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Quantum manifestations of classical periodic orbits in a square billiard:
Formation of vortex lattices
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We extend the presentation of the @WUcoherent states to analytically construct the wave function concen-
trated on high-order classical periodic orbits in a square billiard. With the constructed wave function, the
localization of the wave pattern is found to be very efficient. We also analyze the vortices arising from the
singular points of the quantum phase for the constructed coherent states. It is found that the wave interference
gives rise to the appearance of vortex lattices in the probability current density associated with the high-order
periodic orbits. Moreover, the topological charge of the vortex is in general nonintegral except for the periodic
orbits with the same winding number to the sides of the square.
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[. INTRODUCTION states of a square billiard in most quantum mechanics do not
manifest the properties of classical periodic orbits even in the
In the classical-quantum interface, an area of much cureorrespondence limit of large quantum numbers.

rent interest is the study of quantum states in the case of Recently, we have analytically constructed the wave func-
nonintegrable classical systefiis-3]. One of the most inter-  tions related to the primitive periodic orkiit,1,4) in a two-
esting phenomena is that the wave patterns of the scarrédmensional2D) square billiard by using the representation
eigenstates are concentrated along unstable periodic orbi®§ SU(2) coherent statefl5]. In this paper, we analytically
instead of being randomly distributed in the systpfa-6]. ~ construct the wave function concentrated on high-order peri-
Furthermore, there are some striking phenomena in opefdic Orbits (,q, ¢) by introducing the folding property into
guantum ballistic cavities associated with the wave function#.he su2) coherer)t s;ates. With the &) coher ent state,. we
in terms of classical periodic orbits—9]. It is therefore ind that the localization of the wave pattern is very efficient;
useful to make the connection between quantum wave func?n.ly a few ”e"’!”y degenerate elgenfunctlons are alr_ea(_jy suf-
tions and classical periodic orbits for understanding th icient to localize wave patterns on high-order periodic or-

lassical-auantum o nden In tticular . th its. This finding explains the phenomenon that the wave
classical-quantu correspondence. particutar, %atterns concentrated on periodic orbits frequently appear in

classical-quant_um connection of conceptually simp_le Classi,[-he ballistic quantum dot&16,17] as well as in weakly per-
cal systems will be_ of great va_lue for the analysis of theturbed integrable systenj&8,19. Furthermore, we analyze
quantum transport in mesoscopic systems. the property of phase singularities in the quantum probability
The two-dimensional2D) square billiard is one of the ¢yrrent for the constructed wave function. The phase singu-
simplest billiards that is completely integrable in classical|arity is well known to give rise to the vortices in the wave.
mechanicq10,11. In a square billiard each family of peri- The prominent feature for the constructed wave function is
odic orbits can be denoted by three parametersy,$), the appearance of vortex lattices in the flow of probability
wherep andq are two positive integers describing the num- current density associated with the high-order periodic or-
ber of collisions with the horizontal and vertical walls, and bits. The formation of vortex lattices is clearly found to be
the parametetp(— w< ¢=<r) that is related to the wall po- the result of quantum interference effects. The noticeable
sitions of specular reflection poinfd2—14. Some example finding is that the topological charge of the vortex is nonin-
orbit families are given in Fig. 1. It can be seen that thetegral for the states related to the periodic orbitd, ¢) with
trajectory constitutes a single, nonrepeated orbit provideg=+q.
thatp andq are relatively prime. On the other handpifind
g have a common factan, the orbit family can be recast as
the primitive periodic orbit p/m,g/m,#/m) and m is the
number of repetitions of the primitive periodic orbit. Accord-
ing to Bohr’s correspondence principle, the classical limit of Recently, we used the presentation of the(Zldoherent
a quantum system should be achieved when the quantustate to analytically construct a wave function that is well
numbers go to infinity. However, the conventional eigen-localized on the corresponding classical periodic orbits
(1,1¢) in a 2D quantum square billiard. Our construction is
the analog of the one used in R€fa0] and[21] to construct
* Author to whom correspondence should be sent. F/886-35 eigenstates in the 2D quantum harmonic oscillator, optimally
729134. Email address: yfchen@cc.nctu.edu.tw localized on classical elliptic orbits. As in the Schwinger

Il. WAVE FUNCTIONS ASSOCIATED WITH CLASSICAL
PERIODIC ORBITS
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FIG. 1. Some classical periodic orbitp,(,#). p andq corre-

sponding to the winding numbers of the orbit parallel to the sides of
the square. The periodic orbits are in terms of the paramgetbat

FIG. 2. Th W RA(X,y; ¢)|? from Eq. (3) f
is related to the wall positions of specular reflection points. G e wave pattens ¢ j'(x,y; $)|* from Eg. (3) for

N=26 corresponding to the classical trajectories displayed in Fig.

1.
representation of the SB) algebra, the wave function asso-

ciated with the periodic orbitl,1,¢) is given by 112

N
(Xy¢)_2N 2( ) Y -1 (X.Y)
1 N N\ L2 =
WN(X,Y;é)= 2_122( ) e Y nok(Xy), (D)

( N 12 X
=—/—Z ( e'K"Ssir{p(KJrl);}
where ¢ y—k(X,Y) is the eigenstates of the 2D square bil- .y
liard, Xsin q(N—K+1) ?}. 3)
2 _ Figure 2 depicts the wave patterns |[dfR9(x,y; ¢)|? with
(Xy)=— K+1 N=—K+1)— g p patterns |df y™(x,y; #)|~ wi
Yien-k(xY) asw{( ) sm ( ) } N=26 associated with the classical trajectories displayed in

(2)  Fig. 1. It can be seen that the distributiong ¥f;9(x,y; ¢) |2

are in good agreement with the classical periodic orbits.
anda is the length of the square boundary. As seen in Fig. Moreover, the behavior of¥R%x,y; #)|? illustrates geo-
the high-order periodic orbitg(q,¢) can be folded to be a metrically Bohr’s correspondence principle: the velocity of
primitive cell (1,1,¢). Using this folding property and the the classical particle is at a minimum at the specular reflec-
periodicity of the sine function, the wave function associatedion points of the motion, and therefore the distribution has a
with high-order periodic orbitsf,q,¢) can be analytically peak at these points. Note that the wave functions in Egs.
expressed as and(3) are generally not stationary states because the eigen-
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state components are not degenerate for the Hamiltddian
However, it can be easily shown thaH/(H) for N=2 is
inversely proportional taN. Therefore,AH/(H)—0 asN
— oo for the wave function?{%(x,y; ¢). Namely, the coher-
ent states in Eqs(l) and (3) are stationary states in the
classical limit. Note that the special stat#$'"(x,y; ¢) that
contain two degenerate eigenstates @f,(x,y) and
¥p.o(X,y) are stationary states. As described in the following
section, the?}'P(x,y; ¢) states are pedagogically useful for
understanding the formation of vortex patterns in the quan-
tum probability current.

To understand how the parametgis determined for the
different orbits, we use the identity of sil+(e’—e'%)/2i to
rewrite the Eq(3) as

[ (e yim/2) [ ym/3)
. “

-

-

2/a) .
q’l’zlyq(X,y;d)):(Z—N,;{e'®+(X,Y)|:+(X,y;¢)

+e 19OV (xy;¢) el | o
gAY ’ i il
—e9- G, (x,y:9) e o | % Ll

—e 190G _(x,y: )}, )

where

N

N 1/2
FaYid)= 2 (K) expiK[f_(xy)* o]}, (5

K=0

N

N 1/2
G.(xy;¢)= 2, (K) exgiK[f.(x,y)* o]}, (6)

K=0

FIG. 3. The wave patterns ¢®},(x,y; #)|? from Eq. (8) for
and M=5 and N=26 corresponding to the classical periodic orbits
shown in Fig. 1.

pm .47 N-J
fo(X,y)=—x*t—y, (2/a) N\2
a " a YRy @)= ——m 2 || €
N-J K=J
™ zK_J(K)
& P e (N+1) T X
= — a
=(Y)= X (N ><sir{p(K+1)?}
Since the property of the function$.(x,y;¢) and xsir{q(N—K+1)7T—y}, (8)
G. (X,y; ¢) is similar to theDirichlet kerne| the wave func- a

tion has the maximum value whenever(x,y)* ¢=2nmw

wheren is an integer. It can be found that the lines of equa-where the indexM=N—-2J+1 represents the number of

tion - (x,y) * ¢=2n= coincide with the classical trajecto- eigenstates used in the stalt€ {,(x,y; ¢#). Figure 3 displays

ries. Therefore, the relationship between the paramgterd  the wave patterns of W%, (x,y; #)|? with M=5 and N

the periodic orbits is manifest. =26 corresponding to the classical periodic orbits shown in
Although the number of eigenstates used in the cohererfig. 1. It is clear that only five eigenstates are already suffi-

stateWR9(x,y; ¢) is N+ 1, the number of dominant eigen- cient to localize the wave patterns on the classical trajecto-

states for wave localization is rather small for high-orderries, even for high-order periodic orbits. Since the partially

states. To manifest the efficiency of wave localization, wecoherent state® {;{,(x,y; #), in general, contain only a few

modify W{9(x,y; ¢) to define a partially coherent state as nearly degenerate eigenstates, they often become the exact
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eigenstates in the weakly perturbed 2D square billiards
[16,17] and usually appear in the ballistic quantum dot at —
resonance$18,19. The present analysis indicates that the
wave function obtained as a linear superposition of a few
nearly degenerate eigenstates can provide a more physici
description of a phenomenon than the true eigenstates in me
soscopic systems. Recently, Aldsal.[22] have shown how
the scarred wave functions seen in open quantum dots ma
be interpreted as arising from single eigenstates of closec
billiards. This finding is in good agreement with the present
conclusion. Also, Hufnageét al. [23] have shown that al-
though the eigenstates of mixed-phase-space billiards can ig¢
nore the classical phase-space structures, semiclassically e
pected states and eigenstates will again coincide if th
symmetry of the system is weakly perturbed.
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IIl. FORMATION OF VORTEX LATTICES

\ortices are responsible for many observable phenomen
known mainly to occur in macroscopic quantum systems, for|3&i
example, superconductors or superflidd—26. The order 53
parameter equation in the study of these phenomena is th): =i
Ginzburg-Landau or Gross-Pitaevskii equation. The nonlin-L25
ear character of the modeling equation greatly complicates
the analysis of the solution. However, as pointed out already
by Dirac[27], the vortices arising from the singular points of [
the quantum phase also manifest themselves in the lineg:#%::
Schralinger equation. Recent works show that the vortex|#:
problems play an important role in quantum mechah28&-
30]. Therefore, it is of great interest to analyze the vortex |
behavior for the present wave function. :

For analyzing the property of phase singularities associ #
ated with the classical periodic orbits, it will be convenient to &
separatel §9(x,y; ¢) into its real and imaginary parts, '

PRAXY; ) =DPRAX,Y; ) HIERIX,Y; b)), ) FIG. 4. The calculated results for the probability current densi-
ties corresponding to the wave functions displayed in Fig. 2.
where
- h
(2/3.) N N 1/2 - ‘J(Xay): EP(XvY)VX(Xay),
DRAUXY;p) = o 2 (K> cogK¢)sin
p(x,y)=[WRIx,y; )%, (12)
x| . Ty
X P(K+1) - sin q<N—K+1>ﬂ’ xX(x.y)=tan {dRAx,y; $)ERIx,y; )],
(10 Note that the coherent staleli%(x,y: ¢) is a standing wave
and has no vortices wheg#i==n# andn is an integer. In
(2/a) NN Y2 _ _ other words, the vortices can exist in the coherent state
Eﬁ,'q(x,y;¢)=wz— 2 (K) sin(K ¢)sin WRAX,y; $) When ¢+ +nm. Hereafter we focus on the
K=o case of¢p# = nm, unless otherwise specified.
x| wy Using Egs. (9)—(12), the probability current densities
X p(K+1) —=|sin Q(N—K+1)?} have been calculated. Figure 4 shows the calculated results
for the wave functions displayed in Fig. 2. The direction of
(11 probability flow corresponds to the classical rays shown in

In terms of the probability density(x,y) and the phase
distribution y(x,y), the probability current density is ana-
lytically given by[31]

Fig. 1. Figure 5 shows the calculated results for the periodic
orbit (4,4,7/2) for the cases oN=1, 5, and 25. It can be

seen that the order of the singularity is proportional to the
index N. The order of the singularity, denoted also as the
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FIG. 6. The calculated results for the probability current densi-
ties corresponding to the partially coherent sl\ﬁ&z,s(x,y;gb).
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tioned in Sec. Il. From Eq.14), the topological charge of the
stationary stated!P(x,y; ¢) is equal to+1. Even though
the present result is based on the linear Sdimger equa-
tion, it is interesting to notice that only vortex states with
Q==*1 are stable in the framework of the dissipative
Ginzburg-Landau equatidrs2,33.

On the other hand, the topological charge is nonintegral
when p#q. The nonintegral topological charge arises from
the fact that the primitive periodic orbip(m,q/m, ¢/m) for
p#q has at least one intersection at which the occurrence of
the wave interference leads to the topological charge to be
nonintegral[34]. However, forp=q the primitive periodic
orbit is (1,1,¢) and the intersection number for each trajec-
. .tory is actually zero; therefore the quantization of the topo-

FIG. 5. The calculated results for the probability current densi-, _ = . - - . -
ties corresponding to the periodic orljit fw/Z) of tt{le coherent Ioglqal chargg s the same as that of S|mple_trajector|es V\.”th'
states WithN=1. 5 and 25 Y out intersections. The evidence for a fractional topological

" ' charge has been studied in the fields of high-energy physics
topological charge of the vortex, is calculated as the circuIrsl[")’él"’:".":i and nonlinear phy_sw&G]. Flr_1ally, the nonzero cir-
tion of the phase gradient using a small closed curve encirQUIat'on. also_ comes out in the partially coherent states that
cling the singularity are defined in Eq(8). Figure 6 shows the calculated prob-

ability current density for the partially coherent state
1 \Ifgég,(x,y;(ﬁ). The structure of the vortices can be clearly
Q= pym 3§ Vx-dr. (13 seen, although only five eigenstates are used to localize the
wave pattern on the classical trajectory.

Substituting Eqs(10—(12) into Eg. (13), the topological
charge for the coherent stadeX 9(x,y; ¢) is found to be
IV. CONCLUSIONS
2 2
_,P™*a We have extended the $2) coherent states to analyti-
Q== N. (14) . . . .
2pq cally construct the wave function associated with the high-

_ _ _ order periodic orbits {§,q,¢). We modify the constructed
It can be seen that the topological charge is proportional t@oherent state to investigate the efficiency of wave localiza-

the indexN. In the case op=q, the topological charge is an tion. It is found that only a few nearly degenerate eigenstates
integer and equal taxN. Although the coherent states s already sufficient to localize wave patterns on high-order
WP(x,y;¢) hardly display the classical trajectories, they periodic orbits. The high efficiency of wave localization con-

are stationary states in a 2D quantum square billiard, as meffirms that the wave patterns related to periodic orbits usually
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appear in the weakly perturbed integrable systems as wellonintegral for the quantum states related to the periodic
as in the ballistic quantum dots. Moreover, the property oforbit (p,q, ¢) with p#q.

phase singularities in the quantum probability current is

analyzed. The singular points of the quantum phase is found ACKNOWLEDGMENT
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