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Sliding-Mode Controller Design for Spacecraft 
Attitude Tracking Maneuvers 

This paper presents a robust sliding-mde control law to deal 

with the spacecraft attitude tracking problem. 'WO important 

natural properties related to the spacecraft m d e l  of motion are 

shown and then by using these properties and the second method 

of Lyapunov theory, the system stability in the sliding mode can 

be easily achieved. The success of the sliding-mde controller and 

the robustness to uncertainties are illustrated by an example of 

multiaxial attitude tracking maneuvers. 
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I. INTRODUCTION 

Recently, some investigators [2, 3, 81 have 
applied the sliding-mode control (also called 
the variable-structure control) to the spacecraft 
attitude maneuvers, for example the detumbling and 
reorientation. A new spacecraft sliding-mode controller 
is introduced here to deal with the attitude tracking 
problems. 

nonlinear technique which possesses two important 
features. First, it can reject the external disturbances 
and second, it is robust to the system parameter 
variations. Many linear or nonlinear systems, such 
as the dc motor and robot [5, 11, have applied the 
sliding-mode theory to the controller design and 
obtained good results. 

so-called kinematic equations and dynamic equations 
[3]. Actually, these mathematical descriptions are 
highly nonlinear and thus, the conventional linear 
control techniques are not suitable for the controller 
design, especially when large-angle spacecraft 
maneuvers are required. Besides, since the spacecraft 
system is always ideally modeled, these mathematical 
descriptions cannot completely describe the spacecraft 
motion. Hence, the robust sliding-mode control has 
been considered as a useful scheme for the spacecraft 
attitude maneuvers. By Dywer and Sira-Ramirez 
[3], the sliding-mode control has been successfully 
developed for the spacecraft attitude reorientation 
and detumbling maneuvers. However, with the sliding 
vector they introduced, complicated algorithms were 
resulted in their sliding-mode controller. Here, we 
present a new sliding vector to attain simpler control 
laws which, significantly, can be applied to not only the 
attitude reorientation but also the tracking maneuvers. 

In the controller design, we choose the sliding 
vector based on two important natural properties 
related to the system model. The first one is that the 
inertia matrix J is symmetric and positive definite. 
Second, the matrix T(p)  in the kinematic equation 
satisfies T ( p )  >_ ;I where p is the Gibbs vector of 
Rodrigues attitude parameter and I is the identity 
matrix. Based on these two natural properties, the 
control law can be easily derived to guarantee the 
reaching and sliding conditions and once the system 
is controlled to be restricted in the sliding mode the 
attitude traclung can be achieved. Besides, the direct 
method of Lyapunov stability theory is adopted to both 
the development of sliding-mode control law and the 
analysis of system stability in the sliding mode. As for 
the chattering caused by the practical implementation, 
it can be alleviated by the use of sliding layers [6]. 

This paper is organized as follows. In the next 
section, the spacecraft model with two natural 
properties is presented. In Section 111, with these 
properties, a robust sliding-mode control law is 

The sliding-mode control [7] is known as a 

In general, the spacecraft motion is governed by the 
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designed for multiaxial attitude tracking maneuvers and 
the stability analysis of the system in the sliding mode 
is shown. A numerical example of multiaxial attitude 
tracking maneuvers is illustrated in Section IV to verlfy 
the usefulness of the control laws. Finally, Section V 

assumed to be measurable. Besides, to demonstrate 
the robustness of the controller, we allow the dynamic 
equations (2) to possess bounded input disturbances 
d and parameter variations A J  and A H ;  thus, the 
dynamic equations are rewritten as 

gives the concluding remarks. 

II. SPACECRAFT MODEL DESCRIPTION 

The mathematical model of a spacecraft, treated 
as a rigid body, is commonly composed of two sets of 
equations called the kinematic equations and dynamic 
equations which can be described, respectively, by 
[3,41 

P = T(p)w  (1) 

J w = H w + r  (2) 

where p E R3 is the Gibbs vector of Rodrigues attitude 
parameters, w E R3 represents the angular velocity, and 
T E R3 is the control input applied to the system. As 
for the matrices J ,  T(p), and H ,  they can be found as 

J =  [:: :: 
313 523 J33 

T(P) = + PPT +PI 

1 1 + p: plpZ - p3 p1p3 + p2 
plp2 p3 1 pi  pZp3 - p1 2 
plp3 - pZ pZp3 + pl 1 + p$ 

r 0 --h3 hz 1 

J w =  H w + r + d  (3) 

where 

J = Jo + AJ 

H = H o + A H  

and JO and HO represent the nominal parts of J and 
H ,  respectively. Note that the inertia matrix J is 
assumed to be time invariant and its variation AJ, for 
example, may result from the change of payloads of the 
spacecraft. 

The objective of the tracking control is to drive the 
spacecraft such that p(t) = pd(t), i.e., the Gibbs vector 
p(t)  is controlled to follow the given reference vector 
P d ( t ) .  Note that if the vector p d ( t )  is set as constant, it 
refers to the attitude orientation problem. The design 
procedure of sliding-mode control generally contains 
two fundamental steps. The first step is to choose the 
sliding vector such that in the sliding mode the goal 
of control is achieved. In our case, significantly, in 
addition to the successful tracking of p(t), the choice 
of sliding vector is also related to the convergent 
rate of b(t) - pd(t)].  The second step is to design 
the control laws such that the reaching and sliding 
conditions are satisfied, and thus the system is strictly 
constrained in the sliding mode. Next, we show the 
sliding-mode controller design as follows. 

Step I: 
sliding mode the goal of control is achieved. 

Let us first define the error signal as 

Choose the sliding vector such that in the 

-h2 hl 0 O -hll H = [ h x ] =  h3 

E ( t )  = dr)  - P d ( l )  

s ( t )  = [ W ( t )  - G(t)] + K P € ( t )  

(4) 

( 5 )  

i 
where h E R3 denotes the angular momentum in the 
body coordinates. Here, the matrix J is known as 
the inertia matrix which is inherently Symmetric and 
positive definite by choosing the body-fixed frame 

and then choose the sliding vector as 

appropriately. Besides, by directly calculating 

x T [ T ( p )  - $Z]x = $(pTx)Z 2 0 v x E R3 

we can conclude that T(p) 2 iZ. In the next section, 
we employ these two natural properties, i.e., 1) the 
inertia matrix J is symmetric and positive definite, and 
2) T(p) 2 iZ, in the controller design. Both of them 
are shown useful in the stability analysis by the second 
method of Lyapunov theory. 

I l l .  SLIDING-MODE CONTROLLER DESIGN 

The sliding-mode controller introduced here is to 
deal with the multiaxial attitude traclung maneuvers of 
the spacecraft modeled by (1) and (2). In the controller 
design, the required feedback signals w and p are 

where 

and K ,  is a symmetric and positive definite constant 
matrix whose eigenvalues are shown later related to the 
rate of convergence of the error signal ~ ( t ) .  From the 
sliding-mode theory [7], once the reaching and sliding 
conditions are satisfied, the system is finally forced to 
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stay in the sliding mode 

~ ( t )  = [ ~ ( t )  - Lj(t)] + K p & ( t )  = 0. 

By using the kinematic equations (1) and 
premultiplying T(p)  into (6), we have 

(P - P d )  + T@)Kp& = 0 

or 

b + T@)K,& = 0. 

Let the candidate of Lyapunov function be 

V ,  = $ E ~ K , E .  

Then, the derivative of V, is 

V, =cTK,& 

= -E~K,T(P)K,E 

= - ( K p E ) T ~ ( P ) ( K p o  

From property 2, we can further obtain 

V, 5 - ; ( K , E ) ~ ( K ~ E )  5 o 

and V, = 0 only if E = 0. Thus, V, is really a Lyapunov 
function so that the error signal E will converge to 
zero. That means the Gibbs vector p(t) can track 
p d ( t )  successfully. As for the angular velocity vector 
w ,  we can easily derive [w( t )  - Lj(t)] 4 0 from (6). 
Therefore, by introducing the sliding vector (5) the 
stability problem of the system in the sliding mode is 
guaranteed. 

Since K ,  is symmetric and positive definite, it can be 
decomposed as 

Next, let us further discuss about the choice of K p .  

K p  = UTCU 

where U is the unitary matrix and C = 
diag[Xl A:! X 3 ]  with Xis  being the positive 
eigenvalues of K,. Then the Lyapunov function 
becomes 

= $[Air! + A2Z; + X3Zg] (11) 

where Z = UE and the derivative of V, in (10) can be 
rewritten as 

From (11) and (12), we have 

V, V --V, 
E - V, 

where Ami, = min{Xl,X2,X3}. As a result, 

This inequality implies the norm ( ( E \ \  of the tracking 
errors converge to zero related to an exponential rate 
of i X m h .  Note that if XI = X 2  = A3 = A, i.e., K ,  = X . I ,  
(16) becomes 

1 ] E ( t ) l l  5 1 I&(th) I I e- ( A / 2 ) ( t - t f l )  

and from (6), 

(U - d) = - A @  - p d )  -A& 

or equivalently, 

IIw -611 = Xll&l l .  
That means J1w - will converge to zero with the 
same rate -X/2 as 1 1 ~ 1 1 .  Hence, in the next step, for 
simplicity we let K ,  = X I  and thus the sliding vector 
(5) becomes 

s ( t )  = [W - W ) ]  + X [ p ( t )  - P d ( t ) ] .  (17) 

Step 2:  
reaching and sliding conditions are satisfied. 

From the truth that J is symmetric and positive 
definite, the candidate of Lyapunov function is set as 

Design the control laws such that the 

V, = i s T J s  2 0 (18) 

and V, = 0 only when s = 0. Taking the first derivative 
of V, and adopting (l), (3), and (17), we have 

v, = sTJS 

= sT[JLj - Jd + XJ(P - P d ) ]  

= sT[H# + T + d - J 6  + XJT(p)w - AJPd] .  (19) 
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Let the control law be by the saturation function [5] 

1 s i > €  
sat(s;,e) = si/€ (si( < E  . (24) { -1 S i < - €  

The system is now no longer forced to stay in the 
sliding mode but is constrained within the sliding layer 
[si1 5 E. The cost of such substitution is a reduction in 
the accuracy of the desired performance. 

In the next section, simulation results are given to 
verify the success of the sliding-mode control laws. 

where 

. d  
2 = - ( ( T - ' ( p ) p d )  

d t  

d t  
= - ( P ( p ) ) p d  d + P ( p ) p d  

T' = [ T i  T i  r ; ]T  

T/ = -k; . sgn(s;) 

then (19) becomes 

v, = sT[6  + T / ]  

3 

= s; (6; + 7;) 

i =1 

where 

6= [61 62 63JT 

= AHw + A J d  + XAJ[T(p)w - P d ]  + d .  

Since the external disturbances d and uncertain 
parameters A J  and A H  are all bounded, the 
upper bound of 16;I can be found and denoted as 
6y"(w,p,pd,Pd,/jd,t). It is evident that if we choose 

k; = 6rax(w,p,pd,Pd,pd, t ) ,  for i = 1,2,3 

(23) 

then (22) becomes 

for s # 0. This implies V, is really a Lyapunov 
function. Therefore, the reaching and sliding of the 
sliding mode s = 0 is guaranteed. 

However, due to the existence of nonideality in 
the practical implementation of the sign function 
sgn(si), the control law T in (20) always suffers from 
the chattering problem. To alleviate such undesirable 
performance, the sign function can be simply replaced 

IV. MULTIAXIAL ATTITUDE TRACKING MANEUVERS 

The mathematical model of a spacecraft driven by 
pairs of opposing thrusters is shown as 

P = T(p)w  (25) 

(26) JLj = HW + T + d 

where the components his in H is determined from 
h = Jw and the numerical data are 

J = JO + AJ(kg. m2) 

JO = [ 0 86.067 
87.212 0 

0 114.562 ] 0 

AJil 0 0 

IAJiiI < 8.7212(10% of Jell) 

lAJ221 < 4.3034(5% of Jm2) 

lAJ33I < 17.1843(15% of Jo33) 

-0.005 . sin(t) 

-0.005 . sin(t) 

Based on this model, the multiaxial attitude tracking 
maneuvers are illustrated with the following desired 
reference vector function 

sin (Gt) 

p d ( t )  = -sin (Gt) . i 1 
The initial conditions are set as w = 
[0.001 -0.005 O.OO1]T and p = [ l  1 -1JT. 
Following the design procedure, in the first step we 
choose the sliding vector 

s ( t )  = [ W ( t )  - G(t)l + X W )  - Pd(t)l 
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as shown in (17). With this sliding vector, it has been 
proved that the system in the sliding mode is stable 
and the convergent rate of the error signal &(t)  is X/2. 
Here, we let X = 0.5. In the second step, from (20), we 
have the control laws 

7 = -How + Job - XJo[T(p)w - Pd] - K .  sgn(s) 

where 

HOW = ho x w 

ho = JOW 

Here, from (23), the elements k;, i = 1,2,3, are 
determined by the upper bounds of 6 and can be found 
as 

ki = I(AJ22- AJ33)wzw3( + AJlllalI 

+ XAJII lTul - Pdl 1 -t (dl (max -I- 1 

k2 = \(Ah3 - AJ11)W3W11 AJ221b21 

+ XAJ221Tu2 - Id21 + (d2lmax -t 1 

k3 = ((AJ11- AJ22)~1~2(  + A h ( & (  

XAJ33(Tw, - Pd31 (d2lmax + 1 

where Tui is the ith element of T(p)w, i = 1,2,3, and 
a constant 1 is added in order to shorten the reaching 
time f h .  Note that the terms 6 ; s  can be evaluated from 
(21). Furthermore, to avoid the chattering problem of 
the control torques, we replace the sign function with 
the saturation function (24) to obtain the control law 

T = -HOW + JOG - XJo[T(p)w - I d ]  - K . sat(s,E) 

with E = 0.05. Therefore, the system is no longer 
restricted in the sliding mode but constrained in the 
sliding layers Is; 1 5 E;, i = 1,2,3. 

Fig. 3 with the inertia matrix given by 
The simulation results are shown in Fig. 1 through 

95.933 0 
J = [ 0 81.763 ] 0 0 131.746 

which satisfies the variation AJ listed in (27). Fig. 1 
shows that the attitude vector traces the reference 
vector pd(f) successfully. In Fig. 2, the angular velocity 
vector w(t) approach &(t)  as expected. Finally, Fig. 3 
shows the input torques which do not possess any 
undesirable chattering. Therefore, the robustness of 
the sliding-mode control to parameter variation AJ 
and external disturbance d ( t )  is verified. 

1.5 I 

TIMFJsec 

Fig. 1. Attitude components pi ,  i = 1,2,3. 

0.25 
I 

, ,  , ,  , I  

, ,  . ,  , ,  
-0.2 

-0.25 
0 20 40 60 80 100 120 140 160 180 200 

TIMUsec 

Fig. 2. Angular velocities ~ i ,  i = 1,2,3. 

- 3 t  i 
4O 20 40 60 80 100 120 140 160 180 200 

TlMFJsc 

Fig. 3. Control torques T;, i = 1,2,3. 

V. CONCLUSION 

In this paper, sliding-mode theory is applied to 
the controller design for spacecraft attitude tracking 
maneuvers. There exist two important natural 
properties of the spacecraft model. First, the inertia 
matrix J is symmetric positive definite and second, 
the matrix T ( p )  in the kinematic equation satisfies 
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T ( p )  2 iZ. With these properties and based on the 
direct method of the Lyapunov stability theory, a new 
sliding vector and two significant Lyapunov functions 
are introduced in the controller design and system 
stability analysis. Besides, the convergent rate of the 
error signal can be determined by suitably choosing 
the sliding vector. As for the chattering problem, the 
saturation functions have been suggested to replace the 
sign functions in the control laws. Finally, the example 
of spacecraft driven by pairs of opposing thrusters 
verifies the success and robustness of the sliding-mode 
controller. 
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Removal of Alignment Errors in an Integrated 
System of Two 3-D Sensors 

An algorithm is presented to relatively align two 3-D sensors 

using targets that are tracked by both sensors. The algorithm 

estimates a d  removes sensor biases and sensor frame orientation 

errors. For illustrative purposes, the alignment algorithm is 

applied to simulated track data from two sensors. 

1. INTRODUCTION 

Interest in integrating stand-alone sensors into 
multisensor systems for command, control, and 
communications (C3) has been increasing in recent 
years. Rather than develop new sensors to achieve 
more accurate tracking and improved surveillance 
in c3 systems, it is less costly to integrate existing 
stand-alone sensors into a single system to obtain 
performance improvements and enhanced capabilities 
for tracking and surveillance. However, before the 
benefits of multisensor integration can be realized, 
the sensor registration (or alignment) problem must 
be addressed. Registration refers to the process 
of expressing the multisensor data in a common 
reference frame, where the data is free from errors 
due to improper alignment of the sensors, orientation 
errors in the reference frames of the sensors, and 
sensor location errors [l]. That is, the data from each 
sensor must be transformed to a common reference 
frame that is free from errors in the transformation 
process. Unfortunately, attempts to integrate multiple 
sensors into a single system for C3 have had limited 
success, due largely to a failure to solve the registration 
problem [l, 21. 

One source of registration errors is sensor 
calibration errors (i.e., offsets). Although the 
sensors are usually calibrated in an initial calibration 
procedure, the calibration may deteriorate over time. 
Another source of registration errors is attitude (or 
orientation) errors in the reference frames of the 
sensors. Attitude errors can be caused by bias errors 
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