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SUMMARY

In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated
towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly
varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half-space caused by
concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes
analytical solutions for stresses in a transversely isotropic half-space, induced by three-dimensional, buried,
linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly
linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a
rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co-
ordinate system for a transversely isotropic half-space. The buried depth, the dimensions of the loaded
area, the type and degree of material anisotropy and the loading type for transversely isotropic half-spaces
influence the proposed solutions. An illustrative example is presented to elucidate the effect of the
dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the
vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic
rectangular load. Copyright # 2002 John Wiley & Sons, Ltd.

KEY WORDS: analytical solutions; stresses; transversely isotropic half-space; three dimensional; buried;
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1. INTRODUCTION

Anisotropic deformability is common in foliated metamorphic, stratified sedimentary and
regularly jointed rock masses. Existing closed-form solutions, assuming linear and isotropic
elasticity, for stress in such rocks or rock masses are normally not realistic. Better results can
only be obtained by considering anisotropic deformability. Practically, an anisotropic rock can
be modelled as either an orthotropic or a transversely isotropic material. This work derives
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elastic solutions for stresses in a transversely isotropic half-space subjected to three-dimensional,
buried, linearly varying/uniform/parabolic rectangular loads.

Numerical methods, graphical methods, and closed-form solutions can be used to calculate
the stresses induced by external loads in an anisotropic half-space. The numerical procedures
can easily be automated with modern computers. However, most contributions have addressed
the calculation of stresses/displacements in isotropic media. The authors have proposed
graphical method of computing stress/displacement in transversely isotropic rocks subjected to
three-dimensional, irregularly shaped surface loads [1,2]. The use of anisotropic influence charts
to calculate the stresses/displacements is fast. However, the advantages of using the influence
charts decline if the loading region is not uniform or stresses/displacements at multiple depths
are simultaneously sought. Therefore, the closed-form solution method to estimate the stresses
induced by non-uniform loads may be an alternative to the numerical or graphical method.

A point load solution forms the basis of solutions to complex loading problems. Several
researchers have presented solutions for stresses or displacements in response to a concentrated
force applied to transversely isotropic half-spaces [3–5]. Wang and Liao [1,6] detailed various
anisotropic loading conditions to obtain solutions in cases other than those that involved point
loads. Stresses in a transversely isotropic half-space subjected to an arbitrary shape loaded area
can be estimated by dividing the loaded area into several regularly shaped sub-areas, including
triangles or rectangles. The authors recently derived closed-form solutions for stresses and
displacements in a transversely isotropic half-space subjected to uniform/linearly varying
triangular loads [7]. However, only uniform and some linearly varying rectangular loads acting
on the transversely isotropic half-space were presented [6,8]. In many engineering fields [9,10],
applied loads are not uniformly distributed but more concentrated towards the centre of the
foundation. Hence, loads may be more realistically simulated as being distributed as linearly
varying or as parabola of revolution. Teferra and Schultze [11] obtained solutions for stresses
beneath the centre of a load in an isotropic half-space, for vertical concave and convex parabolic
loads of infinite length. Nevertheless, existing closed-form solutions for anisotropic half-spaces
are available only for axisymmetric problems. Gazetas [12,13] analytically investigated how soil’s
transverse isotropy affects stress distributions when it is subjected to axisymmetric parabolic
vertical surface loading. To our knowledge, no closed-form solution for stresses in a transversely
isotropic medium subjected to three-dimensional, buried, parabolic asymmetric loads has been
proposed. Integrating the point load solutions in a Cartesian co-ordinate system [6] yields
analytical solutions for stresses in the half-space caused by linearly varying/parabolic rectangular
loads. The derived solutions are clear and concise. Also, according to our results, the buried
depth, the dimensions of the loaded region, the type and degree of material anisotropy, and the
loading type all affect stresses in a transversely isotropic half-space. An illustrative example is
presented at the end of this paper to elucidate the effect of the dimensions of the loaded area, the
type and degree of rock anisotropy, and the type of loading on vertical stress in isotropic/
transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load.

2. SOLUTIONS FOR STRESSES INDUCED BY LINEARLY VARYING AND
PARABOLIC RECTANGULAR LOADS

In this work, the solutions for stresses in a transversely isotropic half-space subjected to three-
dimensional, buried, linearly varying, uniform and parabolic rectangular loads are directly
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integrated from the point load solutions in a Cartesian co-ordinate system [6]. Planes of
transverse isotropy are assumed to be parallel to the horizontal surface. Appendix A provides
closed-form solutions for stresses subjected to a point load ðPx; Py ; PzÞ that acts at z ¼ h
(measured from the surface) in the interior of a transversely isotropic half-space.

In the case of point load solutions, ps1i � ps8i is defined in Equations (A1)–(A6) as the
elementary functions for stresses. The solutions for stresses in a transversely isotropic half-space
subjected to linearly varying and parabolic rectangular loads can be directly obtained by
integrating the elementary functions of the point load solutions. The closed-form solutions for
stresses induced by linearly varied loads distributed over a rectangular area are first given below.

2.1. Linearly varying rectangular loads

A three-dimensional, upwardly linearly varying load, P linear
j ðj ¼ x; y; zÞ (forces per unit area)

distributed on a rectangle of length L and width W at a buried depth of h as shown in Figure 1 is

Figure 1. The case of upwardly linearly varying rectangular loads with L*W area at the
buried depth of hða > 0Þ:
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considered. The loading type in Figure 1 can be expressed as the following form

*PPlinear
j ¼ P linear

j 1þ a
jxj
L
þ

jyj
W

�
jxyj
LW

� �� �
ð1Þ

where a is a constant. According to Equation (1), a specifies three different loading cases.
Case 1: a > 0; the load is upwardly linearly varying as depicted in Figure 1;
Case 2: a ¼ 0; the load is uniform, as shown in Figure 2(a);

Figure 2. (a) The case of uniform rectangular loads with L*W area at the buried depth of
hða ¼ 0Þ; (b) the case of a completely downwardly linearly varying rectangular loads with L*W

area at the buried depth of hða ¼ �1Þ:
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Case 3: a50; the load is downwardly linearly varying. Figure 2(b) shows zero contact stress
applied to the region at the edges of Figure 1 in the case a ¼ �1:

An elementary force *PPlinear
j dZ dB; acting on an elementary surface dZ dz; is extracted from the

rectangle to calculate the stresses in the transversely isotropic half-spaces. Replacing the
concentrated force Pj by *PPlinear

j dz dZ; y by ðy � ZÞ; and x by ðx� zÞ in Equations (A1)–(A6)
yields solutions for stresses under the action of the elementary force in the half-space.
Integrating the solutions with respect to Z from 0 to W ; and with respect to z from 0 to L; we can
derive the complete solutions:

½s�linear ¼
Z L

0

Z W

0

½s�p dZ dB ð2Þ

where ½s� ¼ ½sxx; syy ; szz; txy ; tyz; txz�T (superscript, T, denotes the transpose matrix) and the
superscripts, linear and p; refer to the stress components induced by a linearly varying
rectangular load and a point load, respectively. The explicit solutions for stresses in a half-space
can be regrouped in the forms of Equations (A1)–(A6). The exact solutions in this case are
therefore just Equations (A1)–(A6), except that the stress elementary functions ps1i; ps2i; . . . ;

ps8i are replaced by the stress integral functions Nh1i
s1i –N

h4i
s1i ; Nh1i

s2i –N
h4i
s2i ; . . . ;N

h1i
s8i –N

h4i
s8i ði ¼

1; 2; 3; a; b; c; d; eÞ for slinearxx ; slinearyy ; slinearzz ; tlinearxy ; tlinearyz ; tlinearxz (Figure 1), respectively. For

example, ps1i is replaced by Nh1i
s1i –N

h4i
s1i as follows.

½ps1i� ) Nh1i
s1i þ a

jxj
L
þ

jyj
W

�
jxyj
LW

� �
*N

h1i
s1i �

1

L
1�

jyj
W

� �
*N

h2i
s1i

�

�
1

W
1�

jxj
L

� �
*N

h3i
s1i �

1

LW *N
h4i
s1i

�
ð3Þ

Similarly, the solutions under parabolic loading conditions can also be expressed as
Equations (A1)–(A6), except for the integral functions. Hence, only the stress integral functions
are presented.

Nh1i
s1i ¼ S1 � S2 ð4Þ

Nh2i
s1i ¼ �yS3 þ ynS4 � ziS5 ð5Þ

Nh3i
s1i ¼ �ðRi � Rxni � Ryni þ RxnyniÞ ð6Þ

Nh4i
s1i ¼ �1

2
½ðRi � RyniÞx� ðRxni � RxnyniÞxn þ ðy2 þ z2i ÞS3 � ðy *

2

þ z2i ÞS4� ð7Þ

Nh1i
s2i ¼ S3 � S4 ð8Þ

Nh2i
s2i ¼ Nh3i

s1i ð9Þ

Nh3i
s2i ¼ �xS1 þ xnS2 � ziS5 ð10Þ

Nh4i
s2i ¼ �1

2
½ðRi � RxniÞy � ðRyni � RxnyniÞyn þ ðx2 þ z2i ÞS1 � ðx*

2

þ z2i ÞS2� ð11Þ

Nh1i
s3i ¼ S5 ð12Þ
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Nh2i
s3i ¼ ziN

h1i
s1i ð13Þ

Nh3i
s3i ¼ switch x; y in Nh2i

s3i ð14Þ

Nh4i
s3i ¼ ziN

h3i
s1i ð15Þ

Nh1i
s4i ¼ S6 � S7 ð16Þ

Nh2i
s4i ¼ �yS8 þ ynS9 � ziN

h1i
s2i ð17Þ

Nh3i
s4i ¼ switch x; y in Nh2i

s4i ð18Þ

Nh4i
s4i ¼ �1

2
ðLW þ x2S10 � x *

2

S11 þ y2S8 � y *
2

S9 � z2i S5Þ ð19Þ

Nh1i
s5i ¼ S5 þ S8 � S9 ð20Þ

Nh2i
s5i ¼ yS12 � ynS13 þ ziN

h1i
s1i ð21Þ

Nh3i
s5i ¼ �xS6 þ xnS7 ð22Þ

Nh4i
s5i ¼ 1

2
ðziN

h3i
s1i � x2S6 þ x*

2

S7 þ y2S12 � y *
2

S13Þ ð23Þ

Nh1i
s6i ¼ Nh1i

s3i � Nh1i
s5i ð24Þ

Nh2i
s6i ¼ Nh2i

s3i � Nh2i
s5i ð25Þ

Nh3i
s6i ¼ Nh3i

s3i � Nh3i
s5i ð26Þ

Nh4i
s6i ¼ Nh4i

s3i � Nh4i
s5i ð27Þ

Nh1i
s7i ¼ �y

1

Ri þ zi
�

1

Rxni þ zi

� �
þ yn 1

Ryni þ zi
�

1

Rxnyni þ zi

� �
ð28Þ

Nh2i
s7i ¼ � y

x
Ri þ zi

�
xn

Rxni þ zi

� �
þ yn x

Ryni þ zi
�

xn

Rxnyni þ zi

� �

� yS3 þ ynS4 þ ziðS8 � S9Þ ð29Þ

Nh3i
s7i ¼ x2

1

Ri þ zi
�

1

Ryni þ zi

� �
� x*

2 1

Rxni þ zi
�

1

Rxnyni þ zi

� �
þ ziðS6 � S7Þ ð30Þ

Nh4i
s7i ¼ �

x
2
ðRi � RyniÞ þ

xn

2
ðRxni � RxnyniÞ

þ x3
1

Ri þ zi
�

1

Ryni þ zi

� �
� x *

3 1

Rxni þ zi
�

1

Rxnyni þ zi

� �

�
ðy2 þ z2i Þ

2
S3 þ

ðy *
2

þ z2i Þ
2

S4 ð31Þ
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Nh1i
s8i ¼ switch x; y in Nh1i

s7i ð32Þ

Nh2i
s8i ¼ switch x; y in Nh3i

s7i ð33Þ

Nh3i
s8i ¼ switch x; y in Nh2i

s7i ð34Þ

Nh4i
s8i ¼ switch x; y in Nh4i

s7i ð35Þ

where

xn ¼ x� L; yn ¼ y � W ; Rxni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x* 2 þ y2 þ z2i

q
; Ryni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y *

2 þ z2i

q

Rxnyni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x* 2 þ y *

2 þ z2i

q
ði ¼ 1; 2; 3; a; b; c; d; eÞ;

S1 ¼ ln
Ryni þ yn

Ri þ y

����
����; S2 ¼ ln

Rxnyni þ yn

Rxni þ y

����
����

S3 ¼
Rxni þ xn

Ri þ x

����
����; S4 ¼ ln

Rxnyni þ xn

Ryni þ x

����
����;

S5 ¼ tan�1 xy
ziRi

� tan�1 xny
ziRxni

� tan�1 xyn

ziRyni
þ tan�1 xnyn

ziRxnyni

S6 ¼ ln
Ryni þ zi
Ri þ zi

����
����; S7 ¼ ln

Rxnyni þ zi
Rxni þ zi

����
����;

S8 ¼ tan�1 y
2 þ ziðRi þ ziÞ

xy
� tan�1 y

2 þ ziðRxni þ ziÞ
xny

S9 ¼ tan�1 y *
2

þ ziðRyni þ ziÞ
xyn

� tan�1 y *
2

þ ziðRxnyni þ ziÞ
xnyn

S10 ¼ tan�1 x
2 þ ziðRi þ ziÞ

xy
� tan�1 x

2 þ ziðRyni þ ziÞ
xyn

S11 ¼ tan�1 x*
2

þ ziðRxni þ ziÞ
xny

� tan�1 x*
2

þ ziðRxnyni þ ziÞ
xnyn

;

S12 ¼ ln
Rxni þ zi
Ri þ zi

����
����; S13 ¼ ln

Rxnyni þ zi
Ryni þ zi

����
����

Equations (A1)–(A6), (3) and (4)–(35) can easily be solved automatically to calculate the stresses
in a transversely isotropic half-space subjected to three-dimensional, buried, linearly varying
rectangular loads.

2.2. Parabolic rectangular loads

A non-linear, three-dimensional, buried load distributed as a concave parabola on a rectangle
(Figure 3) is considered to demonstrate the results for non-linearly distributed loads. Figure 3
depicts that the concave parabolic load applied over a rectangular region with sides L and W :
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The type of loading shown in Figure 3 has the following form [14]:

*PP
par
j ¼ Ppar

j 1þ b
x2

L2
þ

y2

W 2
�

x2y2

L2W 2

� �� �
ð36Þ

where b is a constant, and that specifies the following three cases:
Case 1: b > 0; the load is concave parabolic, as shown in Figure 3;
Case 2: b ¼ 0; the load is uniform; this case is identical to that of a ¼ 0 (Figure 2(a));
Case 3: b50; the load is convex parabolic. Figure 4 depicts zero contact stress at the region

shown at the edges of Figure 3, for the case of b ¼ �1:
The elementary force Pj; acting on a small rectangle, can also be expressed as *PP

par
j dz dZ ðj ¼

x; y; zÞ (forces per unit area). Similarly, as for the linearly varying rectangular load, the solutions
for stresses can be obtained by direct integration as follows:

½s�par ¼
Z L

0

Z W

0

½s�p dZ dB ð37Þ

Figure 3. The case of concave parabolic rectangular loads with L*W area at the buried depth of hðb > 0Þ:
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where the superscripts, par and p; refer to the stress components that are induced by a parabolic
load and a point load, respectively. The explicit solutions for stresses in a half-space can be
regrouped in the forms of Equations (A1)–(A6). The exact solutions in this case are the same as
Equations (A1)–(A6), except that the stress elementary functions ps1i; ps2i; . . . ;ps8i are replaced

by the stress integral functions, Nh1i
s1i –N

h9i
s1i ; Nh1i

s2i – Nh9i
s2i ; . . . ;N

h1i
s8i –N

h9i
s8i ði ¼ 1; 2; 3; a; b; c; d; eÞ

for sparxx ; sparyy ; s
par
zz ; tparxy ; tparyz ; t

par
xz (Figure 3), respectively. In this loading case, for instance, ps1i

should be replaced by Nh1i
s1i –N

h9i
s1i as follows:

½ps1i� ) Nh1i
s1i þ b

x2

L2
þ

y2

W 2 *S14

� �
*N

h1i
s1i

�

�
2x
L2 *

S15 *N
h2i
s1i �

2y
W 2 *S14 *N

h3i
s1i �

4xy
L2W 2 *N

h4i
s1i

þ
S15
L2 *N

h5i
s1i þ

S14
W 2 *N

h6i
s1i þ

1

L2W 2
ð2x*N

h7i
s1i þ 2y *N

h8i
s1i � Nh9i

s1i Þ
�

ð38Þ

where S14 ¼ 1� x2
L2; S15 ¼ 1� y2

W 2: Equations (4)–(35) are the stress integral functions for Nh1i
s1i –

Nh4i
s1i ; Nh1i

s2i –N
h4i
s2i ; . . . ;N

h1i
s8i –N

h4i
s8i : Hence, only the integral functions for Nh5i

s1i –N
h9i
s1i ; Nh5i

s2i –

Nh9i
s2i ; . . . ;N

h5i
s8i –N

h9i
s8i are given as follows:

Nh5i
s1i ¼ ðRi � RxniÞy � ðRyni � RxnyniÞyn � z2i N

h1i
s1i ð39Þ

Nh6i
s1i ¼ Nh4i

s2i ð40Þ

Figure 4. The case of completely convex parabolic rectangular loads with L*W area at the
buried depth of hðb ¼ �1Þ:
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Nh7i
s1i ¼ � 1

3
½ðyRi � ynRyniÞx� ðyRxni � ynRxnyniÞxn

þ x3S1 � x*
3

S2 þ y3S3 � y *
3

S4 � z3i S5� ð41Þ

Nh8i
s1i ¼ �

ðx2 � 2y2 � 2z2i Þ
3

Ri þ
ðx*

2

� 2y2 � 2z2i Þ
3

Rxni

þ
ðx2 � 2y *

2

� 2z2i Þ
3

Ryni �
ðx*

2

� 2y *
2

� 2z2i Þ
3

Rxnyni ð42Þ

Nh9i
s1i ¼ � 1

4
f½ðx2 � 2y2 � z2i ÞRi � ðx*

2

� 2y2 � z2i ÞRxni�y

� ½ðx2 � 2y *
2

� z2i ÞRyni � ðx*
2

� 2y *
2

� z2i ÞRxnyni�yn

þ ðx4 � z4i ÞS1 � ðx*
4

� z4i ÞS2g ð43Þ

Nh5i
s2i ¼ Nh4i

s1i ð44Þ

Nh6i
s2i ¼ ðRi � RyniÞx� ðRxni � RxnyniÞxn � z2i N

h1i
s2i ð45Þ

Nh7i
s2i ¼ switch x; y in Nh8i

s1i ð46Þ

Nh8i
s2i ¼ Nh7i

s1i ð47Þ

Nh9i
s2i ¼ switch x; y in Nh9i

s1i ð48Þ

Nh5i
s3i ¼ ziN

h2i
s1i ð49Þ

Nh6i
s3i ¼ switch x; y in Nh5i

s3i ð50Þ

Nh7i
s3i ¼ ziN

h6i
s1i ð51Þ

Nh8i
s3i ¼ switch x; y in Nh7i

s3i ð52Þ

Nh9i
s3i ¼ ziN

h7i
s1i ð53Þ

Nh5i
s4i ¼ �ziN

h3i
s1i � y2S12 þ y *

2

S13 ð54Þ

Nh6i
s4i ¼ switch x; y in Nh5i

s4i ð55Þ

Nh7i
s4i ¼ �

LW ðy þ ynÞ
3

þ
zi
3
½ðRi � RyniÞx� ðRxni � RxnyniÞxn�

� 2
3
ðx3S6 � x*

3

S7Þ � 1
3
ðy3S8 � y *

3

S9Þ þ
z3i
3
ðS3 � S4Þ ð56Þ

Nh8i
s4i ¼ switch x; y in Nh7i

s4i ð57Þ
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Nh9i
s4i ¼ �

LW ðxþ xnÞðy þ ynÞ
4

� 1
2
ðx4S6 � x*

4

S7 þ y4S12 � y *
4

S13Þ

þ
zi
6
½ðx2 þ y2 � 2z2i ÞRi � ðx*

2

þ y2 � 2z2i ÞRxni

� ðx2 þ y *
2

� 2z2i ÞRyni � ðx*
2

þ y *
2

� 2z2i ÞRxnyni� ð58Þ

Nh5i
s5i ¼ �LW � y2S8 þ y *

2

S9 � 2ziðyS3 � ynS4Þ � z2i S5 ð59Þ

Nh6i
s5i ¼ LW þ x2S10 � x*

2

S11 þ ziðxS1 � xnS2Þ ð60Þ

Nh7i
s5i ¼

2LW ðxþ xnÞ
3

þ 2
3
ðx3S10 � x *

3

S11Þ þ 1
3
ðy3S12 � y *

3

S13Þ

�
zi
6
½ðRi � RxniÞy � ðRyni � RxnyniÞyn � ð3x2 � z2i ÞS1 þ ð3x*

2

� z2i ÞS2� ð61Þ

Nh8i
s5i ¼ �

2LW ðxþ xnÞ
3

� 1
3
ðx3S6 � x *

3

S7Þ � 2
3
ðy3S8 � y *

3

S9Þ

�
zi
3
½ðRi � RyniÞx� ðRxni � RxnyniÞxn þ ð3y2 þ z2i ÞS3 � ð3y *

2

þ z2i ÞS4� ð62Þ

Nh9i
s5i ¼

LW ðx2 þ xxn þ x *
2

� y2 � yyn � y *
2

Þ
2

þ 1
2
ðx4S10 � x *

4

S11 � y4S8 þ y *
4

S9Þ

�
zi
6
½ðyRi � ynRyniÞx� ðyRxni � ynRxnyniÞxn�

þ
zi
3

x3S1 � x*
3

S2 � 2y3S3 þ 2y *
3

S4 þ
z3i
2
S5

� �
ð63Þ

Nh5i
s6i ¼ Nh5i

s3i � Nh5i
s5i ð64Þ

Nh6i
s6i ¼ Nh6i

s3i � Nh6i
s5i ð65Þ

Nh7i
s6i ¼ Nh7i

s3i � Nh7i
s5i ð66Þ

Nh8i
s6i ¼ Nh8i

s3i � Nh8i
s5i ð67Þ

Nh9i
s6i ¼ Nh9i

s3i � Nh9i
s5i ð68Þ

Nh5i
s7i ¼ y Ri � Rxni þ y2 1

Ri þ zi
�

1

Rxni þ zi

� �� �

� yn Ryni � Rxnyni þ y *
2 1

Ryni þ zi
�

1

Rxnyni þ zi

� �� �

þ 2ziðyS12 � ynS13Þ ð69Þ
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Nh6i
s7i ¼ y

x2

Ri þ zi
�

x*
2

Rxni þ zi

 !
� yn x2

Ryni þ zi
�

x*
2

Rxnyni þ zi

 !

þ ðx2 � z2i ÞS1 � ðx*
2

� z2i ÞS2 � 2ziðxS10 � xnS11Þ ð70Þ

Nh7i
s7i ¼ �

y
3
ðxRi � xnRxniÞ þ

yn

3
ðxRyni � xnRxnyniÞ

þ y
x3

Ri þ zi
�

x*
3

Rxni þ zi

 !
� yn x3

Ryni þ zi
�

x*
3

Rxnyni þ zi

 !

þ 1
3
ð2x3S1 � 2x*

3

S2 � y3S3 þ y *
3

S4 þ z3i S5Þ � ziðx2S10 � x *
2

S11Þ ð71Þ

Nh8i
s7i ¼ 1

3
ðR3

i � R3
xni � R3

yni þ R3
xnyniÞ þ y4 1

Ri þ zi
�

1

Rxni þ zi

� �

� y *
4 1

Ryni þ zi
�

1

Rxnyni þ zi

� �
þ ziðy2S12 � y *

2

S13Þ ð72Þ

Nh9i
s7i ¼ �

2LWziðxþ xnÞ
3

þ 1
2
½yðx2Ri � x *

2

RxniÞ � ynðx2Ryni � x *
2

RxnyniÞ�

þ 1
6
½ð3x4 þ z4i ÞS1 � ð3x*

4

þ z4i ÞS2�

þ y5 1

Ri þ zi
�

1

Rxni þ zi

� �
� y *

5 1

Ryni þ zi
�

1

Rxnyni þ zi

� �

�
2zi
3

ðx3S10 � x*
3

S11 � y3S12 þ y *
3

S13Þ

þ
z2i
6
½yðRi � RxniÞ � ynðRyni � RxnyniÞ� ð73Þ

Nh5i
s8i ¼ switch x; y in Nh6i

s7i ð74Þ

Nh6i
s8i ¼ switch x; y in Nh5i

s7i ð75Þ

Nh7i
s8i ¼ switch x; y in Nh8i

s7i ð76Þ

Nh8i
s8i ¼ switch x; y in Nh7i

s7i ð77Þ

Nh9i
s8i ¼ switch x; y in Nh9i

s7i ð78Þ

Equations (A1)–(A6), (4)–(35), (38), and (39)–(78) can be applied to compute the stresses in a
transversely isotropic half-space subjected to three-dimensional, buried and parabolic
rectangular loads. Also, the presented formulae for stresses are consistent with those presented
by Teferra and Schultze [11] as the medium is isotropic and is in a state of plane strain.
Moreover, stresses in the media in response to non-uniform, irregularly shaped loads can be
estimated by superposing values that correspond to the rectangular sub-areas. Figure 5 shows a
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flow chart of the computation for stresses induced by linearly varying, uniform, and parabolic
rectangular loads in a transversely isotropic half-space.

3. ILLUSTRATIVE EXAMPLE

This section presents a parametric study to confirm the derived solutions and elucidate the effect
of the type and degree of material anisotropy, the dimensions of the loaded area, and the types
of loading on the stresses. An example illustrates the solution of the vertical stress, as depicted in
Figures 6–11, for the action of vertical, linearly varying, uniform and parabolic loads on a
rectangle. Several types of isotropic and transversely isotropic rocks are considered as
foundation materials. Table I lists their elastic properties, with E=E0 and G=G0 ranging
between 1 and 3 and n=n0 varying between 0.75 and 1.5. The values of E and n adopted in Table I
are 50 GPa and 0.25, respectively. The selected domains of anisotropic variation follow the

Figure 5. Flow chart to compute the stresses in a transversely isotropic half-space subjected to
presented loading types.
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Figure 6. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of a ¼ �1: (a) for Rocks 1, 2, 3 with E=E0 ¼ 1; 2; 3; and n=n0 ¼ G=G0 ¼ 1;
respectively; (b) for Rocks 1, 4, 5 with n=n0 ¼ 1; 0:75; 1:5; and E=E0 ¼ G=G0 ¼ 1; respectively;

(c) for Rocks 1, 6, 7 with G=G0 ¼ 1; 2; 3; and E=E0 ¼ n=n0 ¼ 1; respectively.
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Figure 7. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of b ¼ �1: (a) for Rocks 1, 2, 3 with E=E0 ¼ 1; 2; 3; and n=n0 ¼ G=G0 ¼ 1;
respectively; (b) for Rocks 1, 4, 5 with n=n0 ¼ 1; 0:75; 1:5; and E=E0 ¼ G=G0 ¼ 1; respectively;

(c) for Rocks 1, 6, 7 with G=G0 ¼ 1; 2; 3; and E=E0 ¼ n=n0 ¼ 1; respectively.
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Figure 8. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of a ¼ b ¼ 0: (a) for Rocks 1, 2, 3 with E=E0 ¼ 1; 2; 3; and n=n0 ¼ G=G0 ¼ 1;
respectively; (b) for Rocks 1, 4, 5 with n=n0 ¼ 1; 0:75; 1:5; and E=E0 ¼ G=G0 ¼ 1; respectively;

(c) for Rocks 1, 6, 7 with G=G0 ¼ 1; 2; 3; and E=E0 ¼ n=n0 ¼ 1; respectively
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Figure 9. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of a ¼ 1: (a) for Rocks 1, 2, 3 with E=E0 ¼ 1; 2; 3; and n=n0 ¼ G=G0 ¼ 1;
respectively; (b) for Rocks 1, 4, 5 with n=n0 ¼ 1; 0:75; 1:5; and E=E0 ¼ G=G0 ¼ 1; respectively;

(c) for Rocks 1, 6, 7 with G=G0 ¼ 1; 2; 3; and E=E0 ¼ n=n0 ¼ 1; respectively.
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Figure 10. Effect of the type and degree of rock anisotropy on vertical stress induced by the
loading case of b ¼ 1: (a) for Rocks 1, 2, 3 with E=E0 ¼ 1; 2; 3; and n=n0 ¼ G=G0 ¼ 1;
respectively; (b) for Rocks 1, 4, 5 with n=n0 ¼ 1; 0:75; 1:5; and E=E0 ¼ G=G0 ¼ 1; respectively;

(c) for Rocks 1, 6, 7 with G=G0 ¼ 1; 2; 3; and E=E0 ¼ n=n0 ¼ 1; respectively.
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suggestions of Gerrard [15] and Amadei et al. [16]. The loads act on the horizontal surface
ðh ¼ 0Þ of isotropic/transversely isotropic rocks in this example. The effect of the degree of
anisotropy, specified by the ratios E=E0; u=u0; and G=G0 on the stresses is considered.

Figure 11. Effect of the presented loading types on vertical stress: (a) for Rock 1 with E=E0 ¼ n=n0 ¼
G=G0 ¼ 1; (b) for Rock 2 with E=E0 ¼ 2; n=n0 ¼ G=G0 ¼ 1; (c) for Rock 3 with E=E0 ¼ 3; n=n0 ¼ G=G0 ¼ 1;
(d) for Rock 4 with n=n0 ¼ 0:75; E=E0 ¼ G=G0 ¼ 1; (e) for Rock 5 with n=n0 ¼ 1:5; E=E0 ¼ G=G0 ¼ 1; (f) for

Rock 6 with G=G0 ¼ 2; E=E0 ¼ n=n0 ¼ 1; (g) for Rock 7 with G=G0 ¼ 3; E=E0 ¼ n=n0 ¼ 1:
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Using Equations (A1)–(A6), (3), (4)–(35), (38), and (39)–(78), a FORTRAN program was
written to calculate the six stress components under linearly varying, uniform and parabolic
loading. In this study, only the vertical stress at the right corner, C (at depth z from the surface)
of the loaded area was calculated. Figures 6–10 present the normalized vertical stress ðslinearzz =
P linear
z or sparzz =P par

z Þ at point C; induced by a completely downwardly linearly varying load

Figure 11. (continued )
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ða ¼ �1Þ, a completely convex parabolic load ðb ¼ �1Þ; a uniform load ða ¼ b ¼ 0Þ; an
upwardly linearly varying load ða ¼ 1Þ and a concave parabolic load ðb ¼ 1Þ; respectively, over a
rectangular area for various rock types (Rocks 1–7, Table I) and for various dimensions of the
loaded area (m ¼ L=z or n ¼ W =z). The figures plot the relationship between two non-
dimensional factors, m and slinearzz =P linear

z (or sparzz =P par
z Þ for n ¼ 0:1; 0:5; 1:0; 1: In these figures,

the non-dimensional factor, n; is adopted to elucidate the effect of the dimensions of the loaded
region on the vertical stress. The stress beneath a strip is that beneath a rectangle as either L or
W approaches infinity ð1Þ [17]. However, practically, a rectangle for which W =L > 4 to 5 can be
regarded as a strip [18]. In this example, n ¼ 40 is selected in the simulation of an infinite load.
Hence, with knowledge of the type and magnitude of the loading, the dimensions of the loaded
area and the type of rock the vertical stress at point C can be estimated from these figures.
Figures 11(a)–11(g) summarize the results of applying the same stress as induced by the loads
mentioned above (a ¼ �1; b ¼ �1; a ¼ b ¼ 0; a ¼ 1; b ¼ 1) to Rocks 1–7, respectively, with
n ¼ 1:0: With reference to Figures 6–11, the effects of the type and degree of rock anisotropy,
loading types and the dimensions of the loaded region on the stress induced by surface loading
are investigated below.

Figures 6(a)–6(c), 7(a)–7(c), 8(a)–8(c), 9(a)–9(c), and 10(a)–10(c) plot the vertical stress
induced by loading with a ¼ �1; b ¼ �1; a ¼ b ¼ 0; a ¼ 1; and b ¼ 1 for Rocks 1 ðE=E0 ¼
n=n0 ¼ G=G0 ¼ 1Þ; 2 ðE=E0 ¼ 2; n=n0 ¼ G=G0 ¼ 1Þ; 3 ðE=E0 ¼ 3; n=n0 ¼ G=G0 ¼ 1Þ; Rocks 1, 4
ðn=n0 ¼ 0:75;E=E0 ¼ G=G0 ¼ 1Þ; 5 ðn=n0 ¼ 1:5;E=E0 ¼ G=G0 ¼ 1Þ; Rocks 1, 6 ðG=G0 ¼ 2;E=E0 ¼
n=n0 ¼ 1Þ; 7 ðG=G0 ¼ 3;E=E0 ¼ n=n0 ¼ 1Þ with variable non-dimensional factors ðm; nÞ: From
Figure 6(a), the stress induced in Rocks 2 and 3 is less than that in Rock 1 within the smaller
loaded region (horizontal scale, m); however, the calculated result changes as m increases. For a
given n ð¼ 0:1; 0:5; 1:0; 1Þ; the non-dimensional factor, m; significantly affects the induced
vertical stress at point C. The trend of vertical stress in Figure 6(c) for Rocks 6 and 7 is the
opposite of that in Figure 6(a) for Rocks 2 and 3. Figures 6(a) and 6(c) preliminarily imply that
the induced stress depends on the type and degree of anisotropy for a given loading ða ¼ �1Þ:
Figure 7(a) indicates that the induced stress with b ¼ �1 for Rocks 1–3 increases as E=E0

increases, whereas for Rocks 6 and 7 (Figure 7(c)) the results are totally different. Notably, a
little of the stress in Figure 7(c) might be transferred by tension in Rock 7, when n ¼ 0:1 and 0.5,
within a very small loaded area ðm40:5Þ: Figures 8(a), 9(a) and 10(a) show that for a given
loading type (a ¼ b ¼ 0; a ¼ 1; and b ¼ 1), depth ðzÞ; and loaded region (L or W ), the
magnitude of the vertical stress decreases as E=E0 increases (Rocks 2, 3). Comparing Figures
8(c), 9(c) and 10(c) with Figures 8(a), 9(a) and 10(a) reveals that the non-dimensional vertical
stress increases with increases in G=G0 (Rocks 6, 7). Figures 6(b), 7(b), 8(b), 9(b) and 10(b),

Table I. Elastic properties and root types for different rocks.

Rock type E=E0 n=n0 G=G0 Root type

Rock 1. Isotropic 1.0 1.0 1.0 Equal
Rock 2. Transversely isotropic 2.0 1.0 1.0 Complex
Rock 3. Transversely isotropic 3.0 1.0 1.0 Complex
Rock 4. Transversely isotropic 1.0 0.75 1.0 Complex
Rock 5. Transversely isotropic 1.0 1.5 1.0 Distinct
Rock 6. Transversely isotropic 1.0 1.0 2.0 Distinct
Rock 7. Transversely isotropic 1.0 1.0 3.0 Distinct
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respectively, plot the effect of n=n0 (Rocks 1, 4, 5) with a ¼ �1; b ¼ �1; a ¼ b ¼ 0; a ¼ 1; and
b ¼ 1 on the vertical stress. According to these figures, the induced stress is slightly influenced
by n=n0: Figures 6–10 show that the vertical stress increases with the non-dimensional factor, n;
for all rocks, implying that the stress calculated from plane strain exceeds the three-dimensional
solution. The figures also indicate that the stress induced by the considered loading types
strongly depends on the dimensions of the loaded area, and the type and degree of rock
anisotropy.

Figures 11(a)–11(g) clarify the effect of the loading (a ¼ �1; b ¼ �1; a ¼ b ¼ 0; a ¼ 1; b ¼ 1)
on the non-dimensional vertical stress (slinearzz =P linear

z or sparzz =P par
z ) for Rocks 1–7, respectively,

with n ¼ 1:0: Figures 11(a)–11(e) show that the order induced stress follows a ¼ 1 > b ¼ 1 >
a ¼ b ¼ 0 > b ¼ �1 > a ¼ �1: The magnitude of the calculated stress can be reasonably
judged from the geometry of loading in Figures 1–4. However, the trend in the induced stress in
Figures 11(f) and 11(g) (for Rocks 6 and 7) differs a little from that in Figures 11(a)–11(e),
within the smaller loaded region ðm42Þ: Figures 11(a)–11(e) show the effect of the loading type
on the stress is explicit. The average induced vertical stress by a ¼ 1 and b ¼ 1 is approximately
double that induced by a ¼ b ¼ 0 for all rocks; however, the average stress by a ¼ �1 and
b ¼ �1 is disproportional to that by a ¼ b ¼ 0:

The example was presented to elucidate the solutions and clarify how the dimensions of the
loaded area, the type and degree of rock anisotropy, and the type of loading affect the non-
dimensional vertical stress. The analysis results indicate that the induced stress in isotopic/
transversely isotropic rocks under various types of loading is easily calculated. Hence, the
anisotropic deformability must be considered when estimating the stresses in a transversely
isotropic half-space subjected to linearly varying/uniform/parabolic rectangular loads.

4. CONCLUSIONS

Integrating the elementary functions of a point load yields the elastic solutions for stresses in a
transversely isotropic half-space subjected to three-dimensional, buried, linearly varying,
uniform and parabolic rectangular loads. The solutions are limited to planes of transverse
isotropy that are parallel to the horizontal surface of the half-space. The loading types include
an upwardly linearly varying load, a downwardly linearly varying load, a uniform load, a
concave parabolic load and a convex parabolic load, all acting on a rectangular area. The
proposed closed-form solutions for stresses are affected by the buried depth ðhÞ; the dimensions
of the loaded area ðL;W Þ; the type and degree of rock anisotropy (E=E0; n=n0;G=G0), and the type
of loading ( a > 0; a ¼ b ¼ 0; a50; b > 0; b50) in transversely isotropic half-spaces.

A parametric study of an illustrative example has yielded the following conclusions:

1. The ratios E=E0 (u=u0 ¼ G=G0 ¼ 1) and G=G0 ðE=E0 ¼ n=n0 ¼ 1Þ strongly influence the
non-dimensional vertical stress in transversely isotropic rocks subjected to a down-
wardly linearly varying, and a convex parabolic rectangular load. However, u=u0 ðE=E0 ¼
G=G0 ¼ 1Þ has little effect on this stress.

2. In a very small loaded area of m and n; a little stress may be transferred by tension in the
medium.
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3. The stress induced in transversely isotropic rocks by a uniform, an upwardly linearly
varying and a concave parabolic rectangular load decreases as E=E0 increases, and
increases as G=G0 increases, but is only slightly influenced by u=u0:

4. The plane strain solution overestimates the induced stress, as compared to the presented
three-dimensional solution.

5. The induced stress heavily relies on the dimensions of the loaded area, the type and degree
of material anisotropy, and the type of loading types.

6. The formulated stresses correlate well with those in the isotropic medium under plane
strain.

The calculation of induced stresses by various types of loading, distributed over a rectangular
area in an isotropic/transversely isotropic half-space is fast and correct, and the presentation of
the derived solutions is clear and concise. These solutions can more realistically simulate actual
loading circumstances in many engineering practices. Furthermore, the presented solutions also
offer an alternative to the numerical or graphical methods, and provide reasonable results for
practical purposes.

Similarly, the elastic solutions for displacements in a transversely isotropic half-space
subjected to the types of loading considered here can also be derived. The solutions will be
presented in forthcoming papers [19].

APPENDIX A

The point load solutions for stresses in a transversely isotropic half-space in Cartesian forms
can be expressed as follows [6]:

spxx ¼
Px
4p

ðA11 � u1m1A13Þ
k
m1

ps11 � T1ps1a þ T2ps1b

� ��

� ðA11 � u2m2A13Þ
k
m2

ps12 � T3ps1c þ T4ps1d

� �

� 2A66
k
m1

ps71 �
k
m2

ps72 � T1ps7a þ T2ps7b þ T3ps7c � T4ps7d

� �
þ 2u3ðps73 þ ps7eÞ

�

þ
Py
4p

ðA11 � u1m1A13 � 2A66Þ
k
m1

ps21 � T1ps2a þ T2ps2b

� ��

� ðA11 � u2m2A13 � 2A66Þ
k
m2

ps22 � T3ps2c þ T4ps2d

� �

þ 2A66
k
m1

ps81 �
k
m2

ps82 � T1ps8a þ T2ps8b þ T3ps8c � T4ps8d

� �
� 2u3ðps83 þ ps8eÞ

�

þ
Pz
4p

fðA11 � u1m1A13 � 2A66Þðkps31 þ T1m1ps3a � T2m2ps3bÞ

� ðA11 � u2m2A13 � 2A66Þðkps32 þ T3m1ps3c � T4m2ps3dÞ

þ 2A66½kðps51 � ps52Þ þ m1ðT1ps5a � T3ps5cÞ � m2ðT2ps5b � T4ps5dÞ�g ðA1Þ
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spyy ¼
Px
4p

ðA11 � u1m1A13 � 2A66Þ
k
m1

ps11 � T1ps1a þ T2ps1b

� ��

� ðA11 � u2m2A13 � 2A66Þ
k
m2

ps12 � T3ps1c þ T4ps1d

� �

þ 2A66
k
m1

ps71 �
k
m2

ps72 � T1ps7a þ T2ps7b þ T3ps7c � T4ps7d

� �
� 2u3ðps73 þ ps7eÞ

�

þ
Py
4p

ðA11 � u1m1A13Þ
k
m1

ps21 � T1ps2a þ T2ps2b

� ��

� ðA11 � u2m2A13Þ
k
m2

ps22 � T3ps2c þ T4ps2d

� �

� 2A66
k
m1

ps81�
k
m2

ps82�T1ps8aþT2ps8bþT3ps8c�T4ps8d

� �
þ 2u3ðps83 þ ps8eÞ

�
ðA2Þ

þ
Pz
4p

fðA11 � u1m1A13 � 2A66Þðkps31 þ T1m1ps3a � T2m2ps3bÞ

� ðA11 � u2m2A13 � 2A66Þðkps32 þ T3m1ps3c � T4m2ps3dÞ

þ 2A66½kðps61 � ps62Þ þ m1ðT1ps6a � T3ps6cÞ � m2ðT2ps6b � T4ps6dÞ�g

spzz ¼
Px
4p

ðA13 � u1m1A33Þ
k
m1

ps11 � T1ps1a þ T2ps1b

� ��

� ðA13 � u2m2A33Þ
k
m2

ps12 � T3ps1c þ T4ps1d

� ��

þ
Py
4p

½ðA13 � u1m1A33Þ
k
m1

ps21 � T1ps2a þ T2ps2b

� �

� ðA13 � u2m2A33Þ
k
m2

ps22 � T3ps2c þ T4ps2d

� ��

þ
Pz
4p

½ðA13 � u1m1A33Þðkps31 þ T1m1ps3a � T2m2ps3bÞ

� ðA13 � u2m2A33Þðkps32 þ T3m1ps3c � T4m2ps3dÞ� ðA3Þ

tpxy ¼
Px
4p

2A66
k
m1

ps81 �
k
m2

ps82 � T1ps8a þ T2ps8b þ T3ps8c � T4ps8d

� ��

� u3ð2ps83 þ 2ps8e � ps23 � ps2eÞ�

þ
Py
4p

2A66
k
m1

ps71 �
k
m2

ps72 � T1ps7a þ T2ps7b þ T3ps7c � T4ps7d

� ��

� u3ð2ps73 þ 2ps7e � ps13 � ps1eÞ�

�
Pz
2p

A66½kðps41 � ps42Þ þ m1ðT1ps4a � T3ps4cÞ � m2ðT2ps4b � T4ps4dÞ� ðA4Þ
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tpyz ¼ �
Px
4p

ðu1 þ m1ÞA44
k
m1

ps41 � T1ps4a þ T2ps4b

� ��

� ðu2 þ m2ÞA44
k
m2

ps42 � T3ps4c þ T4ps4d

� �
� ðps43 þ ps4eÞ

�

þ
Py
4p

ðu1 þ m1ÞA44
k
m1

ps61 � T1ps6a þ T2ps6b

� ��

� ðu2 þ m2ÞA44
k
m2

ps62 � T3ps6c þ T4ps6d

� �
þ ðps53 þ ps5eÞ

�

�
Pz
4p

A44½ðu1 þ m1Þðkps21 þ T1m1ps2a � T2m2ps2bÞ

� ðu2 þ m2Þðkps22 þ T3m1ps2c � T4m2ps2dÞ� ðA5Þ

tpxz ¼
Px
4p

ðu1 þ m1ÞA44
k
m1

ps51 � T1ps5a þ T2ps5b

� ��

� ðu2 þ m2ÞA44
k
m2

ps52 � T3ps5c þ T4ps5d

� �
þ ðps63 þ ps6eÞ

�

�
Py
4p

ðu1 þ m1ÞA44
k
m1

ps41 � T1ps4a þ T2ps4b

� ��

� ðu2 þ m2ÞA44
k
m2

ps42 � T3ps4c þ T4ps4d

� �
� ðps43 þ ps4eÞ

�

�
Pz
4p

A44½ðu1 þ m1Þðkps11 þ T1m1ps1a � T2m2ps1bÞ

� ðu2 þ m2Þðkps12 þ T3m1ps1c � T4m2ps1dÞ� ðA6Þ

where

* Aij (i; j ¼ 1–6) are the elastic moduli or elasticity constants of the medium, and can be
expressed in terms of five independent elastic constants for a transversely isotropic half-space
as

A11 ¼
Eð1� ðE=E0Þu02Þ

ð1þ uÞð1� u� ð2E=E0Þu02Þ
; A13 ¼

Eu0

1� u� ð2E=E0Þu02
;

A33 ¼
E0ð1� uÞ

1� u� ð2E=E0Þu02
; A44 ¼ G0; A66 ¼

E
2ð1þ uÞ

ðA7Þ

where E and E0 are Young’s moduli in the plane of transverse isotropy and in a direction
normal to it, respectively; n and n0 are Poisson’s ratios characterizing the lateral strain
response in the plane of transverse isotropy to a stress acting parallel and normal to it,
respectively; G0 is the shear modulus in planes normal to the plane of transverse isotropy.

* u3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A66=A44

p
; u1 and u2 are the roots of the following characteristic equation:

u4 � su2 þ q ¼ 0 ðA8Þ
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whereas

s ¼
A11A33 � A13ðA13 þ 2A44Þ

A33A44
; q ¼

A11

A33
:

Since the strain energy is assumed to be positive definite in the medium, the values of elastic
constants are restricted. Hence, there are three categories of the characteristic roots, u1 and u2
as follows:

Case 1: u1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1
2
½s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 � 4qÞ

p
�g

q
are two real distinct roots when s2 � 4q > 0;

Case 2: u1;2 ¼ �
ffiffiffiffiffiffiffi
s=2

p
;�

ffiffiffiffiffiffiffi
s=2

p
are double equal real roots when s2 � 4q ¼ 0;

Case 3: u1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþ 2

ffiffiffi
q

p
Þ

q
� i 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�sþ 2

ffiffiffi
q

p
Þ

q
¼ g� id; u2 ¼ gþ id are two complex

conjugate roots (where g cannot be equal to zero) when s2 � 4q50:

* mj ¼
ðA13 þ A44Þuj
A33u2j � A44

¼
A11 � A44u2j
ðA13 þ A44Þuj

ðj ¼ 1; 2Þ; k ¼
ðA13 þ A44Þ

A33A44ðu21 � u22Þ
; T1 ¼

k
m1

u1 þ u2
u2 � u1

T2 ¼
k
m2

2u1ðu2 þ m2Þ
ðu2 � u1Þðu1 þ m1Þ

; T3 ¼
k
m1

2u2ðu1 þ m1Þ
ðu2 � u1Þðu2 þ m2Þ

; T4 ¼
k
m2

u1 þ u2
u2 � u1

;

ps1i ¼
x
R3
i
ps2i ¼

y
R3
i
; ps3i ¼

zi
R3
i
; ps4i ¼

xyð2Ri þ ziÞ

R3
i ðRi þ ziÞ

2
; ps5i ¼

1

RiðRi þ ziÞ
�

x2ð2Ri þ ziÞ

R3
i ðRi þ ziÞ

2

ps6i ¼
1

RiðRi þ ziÞ
�

y2ð2Ri þ ziÞ

R3
i ðRi þ ziÞ

2
; ps7i ¼

x
R3
i
�

3x

RiðRi þ ziÞ
2
þ

x3ð3Ri þ ziÞ

R3
i ðRi þ ziÞ

3

ps8i ¼
y
R3
i
�

3y

RiðRi þ ziÞ
2
þ

y3ð3Ri þ ziÞ

R3
i ðRi þ ziÞ

3

* Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2i

p
ði ¼ 1; 2; 3; a; b; c; d; eÞ; z1 ¼ u1ðz� hÞ; z2 ¼ u2ðz� hÞ; z3 ¼ u3ðz� hÞ;

za ¼ u1ðzþ hÞ; zb ¼ u1zþ u2h; zc ¼ u1hþ u2z; zd ¼ u2ðzþ hÞ; ze ¼ u3ðzþ hÞ: The load is
applied at the surface when the buried depth h ¼ 0:

APPENDIX B: NOMENCLATURE

Aijði; j ¼ 126Þ elastic moduli or elastic constants in Equation (A7)
dZ; dz infinitesimal element along Y - or X -axis, respectively
E; E0; u; u0; G0 engineering elastic constants of transversely isotropic materials
h the buried depth, as seen in Figures 1–4
i complex number ð¼

ffiffiffiffiffiffiffi
�1

p
Þ

k;m1;m2; T1; T2; T3; T4 coefficients in Equations (A1)–(A6)
L;W length along X -axis and width along Y -axis, respectively
Nh1i
s1i � Nh9i

s1i ; . . . ;N
h1i
s8i –N

h9i
s8i integral functions for stresses induced by linearly varying,

uniform, and parabolic rectangular loads
ps1i � ps8i elementary functions for stresses induced by a point load
Pj ðj ¼ x; y; zÞ a point load (force)
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P linear
j ðj ¼ x; y; zÞ linearly varying rectangular loads (forces per unit of area)

Ppar
j ðj ¼ x; y; zÞ parabolic rectangular loads (forces per unit of area)

q; s coefficients in Equation (A8)
u1; u2; u3 roots of the characteristic equation (Equation (A8))
X ; Y ;Z Cartesian co-ordinate system

Greek letters

a; b the constant controlling the linearly varying and parabolic loads,
respectively

g; d real and imaginary part of the complex roots, respectively
s stress components
slinearxx ;slinearyy ;slinearzz normal stresses induced by linearly varying rectangular loads
spxx; s

p
yy ; s

p
zz normal stresses induced by a point load

sparxx ;sparyy ;s
par
zz normal stresses induced by parabolic rectangular loads

tlinearxy ; tlinearyz ; tlinearxz shear stresses induced by linearly varying rectangular loads
tpxy ; t

p
yz; t

p
xz shear stresses induced by a point load

tparxy ; tparyz ; t
par
xz shear stresses induced by parabolic rectangular loads

Superscripts

linear stresses induced by linearly varying rectangular loads
p stresses induced by a point load
par stresses induced by parabolic rectangular loads
T transpose matrix
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