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Abstract

Assume thatm andn are positive even integers withn � 4. The honeycomb rectangular torus HReT(m,n) is recognized
as another attractive alternative to existing torus interconnection networks in parallel and distributed applications. It is
known that any HReT(m,n) is a 3-regular bipartite graph. We prove that any HReT(m,n) − e is hamiltonian for any edge
e ∈ E(HReT(m,n)). Moreover, any HReT(m,n) − F is hamiltonian for anyF = {a, b} with a ∈ A andb ∈ B whereA andB

are the bipartition of HReT(m,n), if n � 6 orm = 2.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Network topology is a crucial factor for interconnection networks since it determines the performance of
the network. Many interconnection network topologies have been proposed in the literature for the purpose of
connecting a large number of processing elements [6]. Network topology is always represented by a graph where
nodes represent processors and edges represent links between processors. One of the most popular architectures is
the mesh connected computers [6]. Each processor is placed in a square or rectangular grid and is connected by a
communication link to its neighbors up to four directions.

It is well known that there are three possible tessellations of a plane with regular polygons of the same
kind: square, triangular, and hexagonal, corresponding to the division of a plane into regular squares, triangles,
and hexagons, respectively. Based on this observation, some computer and communication networks have been
built. The square tessellation is the basis for mesh-connected computers. The triangle tessellation is the basis for
defining hexagonal mesh multiprocessors [3,11]. The hexagonal tessellation is the basis for defining the honeycomb
meshes [2,10].

Tori are meshes with wraparound connections to achieve vertex and edge symmetry. Meshes and tori are among
the most frequent multiprocessor networks available on the market. Stojmenovic [10] also introduced honeycomb
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tori by adding wraparound edges on honeycomb meshes. Recently, the honeycomb torus has been recognized as an
attractive alternative to existing torus interconnection networks in parallel and distributed applications. Thus, there
are a lot of studies on topological properties of honeycomb torus [7,8,10]. The hamiltonian properties constitute
one of the major requirements in designing the topology of networks. For example, the “Token Passing” approach
is used in some distributed systems. Interconnection network requires the presence of hamiltonian cycle in the
structure to meet the “token ring” requirement. Fault tolerance is also desired in massive parallel systems that
have a relative high probability of failure. The hamiltonian properties of the honeycomb tori were studied in [7,8].
It is proved that all the honeycomb tori are hamiltonian [7]. Moreover, there exists a hamiltonian cycle in any
honeycomb torus with two adjacent faulty nodes [8]. Recently, Cho and Hsu [5] have generalized the honeycomb
torus into generalized honeycomb torus, and some generalized honeycomb tori are proved to be hamiltonian.

Throughout this paper, we assume thatm and n are positive even integers withn � 4. The honeycomb
rectangular torus HReT(m,n) is another attractive alternative to existing torus, which is also introduced by
Stojmenovic [10]. Its topological properties and its generalization are studied by Parhami and Kwai [9]. Some
applications of the honeycomb rectangular torus are studied in [4]. In this paper, we study the hamiltonian
properties of honeycomb rectangular torus. We will prove that the honeycomb rectangular torus HReT(m,n) is
hamiltonian. Moreover, any HReT(m,n) remains hamiltonian when any edge is faulty. The honeycomb rectangular
torus we proposed is a bipartite graph with bipartitionA andB. Thus, any cycle of it contains the same number of
vertices in each part. For this observation, we will prove that any HReT(m,n) − F , with n > 4 or m = 2, remains
hamiltonian for anyF = {a, b} with a ∈ A andb ∈ B.

In the following section, we give some graph terms that are used in this paper and a formal definition of
honeycomb rectangular torus. In Section 3, we present a recursive property of the ring embeddings in HReT(m,n).
In Section 4, we discuss the ring embedding properties of HReT(2, n). With the recursive property presented in
Section 3, we can prove that any HReT(m,n) remains hamiltonian when any edge is faulty. In Section 5, we discuss
the ring embedding property of HReT(4, n) − F for anyF = {a, b} with a ∈ A andb ∈ B. In the final section, we
discuss the ring embedding properties of any HReT(m,n) − F whereF = {a, b} with a ∈ A andb ∈ B.

2. Honeycomb rectangular torus

Usually, computer and communication networks are represented by graphs where nodes represent processors
and edges represent links between processors. In this paper, a network is represented as an undirected graph. For
the graph definition and notation we follow [1].G = (V ,E) is a graph if V is a finite set andE is a subset of
{(a, b) | (a, b) is an unordered pair ofV }. We say thatV is thenode set andE is theedge set of G. Two nodes
a andb areadjacent if (a, b) ∈ E. A path is a sequence of nodes such that two consecutive nodes are adjacent.
A path is delimited by〈x0, x1, x2, . . . , xn−1〉. We useP −1 to denote the path〈xn−1, . . . , x2, x1, x0〉 if P is the path
〈x0, x1, x2, . . . , xn−1〉. A path is called ahamiltonian path if its nodes are distinct and spanV . A cycle is a path
of at least three nodes such that the first node is the same as the last node. A cycle is called ahamiltonian cycle if
its nodes are distinct except for the first node and the last node and if they spanV . A graph is calledhamiltonian
if it has a hamiltonian cycle. A graphG = (V ,E) is 1-edge hamiltonian if G − e is hamiltonian for anye ∈ E.
A hamiltonian bipartite graphG is 1p-hamiltonian if G − F remains hamiltonian for anyF = {a, b} with a ∈ A

andb ∈ B whereA andB are the bipartition ofG.
For any two positive integersr ands, we use[r]s to denoter (mod s). We use the brick drawing, proposed

in [10], to define the honeycomb rectangular torus. The honeycomb rectangular torus HReT(m,n) is the graph
with the vertex set{(i, j) | 0 � i < m, 0 � j < n} such that(i, j) and(k, l) are adjacent if they satisfy one of the
following conditions:

(1) i = k andj = [l ± 1]n;
(2) j = l andk = [i − 1]m if i + j is even; and
(3) j = l andk = [i + 1]m if i + j is odd.
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Fig. 1. The graph HReT(6,8).

For example, the graph HReT(6,8) is shown in Fig. 1. From the illustration, it is easy to see that HReT(m,n) is
a subgraph of the torusT (m,n) [6]. Obviously, any honeycomb rectangular torus is a 3-regular bipartite graph. We
setA as{(i, j) | (i, j) ∈ V (HReT(m,n)), andi +j is even} and setB as{(i, j) | (i, j) ∈ V (HReT(m,n)), andi +j

is odd}. Moreover, any honeycomb rectangular torus is vertex transitive. The recursive structure of HReT(m,n)

can easily be observed by inserting a pair of rows and/or a pair of columns.
Since the honeycomb rectangular torus is a bipartite graph, any spanning cycle of it contains the same number

of vertices in each part. We will prove that any HReT(m,n) is 1-edge hamiltonian. Moreover, HReT(m,n) is
1p-hamiltonian if and only ifn > 4 or m = 2.

To discuss the 1p-hamiltonian property of HReT(m,n), let F = {a, b} with a ∈ A and b ∈ B. We may
assume that(0,0) ∈ F because HReT(m,n) is vertex transitive. For this reason, we useF(m,n) to denote
{F |F = {(0,0), (x, y)} | (x, y) ∈ B}. We use(x, y) to denote the unique element inF −{(0,0)}. By the assumption,
x + y is odd. We useP (i, j, k) to denote the path〈(i, j), (i, [j + 1]n)), (i, [j + 2]n)), . . . , (i, k)〉 and useQ(i, k, j)

to denote the pathP −1(i, j, k).

3. A recursive property

In this section, we useF ′ to denote a subset ofV (HReT(m,n)) ∪ E(HReT(m,n)). We will present a recursive
algorithm to obtain hamiltonian cycle of HReT(m,n) − F ′.

Assume that 0� i < m. We define a function from the vertex set of HReT(m,n) into the vertex set of
HReT(m + 2, n) by assigningfi((k, l)) = (k, l) if k � i andfi((k, l)) = (k + 2, l) otherwise. We definefi(F

′) to
be the set

{
fi(k, l) | (k, l) ∈ V

(
HReT(m,n)

) ∩ F ′}

∪ {(
fi(k, l), fi(k

′, l′)
) | ((k, l), (k′, l′)

) ∈ E
(
HReT(m,n)

) ∩ F ′ with {k, k′} �= {
i, [i + 1]m

}}

∪ {(
(i, l), (i + 1, l)

) | ((i, l), ([i + 1]m, l)
) ∈ E

(
HReT(m,n)

) ∩ F ′}.

Let H be a hamiltonian cycle of HReT(m,n) − F ′ such that there are some edges ofH joining vertices of
column i to vertices of column[i + 1]m); i.e., ((i, j), ([i + 1]m, j) ∈ E(H) for somej . Now, we construct a
hamiltonian cyclefi(H) of HReT(m + 2, n) − fi(F

′) as follows:
Let 0� k0 < k1 < · · · < kt−1 � n − 1 be the indices such that((i, kj ), ([i + 1]m,kj )) is an edge ofH . Let �Hi

be the image ofH − {(i, j), ([i + 1]m, j)) | 0 � j < n} underfi . For 0� j < t , we setQj as the path

〈
(i, kj ),

([i + 1]m+2, kj

) P ([i+1]m+2,kj ,[k[j+1]t −1]n)−−−−−−−−−−−−−−−−→ ([i + 1]m+2, [k[j+1]t − 1]n
)
,

([i + 2]m+2, [k[j+1]t − 1]n
) Q([i+2]m+2,[k[j+1]t −1]n,kj )−−−−−−−−−−−−−−−−→ ([i + 2]m+2, kj

)
,
([i + 3]m+2, kj

)〉
.
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Fig. 2. (a) A hamiltonian cycleH in HReT(6,8) − {(0,0), (5,0)}, (b) f5(H ), and (c)f1(H ).

Obviously,Qj is a path joining(i, kj ) and ([i + 3]m+2, kj ) for 0 � j < t . It is easy to see that edges of�Hi

together with edges ofQj , with 0� j < t , form a hamiltonian cycle of HReT(m + 2, n) − fi(F
′). We denote this

cycle asfi(H). For example, a hamiltonian cycleH of HReT(6,8) − {(0,0), (5,0)} is shown in Fig. 2(a). The
correspondingf5(H) andf1(H) are shown in Figs. 2(b) and 2(c). We have following lemmas.

Lemma 1. Assume that 0 � i < m. Let H be a hamiltonian cycle of HReT(m,n) − F ′ such that there are some
edges of H joining vertices of column i to vertices of column [i + 1]m. Then, fi(H) is a hamiltonian cycle of
HReT(m + 2, n) − fi(F

′). Moreover, fi(H) contains some edges joining column t to column [t + 1]m + 2 for any
t in {i, [i + 1]m, [i + 2]m}.
Lemma 2.

(1) Suppose that H is a hamiltonian cycle of HReT(2, n)−F ′ such that H contains some edges in {((0, j), (1, j)) |
j is odd}. Then f0(H) is a hamiltonian cycle of HReT(4, n) − f0(F ′). Moreover, f0(H) contains some edges
joining column t to column t + 1 for any t in {0,1,2}.

(2) Suppose that H is a hamiltonian cycle of HReT(2, n)−F ′ such that H contains some edges in {((0, j), (1, j)) |
j is even}. Then f1(H) is a hamiltonian cycle of HReT(4, n) − f1(F ′). Moreover, f1(H) contains some edges
joining column t to column t + 1 for any t in {1,2,3}.

We say a hamiltonian cycle of HReT(2, n)−F ′ is regular if H contains some edges in{((0, j), (1, j)) | j is odd}
and some edges in{((0, j), (1, j)) | j is even}. Assume thatm � 4. A hamiltonian cycleH of HReT(m,n) − F ′
is regular if H contains some edges joining columni to column[i + 1]m for 0 � i < m. The following lemma is
derived from the above two lemmas.

Lemma 3. Suppose that H is a regular hamiltonian cycle for HReT(m,n) − F ′. Then fi(H) is a regular
hamiltonian cycle of HReT(m + 2, n) − fi(F

′) for every 0 � i < m.

4. Hamiltonian properties of HReT(2, n)

Obviously,
〈
(0,0), (1,0), (1,1), (0,1), (0,2), . . ., (0, n − 2), (1, n − 2), (1, n − 1), (0, n − 1), (0,0)

〉

and
〈
(0,0)

P (0,0,n−1)−−−−−−→ (0, n − 1), (1, n − 1)
Q(1,n−1,0)−−−−−−→ (1,0), (0,0)

〉
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are regular hamiltonian cycles of HReT(2, n). With these two hamiltonian cycles and the symmetric property of
HReT(2, n), HReT(2, n) is 1-edge hamiltonian.

Now, we discuss the 1p-hamiltonian property of HReT(2, n). Assume thatF ∈ F(2, n) and that(x, y) is the
unique element inF − {(0,0)}.

Suppose thatx = 0. Then
〈
(0,1), (0,2), (1,2), (1,3), . . ., (0, y − 1), (1, y − 1), (1, y), (1, y + 1), (0, y + 1), . . . ,

(0, n − 3), (1, n − 3), (1, n − 2), (0, n − 2), (0, n − 1), (1, n − 1), (1,0), (1,1), (0,1)
〉

forms a hamiltonian cycle of HReT(2, n) − F .
Suppose thatx = 1. Then

〈
(0,1), (0,2), (1,2), (1,3), . . ., (1, y − 1), (0, y − 1), (0, y), (0, y + 1), (1, y + 1), . . . ,

(0, n − 3), (1, n − 3), (1, n − 2), (0, n − 2), (0, n − 1), (1, n − 1), (1,0), (1,1), (0,1)
〉

forms a hamiltonian cycle of HReT(2, n) − F .

Lemma 4. HReT(2, n) is 1-edge hamiltonian and 1p-hamiltonian. Moreover, there exists a regular hamiltonian
cycle in HReT(2, n) − e for any e ∈ E(HReT(2, n)). Furthermore, there exists a regular hamiltonian cycle in
HReT(2, n) − F for any F ∈ F(2, n) with F �= {(0,0), (1,0)}.

5. 1p-hamiltonian property of HReT(4, n)

We first consider the case HReT(4,4). Suppose thatF = {(0,0), (1,0)}. Obviously, degG−F (v) = 2 if v ∈
{(0,1), (0,3), (1,1), (1,3)}. For this reason, any hamiltonian cycle of HReT(4,4) − F must include the following
edge set:

{(
(0,1), (0,2)

)
,
(
(0,2), (0,3)

)
,
(
(0,3), (1,3)

)
,
(
(1,3), (1,2)

)
,
(
(1,2), (1,1)

)
,
(
(1,1), (0,1)

)}
.

However, this edge set induces a cycle of length 6. Thus, HReT(4,4) − F is not hamiltonian.
In the following, we will prove that every HReT(4, n) with n � 6 is 1p-hamiltonian. Assumet is an integer with

0 � t < (1
4n − 1). For 0� i � 2t , let Di denote the path〈(3,2i), (3,2i + 1), (2,2i + 1), (2,2i + 2), (1,2i + 2),

(1,2i + 3), (0,2i + 3), (0,2i + 4)〉.
We setRt as the path

〈
(3,0)

D0−→ (0,4), (3,4)
D2−→ (0,8), (3,8) · · · D2t−2−−−→ (0,4t)

〉

and setSt as the path
〈
(3,2)

D1−→ (0,6), (3,6)
D3−→ (0,10), (3,10) · · · D2t−1−−−→ (0,4t + 2)

〉
.

Let F ∈F(4, n) and let(x, y) be the unique element inF − {(0,0)}.
Case 1: x = 0. By Lemma 4, there exists a hamiltonian cycleH of HReT(2, n) − F . By Lemma 2,f0(H) is a

regular hamiltonian cycle of HReT(4, n) − F .
Case 2: x = 1. Assume that(x, y) �= (1,0). By Lemma 4, there exists a regular hamiltonian cycleH of

HReT(2, n) − F . By Lemma 2,f1(H) is a regular hamiltonian cycle of HReT(4, n) − F . Suppose that(x, y) =
(1,0). It can be checked that

〈
(0,1), (0,2), (0,3), (1,3)

P (1,3,n−1)−−−−−−→ (1, n − 1), (0, n − 1)
Q(0,n−1,4)−−−−−−→ (0,4),

(3,4)
P (3,4,3)−−−−→ (3,3), (2,3)

P (2,3,2)−−−−→ (2,2), (1,2), (1,1), (0,1)
〉

forms a regular hamiltonian cycle of HReT(4, n) − F . See Fig. 3(a) for illustration.
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Case 3: x = 2. By the symmetric property of HReT(4, n), we may assume that 1� y � 1
2n. Sincex + y is odd,

y is odd.
Subcase 3.1:y = 1. It can be checked that

〈
(0,1), (0,2), (3,2)

Q(3,2,3)−−−−→ (3,3), (2,3), (2,2), (1,2), (1,3), (0,3)
P (0,3,n−1)−−−−−−→ (0, n − 1),

(1, n − 1)
Q(1,n−1,4)−−−−−−→ (1,4), (2,4)

P (2,4,0)−−−−→ (2,0), (1,0), (1,1), (0,1)
〉

forms a regular hamiltonian cycle of HReT(4, n) − F . See Fig. 3(b) for illustration.
Subcase 3.2:y = 4t + 1 for some positive integert . Then the path

〈
(3,0)

Rt−→ (0,4t), (3,4t)(3,4t + 1), (3,4t + 2), (0,4t + 2)
S−1

t−→ (3,2), (0,2),

(0,1), (1,1), (1,0), (2,0)
Q(2,0,4t+4)−−−−−−→ (2,4t + 4), (1,4t + 4)

P (1,4t+4,n−1)−−−−−−−−→ (1, n − 1),

(0, n − 1)
Q(0,n−1,4t+3)−−−−−−−−→ (0,4t + 3), (1,4t + 3), (1,4t + 2), (2,4t + 2),

(2,4t + 3), (3,4t + 3)
P (3,4t+3,0)−−−−−−→ (3,0)

〉

forms a hamiltonian cycle of HReT(4, n) − F . See Fig. 3(c) for illustration.
Subcase 3.3:y = 4t + 3 for some nonnegative integert . Then the path

〈
(3,0)

Rt−→ (0,4t)
D2t−→ (0,4t + 4)

P (0,4t+4,n−1)−−−−−−−−→ (0, n − 1),

(1, n − 1)
Q(1,n−1,4t+4)−−−−−−−−→ (1,4t + 4), (2,4t + 4)

P (2,4t+4,0)−−−−−−→ (2,0), (1,0), (1,1),

(0,1), (0,2), (3,2)
St−→ (0,4t + 2), (3,4t + 2)

P (3,4t+2,0)−−−−−−→ (3,0)
〉

forms a hamiltonian cycle of HReT(4, n) − F . See Fig. 3(d) for illustration.

Fig. 3. (a) A hamiltonian cycleH in HReT(4,20)−{(0,0), (1,0)}, (b) a hamiltonian cycleH in HReT(4,20)−{(0,0), (2,1)}, (c) a hamiltonian
cycle H in HReT(4,20) − {(0,0), (2,9)}, (d) a hamiltonian cycleH in HReT(4,20) − {(0,0), (2,7)}, and (e) a hamiltonian cycleH in
HReT(4,20) − {(0,0), (3,0)}.
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Case 4: x = 3. Assume that(x, y) �= (3,0). By Lemma 4, there exists a hamiltonian cycleH of HReT(2, n) −
{(0,0), (1, y)}. By Lemma 2,f0(H) is a regular hamiltonian cycle of HReT(4, n)−F . Assume that(x, y) = (3,0).
Suppose thatn � 8. It can be checked that

〈
(0,1), (0,2), (0,3), (1,3), (1,2), (2,2), (2,3), (2,4), (1,4)

P (1,4,n−2)−−−−−−→ (1, n − 2),

(2, n − 2)
Q(2,n−2,5)−−−−−−→ (2,5), (3,5)

P (3,5,n−1)−−−−−−→ (3, n − 1), (2, n − 1), (2,0), (2,1),

(3,1)
P (3,1,4)−−−−→ (3,4), (0,4)

P (0,4,n−1)−−−−−−→ (0, n − 1), (1, n − 1), (1,0), (1,1)(0,1)
〉

forms a regular hamiltonian cycle of HReT(4, n) − F . See Fig. 3(e) for illustration.
Hence, we have the following lemma.

Lemma 5.

(1) HReT(4, n) is 1p-hamiltonian if and only if n � 6.
(2) Suppose that n � 6. There exists a regular hamiltonian cycle in HReT(m,n) − F for any F ∈ F(4, n) except

the case that F = {(0,0), (3,0)} and n = 6.

6. Hamiltonian properties of HReT(m,n)

Theorem 1.

(1) Any rectangular honeycomb torus HReT(m,n) is 1-edge hamiltonian.
(2) HReT(m,n) is 1p-hamiltonian if and only if either n � 6 or m = 2.
(3) Assume that m � 4, n � 6. There exists a regular hamiltonian cycle in HReT(m,n) − F for any F ∈ F(m,n)

except the case that F = {(0,0), (m − 1,0)} and n = 6.

Proof. With Lemma 4, there exists a regular hamiltonian cycle in HReT(2, n) − e for any e ∈ E(HReT(2, n)).
Recursively applying Lemma 3, any rectangular honeycomb torus HReT(m,n) is 1-edge hamiltonian.

Now, we discuss the 1p-hamiltonian property of HReT(m,n). LetF ∈F(m,n) and(x, y) be the unique element
in F − {(0,0)}. By Lemma 4, HReT(2, n) is 1p-hamiltonian.

Now, we consider the casen = 4. Suppose thatF = {(0,0), (1,0)}. Obviously, degG−F (v) = 2 if v ∈
{(0,1), (0,3), (1,1), (1,3)}. Therefore, any hamiltonian cycle of HReT(m,n) − F must include the following
edge set:

{(
(0,1), (0,2)

)
,
(
(0,2), (0,3)

)
,
(
(0,3), (1,3)

)
,
(
(1,3), (1,2)

)
,
(
(1,2), (1,1)

)
,
(
(1,1), (0,1)

)}
.

However, this edge set induces a cycle of length 6. Thus, HReT(m,n) − F is not hamiltonian. Hence, HReT(m,n)

is not 1p-hamiltonian ifm � 4 andn = 4.
Now, we prove that HReT(m,n) is 1p-hamiltonian ifn � 6. We prove the statement by induction onm. With

Lemma 5, our theorem holds form = 4. Hence, we assume that the theorem holds for HReT(m′, n) whenm′ is any
even integer with 4� m′ < m. Now, we consider the case thatm � 6.

We first consider the case thatn � 8. Suppose thatx < m − 2. By induction, there exists a regular hamiltonian
cycle H of HReT(m − 2, n) − F . By Lemma 2,fm−1(H) is a regular hamiltonian cycle of HReT(m,n) − F .
Suppose thatx � m−2. By induction, there exists a regular hamiltonian cycleH of HReT(m−2, n)−{(0,0), (x−
2, y)}. By Lemma 2,f0(H) is a regular hamiltonian cycle of HReT(m,n)−F . Hence, the theorem holds forn � 8.

Now, we consider the case thatn = 6. Suppose that(x, y) is neither(m − 3,0) nor (m − 1,0). By induction,
there exists a regular hamiltonian cycleH of HReT(m − 2, n) − F . By Lemma 2,fm−1(H) is a regular
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hamiltonian cycle of HReT(m,n) − F . Suppose that(x, y) = (m − 3,0). By induction, there exists a regular
hamiltonian cycleH of HReT(m − 2, n) − {(0,0), (m − 5,0)}. By Lemma 2,f0(H) is a regular hamiltonian
cycle of HReT(m,n) − F . Suppose that(x, y) = (m − 1,0). By induction, there exists a hamiltonian cycleH of
HReT(m−2, n)−{(0,0), (m−3,0)}. The hamiltonian cycle must contain some edges joining columni to column
i + 1 for somei with 0 � i � m − 2. By Lemma 2,fi(H) is a hamiltonian cycle of HReT(m,n) − F .

The theorem is proved.✷
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