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Abstract

For any operatorA on a Hilbert space, let̃A denote its Aluthge transform. In this paper,
we prove that the closure of the numerical range ofÃ is always contained in that ofA. This
supplements the recently proved case for dim kerA � dim kerA∗ by Yamazaki, and partially
confirms a conjecture of Jung, Ko and Pearcy.
© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Numerical range; Aluthge transform; Polar decomposition

Let A be a bounded linear operator on a complex Hilbert spaceH . If A = V |A| is
any polar decomposition ofA with V a partial isometry and|A| = (A∗A)1/2, then the
Aluthge transform̃A of A is the operator|A|1/2V |A|1/2. Note thatÃ is independent
of the choice of the partial isometryV in the polar decomposition ofA. This is first
defined by Aluthge [1] in his study ofp-hyponormal operators. In recent years, prop-
erties of the transform have been investigated by several authors [6–8]. Some of them
are concerned with the relation between the numerical ranges ofA and Ã. Recall
that thenumerical range W(A) of A is the subset{〈Ax, x〉 : x ∈ H, ‖x‖ = 1} of the
plane, where〈·, ·〉 is the inner product inH . It is known thatW(A) is always convex
andW(A) containsσ(A), the spectrum ofA. (For properties of numerical ranges, see
[3, Chapter 22] or [2].) In [6, Proposition 1.8], it was proved thatW(Ã) ⊆ W(A) for
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anyA on a two-dimensional space, and was conjectured that this should be the case

for any operatorA. Recently, Yamazaki [8, Theorem 5] showed thatW(Ã) ⊆ W(A)

for operatorA with dim kerA � dim kerA∗. The purpose of this paper is to prove

that the containmentW(Ã) ⊆ W(A) holds for anyA.

Theorem 1. W(Ã) ⊆ W(A) for any operator A.

For its proof, we need another dual notion of the Aluthge transform defined by
Yamazaki [7, Definition 2]. LetA = V |A| be any polar decomposition ofA. The
∗-Aluthge transform Ã(∗) of A is the operator|A∗|1/2V |A∗|1/2. It is easily seen that
Ã(∗) is again independent of the choice ofV in A. Yamazaki showed in [7, Theorem
1 (ii)] that the numerical radii of̃A and Ã(∗) are equal. Recall that thenumerical
radius w(A) of operatorA is the quantity sup{|z| : z ∈ W(A)}. The next theorem
says that more is true.

Theorem 2. W(Ã) = W(Ã(∗)) for any operator A.

To prove this, we need the following two lemmas.

Lemma 3. Let A = V |A| be any polar decomposition of A. Then
(a) A∗ = V ∗|A∗| is a polar decomposition of A∗,
(b) (Ã∗)∗ = Ã(∗), and
(c) Ã(∗) = V ÃV ∗.

The assertions can be proved by delving into the construction of the polar decom-
position and using the properties ofV, |A| and|A∗|, which we leave to the reader.
In fact, (b) and (c) here have already been used in [7, Definition 2] and in the proof
of [7, Theorem 1 (ii)], respectively. For any subset
 of the plane, let̂
 denote its
convex hull.

Lemma 4. If A and B are operators such that A = X∗BX for some contraction X,

then W(A) ⊆ (W(B) ∪ {0})∧. If, in addition, X is a coisometry (XX∗ = 1), then
we also have W(B) ⊆ W(A).

Proof. If x is a unit vector withXx = 0, then 〈Ax, x〉 = 〈X∗BXx, x〉 = 0,
which is in(W(B) ∪ {0})∧. On the other hand, ifXx /= 0, then

〈Ax, x〉=〈BXx, Xx〉
=‖Xx‖2 ·

〈
B

(
Xx

‖Xx‖
)

,
Xx

‖Xx‖
〉
+ (1 − ‖Xx‖2) · 0,

which shows that〈Ax, x〉 is again in(W(B) ∪ {0})∧. HenceW(A) ⊆ (W(B)∪{0})∧.
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If, in addition,X is a coisometry, then fromA = X∗BX we obtainB = XAX∗.
For any unit vectorx, we have

〈Bx, x〉 = 〈XAX∗x, x〉 = 〈AX∗x, X∗x〉.
SinceX∗x is also a unit vector, this shows that〈Bx, x〉 is in W(A). HenceW(B) ⊆
W(A) as asserted.�

We are now ready for the proof of Theorem 2.

Proof of Theorem 2. Two cases are considered separately.
(i) dim kerA � dim kerA∗. In this case, the partial isometryV in the polar de-

compositionA = V |A| of A can be taken to be an isometry. SinceÃ(∗) = V ÃV ∗ by
Lemma 3(c), we may apply Lemma 4 to obtain

W(Ã) ⊆ W(Ã(∗)) ⊆ (W(Ã) ∪ {0})∧.

It follows that

W(Ã) ⊆ W(Ã(∗)) ⊆ (W(Ã) ∪ {0})∧.

If 0 is in W(Ã), then these containments imply thatW(Ã) = W(Ã(∗)). On the other

hand, if 0 is not inW(Ã), then 0 cannot be inσ(Ã). HenceÃ = |A|1/2V |A|1/2 is
invertible. This implies the invertibility of|A|1/2 andV . ThusV is a unitary operator,

andÃ andÃ(∗) are unitarily equivalent. Hence we obviously haveW(Ã) = W(Ã(∗)).

(ii) dim kerA∗ � dim kerA. For this case, we apply (i) toA∗ to obtainW(Ã∗) =
W(Ã∗(∗)

). By Lemma 3(b), we have

(Ã∗)∗ = Ã(∗) and (Ã∗(∗)
)∗ = Ã.

ThusW(Ã(∗)) = W(Ã) as required. �

Finally, we come to prove Theorem 1.

Proof of Theorem 1. Again, we consider two cases separately.
(i) dim kerA � dim kerA∗. This case is already proved in [8, Theorem 5]. Here,

for completeness, we give a rather simplified sketch. As before, we can choose the
partial isometryV in A = V |A| to be an isometry. Then

‖Ã − zI‖�‖|A|V − zI‖1/2‖A − zI‖1/2

=‖V ∗(A − zI)V ‖1/2‖A − zI‖1/2

�‖A − zI‖
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for any z in C, where the first inequality is a consequence of Heinz inequality
(‖A1/2XB1/2‖ � ‖AXB‖1/2‖X‖1/2 for positive operatorsA andB and an arbitrary

operatorX; cf. [4]). This impliesW(Ã) ⊆ W(A) since

W(A) =
⋂
λ∈C

{z ∈ C : |z − λ| � ‖A − λI‖}

and similarly forW(Ã) (cf. [5, Satz 5]).

(ii) dim kerA∗ � dim kerA. For this case, we apply (i) toA∗ to obtainW(Ã∗) ⊆
W(A∗). Therefore,

W(Ã) = W(Ã(∗)) = W((Ã∗)∗) ⊆ W(A)

by Theorem 2 and Lemma 3(b) and by taking the adjoints. This completes the
proof. �

It remains to be seen whetherW(Ã) = W(Ã(∗)) and W(Ã) ⊆ W(A) (without
the closures) hold for an arbitrary operatorA. The former is indeed true when 1�
dim kerA � dim kerA∗ or 1 � dim kerA∗ � dim kerA. This is because, assuming
that 1� dim kerA � dim kerA∗, we have 0 as an eigenvalue ofA and hence of
Ã, which implies that 0 is inW(Ã) and hence we obtainW(Ã(∗)) ⊆ W(Ã) from
W(Ã(∗)) ⊆ (W(Ã) ∪ {0})∧ and the equalityW(Ã) = W(Ã(∗)) as in the proof of case
(i) of Theorem 2.

Note added in proof

Using totally different techniques, both T. Ando and T. Yamazaki have obtained
independent proofs of our main result, Theorem 1, here.
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