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Abstract. We proved the existence of exact quadrature formulae with semi-
positive definite coefficient matrices for polynomials of prescribed degree in n
variables and with respect to a semi-spectral measure. Our proof could be
viewed as a direct translation (generalization) of Putinar’s result on the exis-
tence of quadrature formulae for a positive measure without compact support.

1. Introduction

The classical one-dimensional moment problem could be successfully answered by
several approaches. For the higher dimensional case, there is much less known infor-
mation. The theory of quadrature identities is one of the main themes. Tchakaloff’s
Theorem [5] asserts the existence of an exact quadrature formula with positive co-
efficients for polynomials of prescribed degree in n real variables and with respect
to a positive measure with compact support which is absolutely continuous with
respect to Lebesgue n-volume measure. This result was the source of several further
developments in the theory of quadrature formulas; cf. [4].

We generalize Tchakaloff’s Theorem to arbitrary semi-spectral measure in the
Euclidean space. The motivation for this investigation came from the study of semi-
spectral measure for the control theory and from some interesting work of Curto
and Fialkow on truncated multi-variable moment problems during the discussion
with M. Putinar. We believe that people who study linear control theory may be
interested in quadrature problems for matrix-valued measures.

Let x = (x1, . . . , xn) be the current vector in Rn and let Pd(Rn) be the real
vector space of polynomials in x of total degree less than or equal to d. Let Nd(Rn)
be the dimension of Pd(Rn). We say that E is a semi-spectral measure if E(X)
is a symmetric semi-positive definite (l× l) matrix for an arbitrary measurable set
X ⊂ Rn. Our main results are stated in the following two theorems.

Theorem 1. Let E be a semi-spectral measure with compact support K in Rn and
let d be a fixed positive integer. Then there are N (≤ l2Nd(Rn)) points xj ∈ K and
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semi-positive definite matrices Aj, j = 1, . . . , N , such that∫
Rn
p dE =

N∑
j=1

Ajp(xj)

for all p ∈ Pd(Rn).

Note that we may replace l2Nd(Rn) by the smaller upper bound l(l+1)
2 Nd(Rn)

in the above assumption.

Theorem 2. Let d be a fixed positive integer and let E be a semi-spectral measure
in Rn with the property that ∫

Rn
|xα| dE

exists for every multi-index α such that |α| ≤ 2d, where α = (α1, α2, . . . , αn),
xα = xα1

1 xα1
2 · · ·xαnn and |α| = α1 +α2 + . . .+αn. Then there are N (≤ l2N2d(Rn))

points xj ∈ supp(E) and semi-positive definite matrices Aj, j = 1, . . . , N , such that∫
Rn
p dE =

N∑
j=1

Ajp(xj)

for all p ∈ P2d−1(Rn).

Trivially, we have the following corollary.

Corollary 3. Let d be a fixed positive integer and let E be a semi-spectral measure
in Rn with the property that ∫

Rn
|p| dE

exists for every p ∈ P2d(Rn). Then the conclusion in Theorem 2 holds.

If the support of the semi-spectral measure is contained in a proper closed convex
cone of Rn generated by n linearly independent vectors, we may assume that the
support of the semi-spectral measure is in the first octant Rn+ with an affine trans-
formation. If the moments of E up to degree d exist, both the condition in Theorem
2 and the positivity needed in the proof of Theorem 2 are trivially satisfied. Hence
we have the following corollary.

Corollary 4. Let E be a semi-spectral measure in Rn with support contained in
a proper convex cone and with moments up to degree d. Then there are N (≤
l2N2d(Rn)) points xj ∈ supp(E) and semi-positive definite matrices Aj, j = 1, . . . ,
N , such that ∫

Rn
p dE =

N∑
j=1

Ajp(xj)

for all p ∈ Pd−1(Rn).

Note that the degree in Corollary 4 need not be even as in Theorem 2 since the
positivity needed in the proof is from the support of E in the first octant and not
from the top degree any more.

In the theory of quadrature identities, finding the quadrature formulae with a
minimal number of nodes (i.e., finding so-called Gaussian quadratures) is a very
important subject. We hope to return to this matter elsewhere.
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2. Proof of the theorems

Our proof of Theorems 1 and 2 closely follows the method of Putinar [3].

Proof of Theorem 1. First, it is obvious that both sides of the quadrature formulae
are linear. Hence, if there exist quadrature formulae for monomials in Pd(Rn), then
these quadrature formulae are true for all polynomials p ∈ Pd(Rn). We consider
the vectors

v(x) = (1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n) ∈ RM

which enumerate in a prescribed order all monomials of total degree less than or
equal to d. To simplify notation we put M = Nd(Rn) and N = l2M . Clearly,
v : K → RM gives an embedding of K in RM . Define V (K) to be the image of v,
i.e.,

V (K) = {v(x)| x ∈ K}.
Since K is compact, it follows that V (K) is also compact in RM . Define the convex
cone CN (K) to be the set of vectors u ∈ Rl2M which are linear combinations

u =
∑
i

Aivi = (
∑
i

Ai,
∑
i

Aixi1,
∑
i

Aixi2, . . . ,
∑
i

Aix
d
in),

with semi-positive definite matrices Ai, of at most N(= l2M) vectors vi of V (K).
Note that vi = v(xi) = (1, xi1, xi2, . . . , xdin) for some xi = (xi1, xi2, . . . , xin) ∈ K.

In order to prove the theorem, we need to show that CN (K) is a closed convex
cone. That is, given a sequence {uj} of vectors in CN (K),

uj =
∑
i

Aijvij ,

which converges to a vector u0 = (A01, A02, . . . , A0M ) ∈ Rl2M , we need to show
that u0 ∈ CN (K). The key step is to show that {‖Aij‖} is bounded, where ‖Aij‖
is the maximum of absolute eigenvalues of Aij . Consider the first component of uj,
which is

∑
iAij since the first component of any vij is 1.

∑
iAij converges to A01.

Hence, {
∑
iAij} is bounded. The trace norm of a symmetric matrix A is defined

to be ∑
λ: eigenvalue

mul(λ)|λ|,

where mul(λ) is the algebraic multiplicity of λ in A (see the Appendix). Because
of the semi-positivity of Aij ,

∑
Aij is semi-positive definite. Since the trace norm

of a semi-positive definite matrix is exactly the same as its trace, it follows that

‖Aij‖ ≤ Trace(Aij) ≤
∑
i

Tr(Aij) = Tr(
∑
i

Aij).

Since {
∑
iAij} is bounded, {‖Aij‖} is bounded. Both the boundedness of {‖Aij‖}

and the compactness of V (K) imply that the sequence {uj} is in a compact subset
of CN (K). Therefore, u0 ∈ CN (K) and CN (K) is a closed convex cone.

By Caratheodory’s Theorem, any finite sum
∑

iAivi can be replaced by a sum
of at most l2M terms. Let E be a semi-spectral measure with compact support K
in Rn. Since the integral

∫
Rn v(x)dE(x) can be viewed as a limit of finite sums and
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CN (K) is closed, we obtain

(
∫
Rn
dE,

∫
Rn
x1 dE,

∫
Rn
x2 dE, . . . ,

∫
Rn
xdn dE)

=
∫
Rn
v(x) dE(x)

=
∑
i

Aivi

=
∑
i

Aiv(xi)

= (
∑
i

Ai,
∑
i

Aixi1,
∑
i

Aixi2, . . . ,
∑
i

Aix
d
in),

which verifies a quadrature formula for all monomials in Pd(Rn) simultaneously.
Hence, we complete the proof.

Notice that, by the proof of Theorem 1, we have

CN (K)

= {
∫
Rn
v(x) dE(x) | E is a semi-spectral measure in Rn with moments up to

degree d}.

Proof of Theorem 2. Let us recall a standard Bolzano-Weierstrass trick. Given a
real sequence, there is a subsequence that either converges or diverges to −∞ or
∞. In the proof, we are going to keep using this trick.

Let E be a semi-spectral measure on Rn, which admits all its moments of degree
less than or equal to 2d. We denote by Er the semi-spectral measure E restricted to
the closed ball Br of radius r, centered at origin. In order to use the trick mentioned
above, let us consider that r is a positive integer only. By Theorem 1, there is a
system of N(= l2N2d(Rn)) points, xj(r) ∈ Br, and semi-positive definite matrices
Aj(r) such that ∫

Br

p dE =
N∑
j=1

Aj(r)p(xj(r))

for p ∈ P2d(Rn).
Let C be a positive constant such that Tr(

∫
Rn |xα| dE) ≤ C for all |α| ≤ 2d.

Hence,

0 ≤ Tr(Aj(r)) ≤ Tr(
N∑
j=1

Aj(r)) = Tr(
∫
Br

dE) ≤ Tr(
∫
Rn
dE) ≤ C.

Therefore, by passing to a subsequence in r, we can assume that the limits

lim
r→∞

Aj(r) = Aj

exist for all 1 ≤ j ≤ N .
Let xji(r) be the i-th coordinate of xj(r) in Rn. By passing to a subsequence

successively, we can assume that the limit limr→∞ xji(r) is either a real number
xji, −∞ or ∞ for all index pairs (j, i), 1 ≤ j ≤ N and 1 ≤ i ≤ n.
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Fix an index j. If limr→∞ xji(r) = −∞ or ∞ for some index i, then

0 ≤ Tr(Aj(r))xji(r)2d ≤ Tr(
N∑
j=1

Aj(r)xji(r)2d) = Tr(
∫
Br

x2d
ji dE) ≤ C,

which implies that
lim
r→∞

Aj(r) = 0

and
lim
r→∞

Tr(Aj(r))xji(r)k = 0

for 0 ≤ k ≤ 2d− 1. Therefore, we obtain

lim
r→∞

(Tr(Aj(r)) max
1≤i≤n

|xji(r)2d−1|) = 0

and

0 ≤ lim
r→∞

Tr(Aj(r))|x(r)α | ≤ lim
r→∞

[Tr(Aj(r)) max
1≤i≤n

|xji(r)2d−1|] = 0

for |α| ≤ 2d− 1. Hence, we have

lim
r→∞

Aj(r)xj(r)α = 0

for |α| ≤ 2d− 1, i.e., we have proved

lim
r→∞

Aj(r)p(xj(r)) = 0

for p ∈ P2d−1(Rn).
Now, consider an index j such that limr→∞ xji(r) exists for every i. That is,

limr→∞ xj(r) = xj for some point xj in Rn (in the closed support of the measure).
Hence we have

lim
r→∞

Aj(r)p(xj(r)) = Ajp(xj).

Denote by J the set of indices j such that limr→∞ xj(r) exists. Therefore, we obtain∫
Rn
p dE = lim

r→∞

∫
Br

p dE

= lim
r→∞

N∑
j=1

Aj(r)p(xj(r))

=
∑
j∈J

Ajp(xj)

for p ∈ P2d−1(Rn) and complete the proof.

3. Appendix

For the convenience of readers who are not familiar with the trace norm, we give
a brief introduction here. Let V be the vector space of real symmetric l×l matrices.
Let λ1, λ2, . . . , λl be the eigenvalues of a matrix A ∈ V . Define

τ(A) ≡
l∑
i=1

|λi|.

Let A represent a symmetric linear operator on Rl, i.e., 〈Ay1, y2〉 = 〈y1, Ay2〉 for
all y1, y2 ∈ Rl. Rl has an orthonormal basis {ϕi} consisting of eigenvectors of A
such that Aϕi = λiϕi.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2206 LIH-CHUNG WANG AND CHIH-RUNG CHEN

Lemma 5. Let A be a symmetric operator on Rl. Then
l∑
i=1

|λi| = sup
{ψi}

l∑
i=1

|〈Aψi, ψi〉|,

where {ψi} is an arbitrary orthonormal basis of Rl.

Proof. {ϕi} is an orthnormal basis of Rl and
l∑
i=1

|〈Aϕi, ϕi〉| =
l∑
i=1

|λi|.

Hence
l∑
i=1

|λi| ≤ sup
{ψi}

l∑
i=1

|〈Aψi, ψi〉|.

On the other hand, since

〈Aψi, ψi〉 = 〈A
∑
j

〈ϕj , ψi〉ϕj , ψi〉 =
∑
j

λj〈ϕj , ψi〉2,

we have
l∑
i=1

|〈Aψi, ψi〉| ≤
l∑
i=1

l∑
j=1

|λj |〈ϕj , ψi〉2 =
l∑

j=1

|λj |‖ϕj‖2 =
l∑

j=1

|λj |.

Hence

sup
{ψi}

l∑
i=1

|〈Aψi, ψi〉| ≤
l∑

j=1

|λj |.

Therefore,
l∑
i=1

|λi| = sup
{ψi}

l∑
i=1

|〈Aψi, ψi〉|.

�
In the following proposition, we prove that τ(A) is a norm on V . τ(A) is the

so-called ‘trace norm’.

Proposition 6. τ(A) is a norm on V .

Proof. It is obvious that τ(A) ≥ 0 and τ(aA) = |a|τ(A) for a ∈ R. If τ(A) = 0, λi’s
are zero. Hence, the characteristic polynomial of A is tl. Since A is diagonalizable,
the minimal polynomial m(t) of A has only simple roots. Hence m(t) = t and
A = 0. Therefore, τ(A) = 0 if and only if A = 0.

To complete the proof, we need to show that τ(A + B) ≤ τ(A) + τ(B) for
A,B ∈ V . Consider

sup
{ψi}

l∑
i=1

|〈(A +B)ψi, ψi〉| ≤ sup
{ψi}

l∑
i=1

|〈Aψi, ψi〉|+ sup
{ψi}

l∑
i=1

|〈Bψi, ψi〉|.

By the previous lemma, we obtain

τ(A +B) ≤ τ(A) + τ(B).

�
Note that ‖A‖ = supi |λi| ≤ τ(A) and these two norms are equivalent.
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