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1. INTRODUCTION

Let V be the point-set (or the vertex-set) of �Kv and C a collection of cycles of length
m, called m-cycles, whose edges partition the edges of �Kv . Then the pair ðV ; CÞ is
called an m-cycle system of �Kv or a �-fold m-cycle system of order v.

Assume ðV; CÞ to be an m-cycle system of �Kv . In an automorphism group of
ðV ; CÞ, i.e., in a group of permutations on v points leaving the collection C of cycles
invariant, if there is an automorphism � of order v � 1 with a single fixed point, then
the system ðV ; CÞ is said to be 1-rotational. For a 1-rotational m-cycle system of �Kv ,
the point-set V can be identified with f1g [ Zv�1, i.e., a fixed point 1 and the
residue group of integers modulo v � 1. In this case, the automorphism can be
represented by

� : 1 7!1; i 7! iþ 1 ðmod ðv � 1ÞÞ or � ¼ ð1Þð0; 1; . . . ; v � 2Þ
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acting on the point-set V ¼ f1g [ Zv�1. For a cycle C of a 1-rotational m-cycle
system of �Kv , ðV ; CÞ, a cycle orbit of C is defined by fC þ i j i 2 Zv�1g. The length
of a cycle orbit is its cardinality. A cycle orbit of length v � 1 is said to be full,
otherwise short. A base cycle of a cycle orbit O is a cycle C 2 O chosen arbitrarily.
Any 1-rotational m-cycle system is generated from base cycles. For an m-cycle system
of �Kv , ðV; CÞ, if the collection C of cycles can be partitioned into sð¼ �ðv � 1Þ=2Þ
2-factors (in terms of block designs, resolution classes), R1; . . . ;Rs, then the system
ðV ; CÞ is said to be resolvable and R ¼ fR1; . . . ;Rsg is called a resolution of the
system. Obviously, for the existence of a resolvable m-cycle system of �Kv , v
� 0 ðmod mÞ and �ðv � 1Þ � 0 ðmod 2Þ must hold. A resolvable m-cycle system is
said to be 1-rotationally resolvable when it admits � ¼ ð1Þð0; 1; . . . ; v � 2Þ as an
automorphism leaving a resolution invariant as well.

We refer the reader to Refs. [13] and [15] for extensive surveys and bibliographies
on cycle systems. For the resolvability, it is known that the existence problem for a
resolvable m-cycle system of �Kv (or �Kv � F if � is odd and v is even, where F is a
1-factor of Kv) is equivalent to the Oberwolfach problem with factors of uniform
length (see, for the original definition, [1] or [12]). The spectrum for the Oberwolfach
problem with this particular restriction on the length of factors was settled by Alspach
et al. [2], Gvozdjak [10], and Hoffman and Shellenberg [11]. For the rotationality
only, Buratti [6] got the explicit solution to the existence problem for 1-rotational
m-cycle systems of Kv with m odd for v < 3m. However, we do not know much
about 1-rotationally resolvable cycle systems. Recently the authors [9] proved
through extended Skolem sequences and similar sequences of integers that a
1-rotationally resolvable 4-cycle system of 2Kv exists if and only if v � 0 ðmod 4Þ.
In this article, we will establish necessary and sufficient conditions for the existence
of a 1-rotationally resolvable even-cycle system of �Kv in general as the sequel to
Ref. [9].

2. CONVERSION OF THE PROBLEM

For the existence of a 2m-cycle system of �Kv , it is necessary that 2m divides
�vðv � 1Þ=2, �ðv � 1Þ is even, and either v ¼ 1 or v � 2m (see [15]). By a simple
argument on parameters, we have v � 0 ðmod 2mÞ and � � 0 ðmod 2Þ as necessary
conditions for the existence of a resolvable 2m-cycle system of �Kv . That allows us to
state the following.

Lemma 2.1. Necessary conditions for the existence of a 1-rotationally resolvable
2m-cycle system of �Kv are that � is even and v � 0 ðmod 2mÞ.

Our purpose is to prove that the necessary conditions in Lemma 2.1 are also
sufficient. Note that if the sufficiency is guaranteed for � ¼ 2, then it will follow for
any even �. So, first of all, we will examine the case � ¼ 2. It should be mentioned
that any 1-rotational 2m-cycle system of 2Kv consists of v=ð2mÞ full cycle orbits,
which implies that v � 0 ðmod 2mÞ is a necessary condition also for a 2m-cycle
system of 2Kv to be 1-rotational.

To start with, we will review the definition of an extended Skolem sequence, which
is the key to our constructions for 1-rotationally resolvable 2m-cycle systems of 2Kv .
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A k-extended Skolem sequence of order t, denoted by k-ext St, is a sequence
ðs1; . . . ; s2tþ1Þ of 2t þ 1 integers in which sk ¼ 0 and for each j 2 f1; . . . ; tg, there
exists a unique i 2 f1; . . . ; 2t þ 1gnfkg such that si ¼ siþj ¼ j. A k-ext St is also
represented as a collection of t ordered pairs fðaj; bjÞ : 1 � j � t; bj � aj ¼ jg with
[t
j¼1faj; bjg ¼ f1; . . . ; 2t þ 1gnfkg. When k ¼ t þ 1, the sequence is often referred

to as a Rosa sequence or a split Skolem sequence (see [8] or [16]). It is known due
to Rosa [16] that a split Skolem sequence gives a solution to Heffter’s second
difference problem. In fact, Skolem sequences and their generalizations, including
extended Skolem sequences, are fairly useful in forming some other combinatorial
structures as evidenced by Refs. [3–5,7,14,17] and others. In Ref. [9], the reader can
see how a ðt þ 1Þ-ext St and a t-ext St containing the pair ðt þ 1; 2t þ 1Þ (as
collections of ordered pairs) work to derive base cycles for 1-rotationally resolvable
4-cycle systems of 2Kv . That is the basic idea we are going to generalize in order to
settle the existence problem of 1-rotationally resolvable 2m-cycle systems of 2Kv for
all m � 2.

The spectrum of a k-ext St is known due to Baker [3].

Theorem 2.2 ([3]). There exists a k-ext St, 1 � k � 2t þ 1, if and only if either

(1) k is odd and t � 0 or 1 ðmod 4Þ; or
(2) k is even and t � 2 or 3 ðmod 4Þ:

It readily follows from Theorem 2.2 that there exist a ðt þ 1Þ-ext St if
t � 0; 3 ðmod 4Þ and a t-ext St if t � 1; 2 ðmod 4Þ. In the remainder of the present
section, the main constructions for 1-rotationally resolvable 2m-cycle systems of 2Kv

will be presented concerning those two cases of t, respectively.
Without loss of generality, let v ¼ 2mðt þ 1Þ and thus V ¼ f1g [ Z2mðtþ1Þ�1 for

t � 0. Since any 1-rotationally resolvable 2m-cycle system of 2Kv consists of v=ð2mÞ
full cycle orbits, finding t þ 1 base cycles which partition the point-set V suffices to
confirm the existence of the desired cycle system.

Construction I (for the case t� 0, 3 (mod 4)). Let fðaj; bjÞ :1 � j � tg be a ðt þ 1Þ-
ext St (as a collection of ordered pairs). For each pair ðaj; bjÞ, form a 2m-
cycle ðx1; . . . ; x2mÞ by joining the points in the set fmaj � 1; . . . ;mðaj þ 1Þ�
2;mbj � 1; . . . ;mðbj þ 1Þ � 2g like a sort of spiral, i.e., set

x2i�1 ¼ maj þ i� 2; x2i ¼ mðbj þ 1Þ � i� 1 for 1 � i � m: ð2:1Þ

Then we have

x2i � x2i�1 ¼ mð jþ 1Þ � 2iþ 1 for 1 � i � m;

x2i � x2iþ1 ¼ mð jþ 1Þ � 2i for 1 � i � m� 1;

x2m � x1 ¼ mj:

It is straightforward to see that the differences from a cycle with (2.1) give every
integer in the closed interval ½mð j� 1Þ;mð jþ 1Þ � 1� exactly once except mj which
is the only one element repeated twice. Note that throughout the paper, we mean a
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‘‘symmetric difference’’ just by a ‘‘difference.’’ That is, a difference d, 1 � d �
mðt þ 1Þ � 1, represents �d ðmod 2mðt þ 1Þ � 1Þ at the same time.

Besides the t cycles specified by (2.1), take one more 2m-cycle ð1; x1; . . . ; x2m�1Þ
by assembling the 2m points of the set f0; . . . ;m� 2;mðt þ 1Þ � 1; . . . ; mðt þ 2Þ�
2;1g in the following manner:

x4i�3 ¼ mðt þ 1Þ þ i� 2 for 1 � i � bðmþ 1Þ=2c;
x4i�2 ¼ mðt þ 2Þ � i� 1 for 1 � i � bm=2c;
x4i�1 ¼ i� 1 for 1 � i � bm=2c;
x4i ¼ m� i� 1 for 1 � i � bðm� 1Þ=2c:

ð2:2Þ

Here b�c means the greatest integer not exceeding � (thus including � if � is an
integer). Then we have

x4i�2 � x4i�3 ¼ m� 2iþ 1 for 1 � i � m=2;

x4i�2 � x4i�1 ¼ mt þ 2i� 1 for 1 � i � m=2;

x4i � x4i�1 ¼ m� 2i for 1 � i � ðm� 1Þ=2;

x4iþ1 � x4i ¼ mt þ 2i� 2 for 1 � i � ðm� 1Þ=2;

which implies that the differences arising from the cycle with (2.2) give every integer
in the closed intervals ½1;m� 1� and ½mt þ 1;mðt þ 1Þ � 1� exactly once, and 1
twice.

On the other hand, it is easily verified that the t þ 1 cycles specified by (2.1) and
(2.2) partition the point-set V ¼ f1g [ Z2mðtþ1Þ�1. Therefore, we can conclude that
those t þ 1 cycles can be base cycles for a 1-rotationally resolvable 2m-cycle system
of 2K2mðtþ1Þ whenever t � 0; 3 ðmod 4Þ. It should be remarked that if t ¼ 0, i.e., if
v ¼ 2m, then a single base cycle through 1 satisfying (2.2) generates the desired
cycle system in itself.

Example 2.3. The case m ¼ 3 and t ¼ 3, i.e., v ¼ 24. Take the collection of
ordered pairs fð1; 2Þ; ð5; 7Þ; ð3; 6Þg (equivalently the sequence of integers
ð1; 1; 3; 0; 2; 3; 2Þ) as a 4-ext S3. Then the set of base cycles determined by
(2.1) and (2.2) for a 1-rotationally resolvable 6-cycle system of 2K24 will be as
follows:

fð2; 7; 3; 6; 4; 5Þ; ð14; 22; 15; 21; 16; 20Þ; ð8; 19; 9; 18; 10; 17Þ; ð1; 11; 13; 0; 1; 12Þg:

Construction II (for the case t� 1, 2 (mod 4)). Let fðaj; bjÞ :1 � j � tg be a t-ext
St satisfying ðat; btÞ ¼ ðt þ 1; 2t þ 1Þ. First, construct base cycles not passing through
1 in the same manner as (2.1) but for 1 � j � t � 1. Next, make two more base
cycles such that the rest of the points f0; 1; . . . ;m� 2;mt � 1; . . . ;mðt þ 2Þ � 2;
mð2t þ 1Þ � 1; . . . ; 2mðt þ 1Þ � 2;1g are all used up and the remaining 4m differen-
ces f1; . . . ;m� 1;mðt � 1Þ þ 1; . . . ;mt � 1;mt;mt; . . . ;mðt þ 1Þ � 1;mðt þ 1Þ � 1;
1;1g arise from them. The configurations of such two base cycles depend on the
value of m.
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(i) m is even. Form a base cycle of form ðx1; . . . ; x2mÞ on the set of points f0; . . . ;
m� 2; mt � 1; . . . ;mt þ m=2 � 1; mðt þ 1Þ þ m=2; . . . ;mðt þ 2Þ � 2; mð2t þ 1Þþ
m=2 � 2g as follows:

x2i�1 ¼
i� 1 for 1 � i � m=2;

i� 2 for m=2 þ 2 � i � m;

�

x2i ¼
mðt þ 2Þ � i� 1 for 1 � i � m=2 � 1;

mðt þ 1Þ � i� 1 for m=2 � i � m;

�

xmþ1 ¼ mð2t þ 1Þ þ m=2 � 2:

The differences from this base cycle give every integer in the closed interval
½mðt � 1Þ þ 1;mðt þ 1Þ � 2� exactly once and mðt þ 1Þ � 1 twice. Drawing a graph
would be of great help to see its systematic structure and we leave it to the reader.

Now, the other base cycle, i.e., the one through 1, should be on the set of
points fmt þ m=2; . . . ;mðt þ 1Þ þ m=2 � 1;mð2t þ 1Þ � 1; . . . ;mð2t þ 1Þ þ m=2�
3;m ð2t þ 1Þ þ m=2 � 1; . . . ; 2mðt þ 1Þ � 2;1g and give the rest of the differences.
Here is an explicit configuration for the base cycle of form ð1; x1; . . . ; x2m�1Þ:

x4i�3 ¼
mðt þ 1Þ � m=2 þ 2i� 2 for 1 � i � bðmþ 2Þ=4c;
mðt þ 1Þ þ m=2 � 2iþ 1 for bðmþ 2Þ=4c þ 1 � i � m=2;

�

x4i�2 ¼
mðt þ 1Þ þ m=2 � 2iþ 1 for 1 � i � bðmþ 2Þ=4c;
�3m=2 þ 2i� 2 for bðmþ 2Þ=4c þ 1 � i � m=2;

�

x4i�1 ¼
�m=2 þ 2i� 1 for 1 � i � bm=4c;
m=2 � 2i for bm=4c þ 1 � i � m=2;

�

x4i ¼
�m=2 � 2i� 1 for 1 � i � bðmþ 2Þ=4c � 1;

mðt þ 1Þ � m=2 þ 2i for bðmþ 2Þ=4c � i � m=2 � 1:

�

The differences from the base cycle through 1 supply each integer in the closed
intervals ½1;m� 1� and ½mt;mðt þ 1Þ � 2� exactly once, and 1 twice.

(ii) m � 1; 3 ðmod 6Þ. The two required base cycles are on the sets of points
f0; . . . ;m� 2;mt � 1; . . . ;mt þ ðm� 5Þ=2;mðt þ 1Þ þ ðm� 3Þ=2; . . . ;mðt þ 2Þ�2;
2mðt þ 1Þ � 2g and fmt þ ðm� 3Þ=2; . . . ;mðt þ 1Þ þ ðm� 5Þ=2;mð2t þ 1Þ�
1; . . . ; 2mðt þ 1Þ � 3;1g, respectively. One is of form ðx1; . . . ; x2mÞ with

x2i�1 ¼

mt þ i� 2 for 1 � i � ðm� 1Þ=2;

mt þ 3i� 3 for ðmþ 1Þ=2 � i � bð2mþ 1Þ=3c;
mðt þ 4Þ � 3iþ 1 for bð2mþ 1Þ=3c þ 1 � i � bð5mþ 3Þ=6c;
mðt � 1Þ þ 3i� 4 for bð5mþ 3Þ=6c þ 1 � i � m;

8>>><
>>>:

x2i ¼

m� i� 1 for 1 � i � ðm� 1Þ=2;

2m� 3i� 1 for ðmþ 1Þ=2 � i � b2m=3c;
�2mþ 3i� 2 for b2m=3c þ 1 � i � bð5mþ 1Þ=6c;
3m� 3i for bð5mþ 1Þ=6c þ 1 � i � m;

8>>><
>>>:

ð2:3Þ
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and the other is of form ð1; x1; . . . ; x2m�1Þ with

x4i�3 ¼
mðt þ 1Þ � ðmþ 7Þ=2 þ 2i for 1 � i � bðmþ 3Þ=4c;
mðt þ 1Þ þ ðmþ 1Þ=2 � 2i for bðmþ 3Þ=4c þ 1 � i � ðmþ 1Þ=2;

�

x4i�2 ¼
mðt þ 1Þ þ ðm� 1Þ=2 � 2i for 1 � i � bðmþ 1Þ=4c;
�ð3mþ 3Þ=2 þ 2i for bðmþ 3Þ=4c þ 1 � i � ðm� 1Þ=2;

�

x4i�1 ¼
�ðmþ 5Þ=2 þ 2i for 1 � i � bðmþ 3Þ=4c � 1;

mð2t þ 1Þ � 1 for i ¼ bðmþ 3Þ=4c;
ðm� 1Þ=2 � 2i for bðmþ 3Þ=4c þ 1 � i � ðm� 1Þ=2;

8><
>:

x4i ¼
�ðm� 1Þ=2 � 2i for 1 � i � bðm� 1Þ=4c � 1;

mðt þ 1Þ � ðmþ 5Þ=2 þ 2i for bðmþ 1Þ=4c þ 1 � i � ðm� 1Þ=2;

�

xmþ1 ¼ 2mðt þ 1Þ � 3:

ð2:4Þ

The differences from the base cycle with (2.3) supply each integer in the closed
interval ½mðt � 1Þ þ 1;mðt þ 1Þ � 1� exactly once except mðt þ 1Þ � 2 which is
repeated twice. As for the base cycle with (2.4), each integer in ½1;m� 1� and
½mt;mðt � 1Þ � 3� and mðt þ 1Þ � 1 occur precisely once, and 1 twice as the
differences from it.

(iii) m � 5 ðmod 6Þ. In this case, we cannot use the configuration (2.3) for the
base cycle not passing through 1 without any modification, otherwise the length of
the resultant cycle would be less than 2m. So, for ðm� 3Þ=2 � 6 (eventually for
m � 17), let

x2i�1 ¼

mt þ i� 2 for 1 � i � ðm� 1Þ=2;

mt þ 3i� 3 for ðmþ 1Þ=2 � i � ð2m� 1Þ=3 � 1;

mðt þ 4Þ � 3i� 9 for ð2m� 1Þ=3 � i � ð5m� 1Þ=6 � 3;

mðt þ 4Þ þ 3iþ 6 for ð5m� 1Þ=6 � 2 � i � m� 5;

mðt þ 3Þ � i� 9 for i ¼ m� 4;m� 3;

mðt þ 3Þ � i� 4 for m� 2 � i � m;

8>>>>>>>><
>>>>>>>>:

x2i ¼

m� i� 1 for 1 � i � ðm� 1Þ=2;m� 4 � i � m� 2;

2m� 3i� 1 for ðmþ 1Þ=2 � i � ð2m� 1Þ=3 � 2;

�2mþ 3iþ 8 for ð2m� 1Þ=3 � 1 � i � ð5m� 1Þ=6 � 3;

3m� 3i� 10 for ð5m� 1Þ=6 � 2 � i � m� 5;

m� iþ 1 for i ¼ m� 1;m:

8>>>>>><
>>>>>>:

For the cases when m ¼ 5 and 11, below we provide the solutions directly.

m ¼ 5 : ð0; 5t � 1; 3; 5t; 2; 5t þ 6; 10t þ 8; 5t þ 7; 1; 5t þ 8Þ
m ¼ 11 : ð0; 11t � 1; 9; 11t; 8; 11t þ 1; 7; 11t þ 2; 6; 11t þ 3; 5; 11t þ 15;

3; 11t þ 17; 4; 11t þ 16; 1; 11t þ 20; 22t þ 20; 11t þ 19; 2; 11t þ 18Þ
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It should be remarked that this modification, including the cases when m ¼ 5 and 11,
change neither the set of points nor the differences for the cycle. As for the other base
cycle, i.e., the one through 1, (2.4) is valid as it is for any integer m � 5.

We now know that by letting v ¼ 2mðt þ 1Þ, the existence problem for 1-
rotationally resolvable 2m-cycle systems of 2Kv can be interpreted as that for the
corresponding extended Skolem sequences of order t. That is, the existence of a
ðt þ 1Þ-ext St with t � 3; 0 ðmod 4Þ suffices to prove the existence of a 1-rotationally
resolvable 2m-cycle system of 2Kv for v � 0; 2m ðmod 8mÞ, and so does the
existence of a t-ext St with t � 1; 2 ðmod 4Þ satisfying the required condition in
Construction II for v � 4m; 6m ðmod 8mÞ.

3. EXCEPTIONAL PARAMETERS

Since the existence of a ðt þ 1Þ-ext St with t � 0; 3 ðmod 4Þ implies that of a 1-
rotationally resolvable 2m-cycle system of 2Kv with v � 2m; 0 ðmod 8mÞ,
Theorem 2.2 and Construction I ensure the following.

Theorem 3.1. There exists a 1-rotationally resolvable 2m-cycle system of 2Kv

whenever v � 0; 2m ðmod 8mÞ.
For v � 4m; 6m ðmod 8mÞ, we can take advantage of the following result due to

the authors [9] to complete the sufficiency of Lemma 2.1 except three specific cases.

Theorem 3.2 ([9]). Whenever t � 1; 2 ðmod 4Þ and t � 6, there exists a t-ext St ðas
a collection of ordered pairsÞ including the pair ðt þ 1; 2t þ 1Þ.

From Theorem 3.2 and Construction II, we can state the following immediately.

Corollary 3.3. There exists a 1-rotationally resolvable 2m-cycle system of 2Kv

whenever v � 4m; 6m ðmod 8mÞ and v � 14m.

Unfortunately there does not exist a t-ext St satisfying the required condition when
t ¼ 1; 2, and 5, which can be easily checked even by hand. This implies that
Construction II cannot be applied to the cases v ¼ 4m; 6m, and 12m. In the remainder
of this section, we will make up for those cases with direct constructions.

Lemma 3.4. When v ¼ 4m, 1-rotationally resolvable 2m-cycle systems of 2Kv exist.

Proof. We just provide the explicit configurations of the required two base cycles
and leave the verification to the reader. One of the base cycles is of form ðx1; . . . ; x2mÞ
with

x2i�1 ¼
2mþ 2i� 4 for 1 � i � bm=2c þ 1;

4m� 2iþ 1 for bm=2c þ 2 � i � m;

�

x2i ¼
4m� 2i for 1 � i � bðmþ 1Þ=2c;
2mþ 2i� 3 for bðmþ 1Þ=2c þ 1 � i � m;

�

which is on the set of points f2m� 2; 2m; . . . ; 4m� 2g. The other is of form
ð1; x1; . . . ; x2m�1Þ and on the set of points f0; . . . ; 2m� 3; 2m� 1;1g. Its configu-
ration depends on the value of m.
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(i) m � 1 ðmod 4Þ.

x4i�3 ¼ mþ 4i� 3 for 1 � i � ðm� 1Þ=4;

x4i�1 ¼ mþ 4i� 5 for 1 � i � ðm� 1Þ=4;

x2i ¼ m� 2i for 1 � i � ðm� 1Þ=2;

x2i�1 ¼ 3m� 2i for ðmþ 1Þ=2 � i � m;

x4i�2 ¼ �mþ 4i� 1 for ðmþ 3Þ=4 � i � ðm� 1Þ=2;

x4i ¼ �mþ 4i� 3 for ðmþ 3Þ=4 � i � ðm� 1Þ=2:

(ii) m � 2 ðmod 4Þ.

x1 ¼ m� 2;

x4i�3 ¼ mþ 4i� 8 for 2 � i � ðmþ 2Þ=4;

x4i�1 ¼ mþ 4i� 2 for 1 � i � ðm� 2Þ=4;

x2i ¼ m� 2iþ 1 for 1 � i � m=2;

x2i�1 ¼ 3m� 2iþ 1 for m=2 þ 1 � i � m;

x4i�2 ¼ �mþ 4i� 6 for ðmþ 6Þ=4 � i � m=2;

x4i ¼ �mþ 4i for ðmþ 2Þ=4 � i � m=2 � 1:

(iii) m � 3 ðmod 4Þ.

x4i�3 ¼ m� 4iþ 1 for 1 � i � ðmþ 1Þ=4;

x4i�1 ¼ m� 4iþ 3 for 1 � i � ðmþ 1Þ=4;

x2i ¼ mþ 2i� 2 for 1 � i � ðmþ 1Þ=2;

x2i�1 ¼ �mþ 2i� 2 for ðmþ 3Þ=2 � i � m;

x4i�2 ¼ 3m� 4i� 1 for ðmþ 5Þ=4 � i � ðm� 1Þ=2;

x4i ¼ 3m� 4iþ 1 for ðmþ 5Þ=4 � i � ðm� 1Þ=2:

(iv) m � 0 ðmod 4Þ.

x1 ¼ m;

x4i�3 ¼ m� 4iþ 6 for 2 � i � m=4 þ 1;

x4i�1 ¼ m� 4i for 1 � i � m=4;

x2i ¼ mþ 2i� 3 for 1 � i � m=2 þ 1;

x2i�1 ¼ �mþ 2i� 3 for m=2 þ 2 � i � m;

x4i�2 ¼ 3m� 4iþ 4 for m=4 þ 2 � i � m=2;

x4i ¼ 3m� 4i� 2 for m=4 þ 1 � i � m=2 � 1: &

Lemma 3.5. When v ¼ 6m, 1-rotationally resolvable 2m-cycle systems of 2Kv exist.
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Proof. (i) m � 0 ðmod 2Þ. Two of the required base cycles are of form
ðx1; . . . ; x2mÞ, one of which is specified by

x2i�1 ¼
m=2 þ i� 1 for 1 � i � m=2;

5m=2 � i for m=2 þ 1 � i � m� 1;

�

x2i ¼
5m=2 � i� 1 for 1 � i � m=2 � 1;

m=2 þ i for m=2 � i � m;

�

x2m�1 ¼ 7m=2 � 1;

and the other by

x2i�1 ¼
11m=2 � i� 1 for 1 � i � m=2;

7m=2 þ i� 2 for m=2 þ 1 � i � m� 1;

�

x2i ¼
7m=2 þ i� 1 for 1 � i � m=2 � 1;

11m=2 � i� 2 for m=2 � i � m;

�

x2m�1 ¼ 5m=2 � 1:

The two base cycles determined above are on the sets of points fm=2; . . . ;
5m=2 � 2; 7m=2 � 1g and f5m=2 � 1; 7m=2; . . . ; 11m=2 � 2g, respectively. It should
be noted that they are symmetric with respect to the point 3m� 1.

Then, the remaining one of form ð1; x1; . . . ; x2m�1Þ should be on the set of points
f0; . . . ;m=2 � 1; 5m=2; . . . ; 7m=2 � 2; 11m=2 � 1; . . . ; 6m� 2;1g and we can set-
tle its configuration as follows:

x2i�1 ¼
m=2 � i for 1 � i � m=2;

13m=2 � i� 1 for m=2 þ 1 � i � m;

�

x2i ¼ 5m=2 þ i� 1 for 1 � i � m� 1:

Note that in this base cycle through 1, any two pairs of points which give an identical
difference lie at symmetric positions in the cycle with respect to the point 3m� 1.

(ii) m � 1 ðmod 4Þ. Two base cycles of form ðx1; . . . ; x2mÞ are on the respective
sets of points fðm� 1Þ=2; . . . ; 5ðm� 1Þ=2; ð7m� 3Þ=2g and fð5m� 1Þ=2;
ð7mþ 1Þ=2; . . . ; ð11m� 3Þ=2g. Their configurations are given by

x2i�1 ¼ ð5m� 3Þ=2 � i for 1 � i � ðmþ 1Þ=2;

x2i ¼ ðm� 3Þ=2 þ i for 1 � i � ðmþ 1Þ=2;

x4i�3 ¼ ðm� 7Þ=2 þ 2i for ðmþ 7Þ=4 � i � ðm� 1Þ=2;

x4i�2 ¼ ð5mþ 1Þ=2 � 2i for ðmþ 7Þ=4 � i � ðm� 1Þ=2;

x4i�1 ¼ ðm� 1Þ=2 þ 2i for ðmþ 3Þ=4 � i � ðm� 1Þ=2;

x4i ¼ ð5m� 5Þ=2 � 2i for ðmþ 3Þ=4 � i � ðm� 3Þ=2;

x2m�2 ¼ ð3m� 5Þ=2;

x2m�1 ¼ ð7m� 3Þ=2;

x2m ¼ ð3m� 1Þ=2;

ð3:1Þ
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and

x2i�1 ¼ ð7m� 1Þ=2 þ i for 1 � i � ðmþ 1Þ=2;

x2i ¼ ð11m� 1Þ=2 � i for 1 � i � ðmþ 1Þ=2;

x4i�3 ¼ ð11mþ 3Þ=2 � 2i for ðmþ 7Þ=4 � i � ðm� 1Þ=2;

x4i�2 ¼ ð7m� 5Þ=2 þ 2i for ðmþ 7Þ=4 � i � ðm� 1Þ=2;

x4i�1 ¼ ð11m� 3Þ=2 � 2i for ðmþ 3Þ=4 � i � ðm� 1Þ=2;

x4i ¼ ð7mþ 1Þ=2 þ 2i for ðmþ 3Þ=4 � i � ðm� 3Þ=2;

x2m�2 ¼ ð9mþ 1Þ=2;

x2m�1 ¼ ð5m� 1Þ=2;

x2m ¼ ð9m� 3Þ=2;

ð3:2Þ

respectively. These two base cycles are symmetric with respect to the point
3m� 1.

As for the one of form ð1; x1; . . . ; x2m�1Þ, it is specified by

x1 ¼ ð5m� 3Þ=2;

x2i�1 ¼ ð5m� 3Þ=2 þ i for 2 � i � m� 1;

x2i ¼
ðm� 1Þ=2 � i for 1 � i � ðm� 1Þ=2;

ð13m� 3Þ=2 � i for ðmþ 1Þ=2 � i � m� 1;

�

x2m�1 ¼ ð7m� 1Þ=2

ð3:3Þ

on the set of the remaining points f0; . . . ; ðm� 3Þ=2; ð5m� 3Þ=2; ð5mþ 1Þ=2; . . . ;
ð7m� 5Þ=2; ð7m� 1Þ=2; ð11m� 1Þ=2; . . . ; 6m� 2g.

(iii) m � 3 ðmod 4Þ. We can use the configuration (3.3) as it is for the base cycle
through 1. Concerning the other two base cycles not passing through 1, the
configurations differ a little bit from (3.1) and (3.2), but the respective families of
differences arising from them remain the same as those from the base cycles with
(3.1) and (3.2) in (ii). In this case, the two base cycles of form ðx1; . . . ; x2mÞ are
specified by

x2i�1 ¼ ðm� 3Þ=2 þ i for 1 � i � ðm� 1Þ=2;

x2i ¼ ð5m� 3Þ=2 � i for 1 � i � ðm� 1Þ=2;

x4i�3 ¼ ð5mþ 1Þ=2 � 2i for ðmþ 5Þ=4 � i � ðm� 1Þ=2;

x4i�2 ¼ ðm� 7Þ=2 þ 2i for ðmþ 5Þ=4 � i � ðm� 1Þ=2;

x4i�1 ¼ ð5m� 5Þ=2 � 2i for ðmþ 1Þ=4 � i � ðm� 1Þ=2;

x4i ¼ ðm� 1Þ=2 þ 2i for ðmþ 1Þ=4 � i � ðm� 3Þ=2;

x2m�2 ¼ ð3m� 5Þ=2;

x2m�1 ¼ ð7m� 3Þ=2;

x2m ¼ ð3m� 1Þ=2;
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and

x2i�1 ¼ ð11m� 1Þ=2 � i for 1 � i � ðm� 1Þ=2;

x2i ¼ ð7m� 1Þ=2 þ i for 1 � i � ðm� 1Þ=2;

x4i�3 ¼ ð7m� 5Þ=2 þ 2i for ðmþ 5Þ=4 � i � ðm� 1Þ=2;

x4i�2 ¼ ð11mþ 3Þ=2 � 2i for ðmþ 5Þ=4 � i � ðm� 1Þ=2;

x4i�1 ¼ ð7mþ 1Þ=2 þ 2i for ðmþ 1Þ=4 � i � ðm� 1Þ=2;

x4i ¼ ð11m� 3Þ=2 � 2i for ðmþ 1Þ=4 � i � ðm� 3Þ=2;

x2m�2 ¼ ð9mþ 1Þ=2;

x2m�1 ¼ ð5m� 1Þ=2;

x2m ¼ ð9m� 3Þ=2: &

Lemma 3.6. When v ¼ 12m, 1-rotationally resolvable 2m-cycle systems of 2Kv

exist.

Proof. (i) m � 1 ðmod 2Þ. Consider the following 1-ext S5

fðaj; bjÞ :1 � j � 5g ¼ fð9; 10Þ; ð4; 6Þ; ð2; 5Þ; ð7; 11Þ; ð3; 8Þg ð3:4Þ

and take four 12m-cycles in the same manner as ð2:1Þ for j ¼ 1; 3; 4 and 5. Then we
have only to construct two more base cycles by using up the rest of points f0; . . . ;
2m� 2; 4m� 1; . . . ; 5m� 2; 6m� 1; . . . ; 7m� 2;1g so that the family of differ-
ences arising from them can be f1; . . . ;m� 1;mþ 1; . . . ; 2m; 2m; . . . ; 3m� 1;
5mþ 1; . . . ; 6m� 1;1;1g. Here are the solutions: the one of form ðx1; . . . ; x2mÞ
is on the set of points fð3m� 1Þ=2; . . . ; 2m� 2; 4m� 1; . . . ; 5m� 2; 6m� 1; . . . ;
ð13m� 3Þ=2g and satisfies

x2i�1 ¼ 4mþ i� 2 for 1 � i � m;

x2i ¼
2m� i� 1 for 1 � i � ðm� 1Þ=2;

7m� i� 1 for ðmþ 1Þ=2 � i � m;

�

and the other of form ð1; x1; . . . ; x2m�1Þ is on the set of points f0; . . . ; 3ðm� 1Þ=2;
ð13m� 1Þ=2; . . . ; 7m� 2;1g and satisfies

x2i�1 ¼ ðm� 3Þ=2 þ i for 1 � i � m;

x2i ¼
ðm� 1Þ=2 � i for 1 � i � ðm� 1Þ=2;

ð15m� 3Þ=2 � i for ðmþ 1Þ=2 � i � m� 1:

�

(ii) m � 0 ðmod 2Þ. First, by using (2.1) with (3.4), form the 2m-cycles through 1
for j ¼ 1; 4 and 5. And then, in the two cycles for j ¼ 4 and 5, replace x1 ¼ 7m� 1
with 4m� 1, and xmþ1 ¼ 7m=2 � 1 with 3m=2 � 1, respectively. To be precise, set

x1 ¼ 4m� 1;

x2i�1 ¼ 7mþ i� 2 for 2 � i � m;

x2i ¼ 12m� i� 1 for 1 � i � m
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as the modified configuration corresponding to the case j ¼ 4 and

x2i�1 ¼ 3mþ i� 2 for 1 � i � m; i 6¼ m=2 þ 1;

x2i ¼ 9m� i� 1 for 1 � i � m;

xmþ1 ¼ 3m=2 � 1

as the one corresponding to the case j ¼ 5. Note that these modifications preserve the
differences arising from the original cycles.

Next, take two base cycles of form ðx1; . . . ; x2mÞ on the sets of points f2m; . . . ;
3m� 2; 7m=2 � 1; 5m; . . . ; 6m� 1gandf3m=2; . . . ; 2m� 1; 4m; . . . ; 5m� 1; 6m; . . . ;
13m=2 � 1g according to the configurations

x2i�1 ¼
2mþ i� 1 for 1 � i � m=2;

2mþ i� 2 for m=2 þ 2 � i � m;

�

x2i ¼ 6m� i for 1 � i � m;

xmþ1 ¼ 7m=2 � 1

for one and

x2i�1 ¼ 4mþ i� 1 for 1 � i � m;

x2i ¼
2m� i for 1 � i � m=2;

7m� i for m=2 þ 1 � i � m

�

for the other. Now it turns out that we have only to find one more base cycle passing
through 1 on the set of points f0; . . . ; 3m=2 � 2; 13m=2; . . . ; 7m� 1;1g. We will
look at this by dividing the present case between m � 0; 4 ðmod 6Þ and
m � 2 ðmod 6Þ. Below the configuration of the desired base cycle of form ð1;
x1; . . . ; x2m�1Þ is indicated for each subcase.

(ii)0 m � 0; 4 ðmod 6Þ.

x2i�1 ¼

m=2 þ 3i� 2 for 1 � i � bðmþ 2Þ=6c;
3m=2 � 3iþ 2 for bðmþ 2Þ=6c þ 1 � i � bðmþ 2Þ=3c;
�m=2 þ 3i� 3 for bðmþ 2Þ=3c þ 1 � i � m=2;

15m=2 � i for m=2 þ 1 � i � m;

8>>><
>>>:

x2i ¼

m=2 � 3i for 1 � i � bm=6c;
�m=2 þ 3i� 1 for bm=6c þ 1 � i � bm=3c;
3m=2 � 3iþ 1 for bm=3c þ 1 � i � m=2;

m=2 þ i� 1 for m=2 þ 1 � i � m� 1:

8>>><
>>>:

(ii)00 m � 2 ðmod 6Þ.

x2i�1 ¼
m=2 � 3iþ 2 for 1 � i � ðmþ 4Þ=6;

�m=2 þ 3i� 3 for ðmþ 10Þ=6 � i � m=2;

15m=2 � i for m=2 þ 1 � i � m;

8><
>:

x2i ¼
m=2 þ 3i� 1 for 1 � i � ðm� 2Þ=6;

3m=2 � 3iþ 1 for ðmþ 4Þ=6 � i � m=2;

m=2 þ i� 1 for m=2 þ 1 � i � m� 1:

8><
>:

&
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Example 3.7. The case m ¼ 4 and t ¼ 6, i.e., v ¼ 48. According to the proof of
Lemma 3.6 (ii) and (ii)0, the set of base cycles for a 1-rotationally resolvable 8-cycle
system of 2K48 will be given as follows:

fð35; 42; 36; 41; 37; 40; 38; 39Þ; ð15; 46; 28; 45; 29; 44; 30; 43Þ;
ð11; 34; 12; 33; 5; 32; 14; 31Þ; ð8; 23; 9; 22; 13; 21; 10; 20Þ;
ð16; 7; 17; 6; 18; 25; 19; 24Þ; ð1; 3; 0; 2; 1; 27; 4; 26Þg:

For the case � ¼ 2, the sufficiency of Lemma 2.1 is assured by Theorem 3.1,
Corollary 3.3, Lemmas 3.4, 3.5 and 3.6. Therefore, the main theorem is finally
established.

Theorem 3.8. There exists a 1-rotationally resolvable 2m-cycle system of �Kv if
and only if � is even and v � 0 ðmod 2mÞ.

Since Lemma 2.1 describes nothing but necessary conditions for the existence of
resolvable even-cycle systems, Theorem 3.3 eventually asserts the following.

Corollary 3.9. There exists a resolvable 2m-cycle system of �Kv if and only if � is
even and v � 0 ðmod 2mÞ.

As mentioned in Section 1, there are several interesting results on cycle systems,
some of which are by virtue of Skolem sequences. But as far as the authors know, the
existence problem of resolvable odd-cycle systems with a rotational automorphism
is still open.
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