finite sequence of 2-switches to convert the
00100000 BO BO FFPS into an FPS\.
00010000 BO BO Lemma 4: Assume a port §e.quenm turns to another port
sequence)\2 after applying a finite sequence of 2-switches, then
00001000 B0 BO the A2 will turn back to A1 after applying the reversed order of
00000100 BO BO the same sequence of 2-switches.
00000010 BO BO Definition 10: Given a set ofr-bit patternsS’, when a 2-switch
00000001 BO A0 is applied onS’ and C\.S’ is invariant, _the _2-_switch is called a_CV
invariant fault of S’ (CVIF(S")). Otherwise, it is called a CV variant
st Eo s1 fault of §' (CVVF(S")).
00000001 —= 10000000 Theorem 4: Given a set of-bit patternsS’ and a FPS), there

exists a finite sequence of 2_switch@sswitch; ~ 2_switch, to

cvsr= 01 CV_S1=10000000 convert the FFPS into\ and this sequence of 2_switches must be

83762451 —» 13762458 in one of the following three categories:
2_switch(1, 8) 1) 2_switch; ~ 2_switch; are all CV|F$S/)
) 1)) 2_switchy ~ 2_switch; are CVIF$S') and
Outputs 2_,911,'7:tchi+1 ~ 2_switch; are CVVF$S') where
P1 1<i<i-1
Fault Free | FPS 13762458 M)  2_switchy ~ 2_switch; are all CVVF$S').
10000000 A0 A0

Proof: We assume the pattern sgt turns to the pattern set
© after applying a FPS. According to Lemma 1, C\5 is a permutation
of CV_S’, hence, C\S’ and C\L.S could be equal or not.

If CV_§" = CV_S,
P1 P2 P1 P2 (I): According to Lemmas 2 and 3\ is a finite sequence of

Fig. 9. Rectification processes @f5.

" ) ! . CVIFs(S’). Thus,2_switch, ~ 2_switch; are all CVIF$S").

5 ) ) 5 IfCV_S" # CV_S,

3 3 3 3 (I): According to Lemmas 2 and 3, there exists a finite sequence of
CVVFs(S") i1 that switches CVS’ to CV_S. According to Lemma

4 4 4 4 4, the reversed order ¢f1 applied on C\LS can turn C\/S to be

5 5 5 5 equal to C\S". At this time, the situation is the same as (1), the re-

6 6 6 6 maining possible 2_switches are a finite sequence of C\Psu2.

7 7 7 7 The concatenation gi2 and i1 is a finite sequence of 2_switches

8 8 8 8 which constructs\, where2_switch, ~ 2_switch; are CVIF$S")
and2_switchitq ~ 2_switch; are CVVF$S’),1 <i <1 -1.

FPS = 83762451 ~7 FPS = 13762458 (111): Similar as (I). However, if;2 is empty, ther2_switch; ~

2_switch(1,8) 2_switch; is a finite sequence of CVVES'). Q.E.D.

In this example, the 2_switch(1,8) is a CVW&1'). Therefore,
according to Theorem 4, the corrected FRSis a sequence of
_ o CVIFs(S1’). Theorem 4 guarantees that the C{8E') are the only
the output becomes AQ. This result implies that the RPSIs the ogsiple faults which we have to deal with in the succeeding iteration.
pattern {00000001} to {10000000}. We put the pattern {00000001f Since eaclP, corresponds to a set of FPSs, FASsand is respon-

Fig. 10. One correction operation of the FPS 83762451.

into 51" and assumé1 is {10000000}. Then we calculate C¥1" = sjple for detecting them. If the corrected FRSZ FPS$P,), P is not
00000001 and CV-51 = 10000000. Afterward, the misplaced ports gpje to detect and correct any other faulty ports‘inAt this time, fur-
can be identified by comparing C¥1" and CV_51. ther verification pattern sel;,, wherek > 4, are generated to detect

and correct the other faulty ports k1. However, how can we know the
corrected FPS' € TI, and cannot be corrected B anymore? The

Definition 9: The exchange of two ports is defined as a 2_switcliollowing corollary states the condition that has to be satisfied so that
The exchange of port and porty is denoted a8_switch(x,y). the corrected FPS' ¢ FPSgP;) (or € UPSSIL,).

Comparing CVS1’ and C\.51, we observe that the first and eighth  Corollary 2: If the actual outputs are consistent with the expected
digits of CV_S1’ and C\_.S1 are different. Thus, we switch port 1 with ones when applying; into the integrated design with a corrected FPS
port 8to let C\LS1 be the same as C\¥1'. Then the corrected FPS be-\’, then the corrected FPS € UPSsII;.
comes 13762458 and is shown in Fig. 9(b). This correction operationTherefore, according to Corollary 2, we apgty into the integrated
in the actual integration verification process is also shown in Fig. 10design again with the corrected FRS13 762 458 to see whether the

The following lemmas and theorem state the convergency of fault can be further corrected i . In Fig. 9(c), we find that the outputs
correction procedure, i.e., the fault correction stage will correct the mist P, in the integrated design with theé 13762 458 is A0, which is
placed ports within finite iterations. the same as the expected one, Thusc UPSsTI; (1)(2345678). At

Theorem 3: The correct ports in an FRSwill not be rectified to this time, we move to the next iteration to generate further verification
faulty ones in the fault correction stage. pattern set$, (k > 1) to detect and correct the remaining faulty ports.

E. Fault Correction
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S3
10111111
11011111

CV_S3[2:8]= 1122222

UPSs IT1=(1)(2345678) CV_S3[2:8] grouping

=(11)(22222)

ISR I I R Vi .
L11011111->A1_! sS4 CV_S4[2:8] grouping
11101111 ->Bl 11101111 =(55)(44444)
P10 ->Bl HIOIL rernaining UPSs T2 =(1)(23)(45678)
11111011 ->Bl 11111011
11111101 ->Bl 11111101  veri. pattern set P2 ={ 10111111,11011111 }
11111110 ->Bl 11111110

CV_S4[2:8]= 5544444

Fig. 11. Simulation outputs of applyin@:.

Outputs Outputs
Pattern Pattern
Fault Free | FPS 13762458 Fault Free | FPS 15762438
10111111 Al Bl 10111111 Al Bl
11011111 Al Al 11011111 Al Bl
11101111 Bl Bl 11101111 Bl Bl
11110111 B1 Bl 11110111 Bl Al
11111011 Bl Bl 11111011 Bl Bl
11111101 Bl Al 11111101 Bl Al
@ @
S3’ S3 S5’ S5
11011111 FPS 10111111 11110111 FPS 10111111
11111101 == 11011111 11111101 == 11011111

CV_S3'=22122212  CV_S3=21122222

CV_S5'= 22221212
15762438

CV_S85=21122222
== 12365478

13762458 == 15762438

2_switch(2,7) 2_switch(2, 5)

2_switch(3,7)

(b)
(b)
Outputs
P2 Outputs
Fault Free | FPS 15762438 P2
Fault Free | FPS 12365478
10111111 Al Bl
10111111 Al Al
11011111 Al Bl
11011111 Al Al
(©
(©

Fig. 12. Rectification processes &f (1/2).

Fig. 13. Rectification processes &f5 (2/2).

F. Succeeding Iterations in the AIR according to their outputs. These groups are sorted by size in ascending

Definition 11: A single element group (SEG) is a group that conerder. To select a group as the verification pattern set, we always
tains only one port number in the UPSs representation. A multiple elthoose the group with the smallest size if it indeed can detect new
ment group (MEG) is a group that contains more than one port numb€&RS. Thus, in this examplé3 is selected as the verification pattern
in the UPSs representation. setP». After the selection 063, we find CV_S3[1 : 8] = 21122222.

The group (1) in UPS$I;, = (1)(2345678) is an SEG and the Sincell, are (1)(2345678), the POFs related to the port in the SEG
group (2345678) inll; is an MEG. The physical meaning of theside are all detected, therefore, we only considec£3}2 : 8] when
SEG is that the remaining undetected port sequences are all irreleamdlyzing the remaining UPSs. The grouping result of €3f2 : §]
to the port in the SEG and further pattern generation does not hase (11)(22222). Thus, according to Corollary II. becomes
to activate any POFs related to the port in the SEG. Therefof@)(23)(45678).
when we searcl®? for further verification patterns, we find that When P, is generated, we have to apply it to the integrated design
the pattern {01111111} cannot activate any remaining POFH in to verify the interconnection immediately. The outputd®fwith the
This is because the logic assignments in the pors82of pattern FPS 13762458 differ from the expected ones as shown in the first row of
{01111111} are all the same. Therefore, we exclude it fréfhto  Fig. 12(a). Thus, the FPS 13762458 is detecte®hyNow, we correct
minimize the number of simulation patterns. The other patterns tine faulty ports of\’ in the same way as mentioned in the previous
©% and their simulation outputs are shown in Fig. 11. We pufXan paragraphs.
in the output of the pattern {01111111} to indicate the exclusion In Fig. 12(a), we simulate the integrated design with FPS 13762458
of this pattern from©% simulation. The remaining patterns ®5 and find that the patterns {11011111, 11111101)88f produce Al
are grouped into two groups§3 = {10111111,11011111} and output. Let these patterns be$i3’ and compare C\53" and CV.53
5S4 = {11101111,11110111,11111011,11111101,11111110}, as shown in Fig. 12(b). We can easily identify that ports 2 and 7 are
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UPSs Il2 =(1)(23)(45678)

S6 S7
attern SEG side | MEG side
P set outputs description 11000000 10100000
D) | (23)(45678) - CV_S6= 11000000 iggé‘l’ggg
o Tl T Sl 0wy Sl el S One 1 is placed
-1 1-10.00000. 4 _A20 ) SE‘Z} 4 CV_S6[2:8] grouping 10000100
1 01 00000 | B2 | InthedSEGside,
and her 1i =(1)(000000) 10000010
1 00 10000 B2 nd another 1 1s 10000001
Fault effects are
1 00 00010 B2 .
CV_S7([2:8] grouping
ropagated to POs
1 00 00001 B2 propag ~0)(111111)
Y2 0 11 00000 | >< | No POFs activation UPSs TTz =(1)(2)(3)(45678)
0 10 10000 A3 veri. pattern set P 3 ={ 11000000 }
0 10 01000 A3
Y3 0 10 00100 A3 One 1 is placed in S8 S9
0 10 00010 A3 QZ and al?other 1 00011000 00010100
0 10 00001 A3 is placed in G3. 00010010 00001001
0 01 10000 | A4 | Faulteffectsare 00010001 00000101
0 | 0101000 | A4 “0;13"?383‘6‘1 00000110 00000011
to S. - -
Y4 0 01 00100 | A4 CV_S8= 00031121 CV_S9=00011213
0 01 00010 Ad
0 01 00001 A4 CV_S8[4:8] grouping CV_S9[4:8] grouping
b R O 1O Y V- =(3)(111)(2) =(111)(2)(3)
0 00 10100 BS
Y0 " 7[00 10010 | T A5 s10
o 00 10001 | A5 , | Two lsareplaced 00001100
Y5 A A Gl3~ . 00001010
|_D__-_Do_01010.____(_‘5-‘| ault eftects are —
o 00 01001 Be | activated and CV_S10=00002110
T 000110 AS propagated to POs. CV_S10[4:8] grouping
0 00 00101 BS =(00)2)11)
0 | 0000011 | BS UPSs Tl =(1)(2)(3)(48)(5)(67)

veri. pattern set P4 ={S10}
UPSs IIs =(1)(2)(3)(4)(5)(6)(7)(8)
veri. patternset Ps ={ S8 }

Fig. 14. Simulation outputs of applyin@3.

misplaced. After the 2_switch(2, 7), the FPS becomes 15 762 438 and,

Outputs
according to Theorem 4, CVV{K3') are corrected. The remaining P3 FaultF e P—
possible faulty ports are CV(53’) and they can be expressed as ault Tree
[124568][37]. This representation means the port numbers in the same 11000000 A2 A2

bracket are possibly mutually misplaced ports. We applyto the
integrated design again with the corrected FPS 15762438 and shgW 15, Fault free for P3 verification.
the outputs in Fig. 12(c). Since they are different from the expected
ones, the FPS 15762438 has to be further corrected.

In Fig. 13(a), we simulate the integrated design with FPS 15762438Thereafter, the verification pattern search by (1)(23)(45678) is
and find that the patterns {11110111, 11111101)35f produce A1 continuedIl> have three groups that are numbered f@ino G3, i.e.,
output. Let these patterns beSi’ and we renamé'3 asS5 for clear- G1is (1),G2 is (23) andG'3 is (45678).G'1 is an SEG and2 ~ G3
ance of explanation. We compare G’ and CV.S5 as shown in are MEGs. Please note thallf = (1)(23)(45678) can be reduced to
Fig. 13(b) and find that there are two choices to correct the misplacBd = (1)(2)(3)(4)(5)(6)(7)(8),the remaining POFs are all detected.
ports, either port 2 with port 5 and port 3 with port 7, or port 2 with Then®3 are simulated. The patterns@ have two 1s and six 0Os.
port 7 and port 3 with port 5. According to the result of last iterationThese two 1s in each pattern can be placed in the SEGs, the MEGS,
CVIF(S3') = [124568][37] are possibly mutually misplaced ports.or both. The SEG and MEG groups are placed side by side and all
We find that port 2 and port 5 are in the same bracket as well as partsnbinations of@3 patterns are listed in Fig. 14. In Y1, the MEG
3 and 7. Thus, we switch port 2 with port 5 and port 3 with port Bide assignments af@], therefore, all remaining POFs are activated
as shown in Fig. 13(b). Now, the FPS becomes 12365478. Fig. 13écording to Theorem 1. The outputs of Y1 are not all the same, thus,
shows the outputs aP, with the corrected FPS 12365478. Since théhe activated fault effects are propagated. The smaller pattesGset
outputs are identical, according to Corollary 2, the corrected€EPE  is selected ag’; and UPSdI3 become (1)(2)(3)(45678). We apply
(1)(23)(45678). P5 into the integrated design with FPS 12365478 and observe that the

ForS4 in Fig. 11, since it has no contribution in reducing the size aforresponding output is the same as A2 as shown in Fig. 15. Thus, FPS
UPSSII,, further, it is not selected as the verification pattern set. 12365478 € II5.



112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 1, JANUARY 2003

Y2 does not activate any undetected POF, therefore, we have no Outputs
need to simulate it. Sinc&2 = (23) is grouped into two SEGs in Pattern Fault Free | FPS 12365478
I3, Y3 and Y4 have to be analyzed separately. For Y3, the outputs
are all A3, thus, the activated fault effects@8 = (45678), are not 00011000 AS cs
propagated to POs. For Y4, the outputs are all A4, thus, the activated 00010100 B5 B5
fault effects ofG3 are not propagated to POs, either. For Y5, we group 00010010 AS AS
thesg patterns into three group8 ~ S10 according to their outputs. 00010001 AS BS
S10 is selected a$, andIl, become (1)(2)(3)(48)(5)(67). We apply
P, into the integrated design with FPS 12365478, the output®;of 00001100 G AS
are shown in the last two rows of Fig. 16(a). Since the outputs are not 00001010 G5 cs
all C5, the FPS 12365478 is detected By. In Fig. 16(a), we simu- @)
late the integrated design with FPS 12365478 and find that the patterns - $10
{00011000, 00001010} of Y5 produce C5 output. Let these patterns
in 10" and compare C\510" with CV_510 as shown in Fig. 16(b). 00011000 FPS 00001100
We can identify that ports 4 and 6 are misplaced. After the 2_switch(4, 00001010 == 00001010
6), the FPS becomes 12345678 and it is the FFPS. However, we do not CV_S10’=00012010 CV_S10=00002110
know the FPS has been rectified to the FFPS already in practical veri- 12365478 = 12345678
fication process. Thus, the AIR processes are continued. We &pply 2_switch(4, 6)
into the integrated design again with the FPS 12345678 and their out- (b)
puts are shown in Fig. 16(c). Since the outputs are identical, according
to Corollary 2, the corrected FR8345678 € 14 (1)(2)(3)(48)(5)(67). Outputs

When S8 is selected ad’s, 115 becomes (1)(2)(3)(4)(5)(6)(7)(8). P Fault Free | FPS 12345678
Similarly, we apply Ps into the integrated design and observe that 00001100 P Cs
the outputs are the same as A5 as shown in Fig. 17. Thus, the FPS
12345678 € II; and is the FFPS. Sindé; is the empty UPS, the AIR 00001010 G5 G5
is terminated. (©

Now, the original FPS 83762451 is corrected as the FFPS 12345%?8 16. Rectification processes 6f°
as desired at the end of AIR algorithm. This result demonstrates that he > P 2
AIR algorithm can rectify the misplaced interconnection to the correct
interconnection in the integrated design.

From the description above, we know that if the pattern generation Pattern Outputs
stage can generate the verification pattern Sgts: P, with the UPSs Fault Free | FPS 12345678
Il: = FFPS, then the other stages of AIR can rectify the faulty in- 00011000 A5 AS

terconnection to the fault-free one. Thus, the success of AIR strongly

. . f 00010010 A5 AS
depends on the pattern generation stage. Since the pattern generation
stage will search ab? form=1,2,....N—1if necessary, itis a 00010001 AS AS
complete algorithm. This complete pattern generation algorithm leads 00000110 A5 A5

the AIR algorithm to be complete as well.

Fig. 17. Fault free for P5 verification.
G. Sequential AIR

The development of the sequential AIR is based on the same
assumption as the combinational AIR, i.e., the circuit under verification
(CUV) is preverified and fault free. The fault occurs only at the Definition 12: An untestable POF is a POF which cannot be
interconnection between the cores. For the testability concern, mdstected after applying”.
sequential cores are designed with scan chains. Thus, we assunihe untestable POF is harmless for the integrated design, therefore,
here that the sequential cores in the experiments are scan-testahky do not have to be corrected in the AIR. The possibility of existing
These sequential cores can be set in arbitrary state and therefore tiragstable POFs in the CUV makes the pattern generation stage very
can be seen as combinational ones. Consequently, the AIR algorittitme consuming. Therefore, a heuristic pattern generation algorithm is
used in the combinational cores is applicable to the sequential ongamposed to replace the complete one in the AIR to trade off between
The only difference is that the sequential cores have to be setthe performance and the execution time. Here we only address the

Heuristic AIR

a state by sequential AIR before evaluating outputs. heuristic combinational AIR. This is because the combinational AIR
The sequential AIR sets the simulation model of a sequential cdgethe basis of the sequential AIR.
to a stateS; and simulates on@®?’ . If the outputs of the selected’! We review Fig. 14, which shows the outputs®§ simulation in

are all the same, it chooses anotherfor ©/) simulation, otherwise, the complete pattern generation algorithm. In this figure, the pattern
the valid patterns are generated. If @l (formm = 1 ~ N — 1) are sets Y1, Y3~ Y5 are generated and simulated. However, according to
simulated in staté; and the POF coverage is not 100% yet, sequenti@heorem 1, any one of them can activate all remaining POFs and has
AIR sets another stat§;, whereS; # S; and repeats the san@),  the possibility to reduce the size of the remaining UPSs. Hence, the
simulation to conduct the pattern generation and so on [5]. When theuristic approach is to arbitrarily simulate one of them in one itera-
valid patterns are generated with st&tethey are applied into the de- tion instead of all pattern sets. For example, it can only simulate Y1
sign with stateS; to verify and rectify the misplaced interconnectioror Y3. If the generated patterns are valid, the correction processes are
just as the combinational AIR did mentioned in Sections IlI-C—lll-Fconducted. Otherwise, the pattern generation stage proceeds to the next
The sequential AIR will set the sequential core to every possible st&é’. This heuristic algorithm also sets an iteration counter to bound the
to generate the verification patterns until the POF coverage is 100%arocessing time.
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TABLE | TABLE I
EXPERIMENTAL RESULTS OF THEHEURISTIC AIR ON EXPERIMENTAL RESULTS OF THEHEURISTIC AIR ON
COMBINATIONAL BENCHMARKS SEQUENTIAL BENCHMARKS
parameters blind connection guided connection parameters blind connection | guided connection
bench | PI] T gs. a/b time a/b time bench [PI] | ges. | FFs a/b time a/b time
c17 5 6 575 0.1 33 0.1 51196 14 | 529 | 18 | 1313 2 575 142
c880 | 60 | 357 60/60 182 | 13/13 9 51238 14 | 508 | 18 | 1313 31 33 8.9
c1355 | 41 | 514 | 4u41 179 8/8 50 51488 8 653 6 8/8 39 4/4 30
c1908 | 33 | 880 | 3232 167 6/6 46.5 51494 8 647 6 6/6 62 22 41
c432 | 36 | 160 | 36/36 43 6/6 7 515850 14 | 9786 | 597 | 1313 | 1382 5/5 1252
c499 | 41 | 202 | 3939 59 9/9 16.6 5208 1 | 104 8 | 111 | 201 4/4 21
c3540 | 50 | 1667 | 48/48 882 | 1212 268 $27 4 10 3 4/4 0.1 P 0.1
c5315 | 178 | 2290 | 178178 | 11505 | 34134 | 2692 5420 19 | 218 | 16 | 1618 | 647 4/4 475
c2670 | 233 | 1161 | 2327232 | 10119 | 3737 1937 $5378 35 | 2779 | 164 | 29133 | 3149 919 3083
c7552 | 207 | 3466 | 207207 | 26689 | 3939 | 6477 5641 35 | 379 | 19 | 3535 | 136 9/9 81
c6288 | 32 | 2416 | 3232 3 8/8 466 5713 35 | 393 | 19 | 3333 | 137 m 85
des | 256 | 681 | 2551255 | 20076 | 48/48 | 3655 5820 18 | 289 5 | 17 | 1005 515 979
alud 14 | 112 14/14 75 3 29 5832 18 | 287 5 | 1818 | 1014 8/8 1004
apexz6 | 135 | 238 | 135135 | 1180 | 28/28 314 5838 35 | 446 | 32 | 3333 | 11n 8/8 908
9 88 | 353 88/88 555 | 1717 136 59234 36 | 5597 | 211 | 3535 | 8133 9/9 7620
i8 133 | 1183 | 1331133 | 4340 | 24124 1196 5444 3 181 | 21 i 62 272 56
i7 199 | 406 | 198198 | 3150 | 33/33 530 $510 19 | 211 6 | 1818 | 130 6/6 105
i6 138 | 344 | 138138 | 1170 | 2929 309 5344 9 160 | 15 99 45 4/4 2.6
i5 133 | 199 | 132132 | 620 | 25125 126 5349 9 161 | 15 9/9 78 33 2.1
duke2 | 22 29 2222 30 6/6 295 5382 3 158 | 21 33 44 3 44
rot 135 | 138 | 135135 | 801 | 2727 195 5386 7 159 6 515 46 33 40
zl 51 28 51/51 88 111 36 5400 3 162 | 21 33 49.6 33 46
z3 135 | 332 | 135135 | 1882 | 25125 466 513207 31 | 8027 | 669 | 23128 | 19114 | 4/4 9352
z4 9% | 136 94/94 494 | 19/19 167 51423 17 | 657 | 74 | 1717 | 1586 5/5 375
pair | 173 | 824 | 173173 | 5299 | 3434 923 56669 83 | 3080 | 239 | 83/83 | 12954 | 16/16 | 10223
54863 49 | 2342 | 104 | 49149 | 7733 | 11/ 4551
51269 18 | 569 | 37 | 16116 56 4/4 248
51512 29 | 780 | 57 | 29129 | 2489 6/6 1932
§3271 26 | 1572 | 116 | 25125 | 6254 n 4876
V. EXPERIMENTAL RESULTS 53330 40 | 1789 | 132 | 40/40 | 805 6/6 156
. . . . 4 4 43/4 4
The heuristic AIR has been integrated into the SIS [17] environment ,:f::o,l 32 §§§§ ﬁ 32,33 6;07; 32 242528
which was developed at the University of California at Berkeley. 210 1153 4 17 1%170 gg 3;2 }g;
Experiments are conducted over aset of ISCAS-85, ISCAS-89, MCNC, b}; ; 3;8 1321, 55 482 3 315
and ITC-99 benchmarks. These benchmarks are in Berkeley Logic b13 10 | 255 | 53 8/8 226 33 210
Interchange Format (BLIF) which is a netlist level design description. g}g 23 333; ﬁ; g;g; }giii lgﬂo }222
However, we only use the simulation information to conduct the minmazio | 13 102 | 30 | 1712 6.6 33 4.8
experiments and, therefore, arbitrary level of design description can ::Zﬁ‘;;;g ;g ;gg ;g ;jg: ,’106 3;3 ‘;53
be used for conducting POF verification. The simulation information = minmaz5 8 52 15 | 77 15 414 1.4
e : ; mult32 32 | 3145 | 32 | 3131 | 718 mn 202
of thg BLII_:_benchmarks imitate the s!mulatlon model of IP cores. 'I_'he whe w0 | o7 | 28 | wm0 | s17 o8 7
functionalities of these benchmarks include ALU (c5315), multiplier tlc 3 76 | 10 | 33 03 33 03

(c6288), processors (b14, b15), and some ASIC designs, thus, the
experiments can represent the realistic SoC design appropriately to
some degree. the bound or the remaining UPS becomes empty. Please note that since
Table | summarizes the experimental results of the heuristic AIR ove are greatly concerned about how many faulty ports are injected and
combinational benchmarks. The first three columns show the pararserrected rather than the number of the generated verification patterns
ters of each benchmark, including nanf| and the gate counts (gcs).in the experiments, we do not report the number of the verification pat-
The |Pl| represents the number of inputs and the size of the POFs t&hs in the experimental results.
is |PI|! — 1. The gcs indicates the scale of a benchmark. The columnAccording to Table I, the faulty ports of each benchmark in the
a/b presents “number of corrected ports/number of faulty ports”. Thebéind connection and guided connection are all corrected by the AIR
faulty ports in the experiments are caused by the blind connection gnd= ) and the processing time of most benchmarks is acceptable.
the guided connection, respectively. To imitate the actual interconné&eanwhile, the CPU time of blind connection is longer than that
tion faults in the integration, the FPS in the experiment is generateflguided connection as expected. For c7552 and des benchmarks
as follows. For the blind connection, that means all ports are possiliaty the blind connection, however, the CPU time is much longer
misplaced, therefore, for each pért from 1 to NV, we assign a rea- than that of the other benchmarks. This is because the ¢7552 and
sonable random numbeg ([1 ~ N]) to it. If the number has been des experiments have hundreds of faulty ports. These large amount
assigned to porf, wherel < j < 7, we generate another randomof faulty ports involve more diagnosis and correction operations in
number to the portuntil itis not repeated. This process is similar to thehe experiments and spend much time. Furthermore, a benchmark
real interconnection process with blindness and therefore the numidth more gate counts also consumes longer simulation time in
of faulty ports is nearly the same @a|. For the guided connection, we the experiments and degrades the AIR performance. Nevertheless,
assume only about 20% ports within two ports tolerance are possiliys timing cost can be alleviated if the number of faulty ports is
misplaced. Then these possibly misplaced ports adopt the same BB&eased or the untestable POFs are specified/given.
generation procedure used in the blind connection to obtain the FPSSTable I summarizes the experimental results of the heuristic AIR
Since the FPSs in the blind connection and guided connection experi-sequential benchmarks. The fourth column lists the number of flip-
ments are generated randomly, the generated FPSs quantify the ifflegis in a benchmark. Table Il also demonstrates that the faulty ports
out of order permutations. in each benchmark except s420, s5378, and s13207 are all corrected
The iteration bound in the experiment was set to 100. The CPU timéthin acceptable CPU time. These uncorrected faulty ports in s420,
is measured on an Ultra Sparc Il workstation in second. The AIR alge5378, and s13207 are caused by the tradeoff between the performance
rithm will be terminated automatically if the iteration counter is oveand execution time in the heuristic pattern generation stage.
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V. CONCLUSIONS

(8]

a
a system chip. System designers integrate those cores manually antg]
have the possibility of incorrect integration due to the misplaced 1/Q10]
ports. Furthermore, without the knowledge of the internal structures
of the embedded cores, system designers have a difficult time trying to
locate the position of the erroneous interconnection. The AIR techniquELl]
provides a solution to integrate the cores with correct interconnection
automatically. Therefore, this technique can reduce the time on desigmn2]
verification in core-based design methodology.

(1]

(2]

[3] J.A.Rowson and A. Sangiovanni-Vincentelli, “Interface-based design,”

(4
(5]

(6]

(7]
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