
Efficient output phase assignment algorithm for
PLAS

W.-J. HSU
W . 2 . Shen

Indexing terms: Logic optimisation, Logic arrays, Phose ussignment

Abstract: To implement a multiple output func-
tion, one has the option to realise each output
with either true logic or complementary logic fol-
lowing with an inverter. In this paper, we propose
an efficient algorithm to solve this output phase
assignment problem for PLA implementation.
Instead of using the double-phase cover mini-
misation approach, we use a property-checking
procedure to estimate the cost of assignments.
With the estimated costs, an assignment with
minimum cost is chosen. The experimental results
show that the proposed algorithm can obtain
excellent assignment compared with other
approaches.

1 Introduction

Owing to the regularity of structure and flexibility of pro-
gramming, the PLA has become one of the most popular
structures for the implementation of logic functions.
However, direct implementation of logic functions with a
PLA is sometimes wasteful and inefficient owing to a
large number of product terms. To optimise the area and
performance of a PLA many strategies have been devel-
oped [l], such as logic optimisation, partition, folding,
etc. Among them, logic optimisation for PLA design has
been investigated for many years and most of researches
focus on the minimisation of logic functions. Significant
works are MINI[2], EspressoJI[3], Espresso_MV[4],
etc.

In addition to logic minimisation, another optim-
isation strategy named output phase assignment was pro-
posed to further improve the performance of PLA. Given
a multiple output function, one has the option to realise
either true logic or complementary logic following with
an inverter. With proper selection of output phase, a sig-
nificant reduction of hardware cost can be achieved. A
PLA with and without phase assignment is shown in Fig.
1. One can see that both inverting and noninverting
buffers are used at the output. With output phase assign-
ment, the number of product terms is reduced by one. Up
to now, there are two algorithms that have been reported
to solve the output phase assignment problem [S, 61. The

0 IEE, 1993
Paper 957W W O) , first received 13th October 1992 and in revised
form 2lst April 1993
W.-J. Hsu is with the Institute of Electronics, National Chiao Tung
University, Hsin-Chu 30050, Taiwan, Republic of China
Prof. W.-Z. Shen is with the Department of Electronics Engineering &
Institute of Electronics, National Chiao Tung University, Hsin-Chu
30050, Taiwan, Republic of China

360

I I I I
X1 x2 x3 x4 f l f 2 f3

a

t t t
f l ‘2 f3

I
x4

I
x3

I
x2

I
X l

b

Fig. 1 Structure of P L A
a without output phase assignment
h with output phase assignment

results of these algorithms have demonstrated the signifi-
cant improvement to be had by introducing output phase
assignment into PLA design. However, in these algo-
rithms, a procedure called double-phase cover mini-
misation is used as a major operation. For an n-input
rn-output function, the double phase cover is an n-input
2m-output function which is generated by adding the
complement of an output as a new output. Experiments
have shown that the execution time required for double-
phase cover minimisation is much longer than the time
for original cover minimisation. For some PLAs, double-
phase cover minimisation may take more than four times
the time required for onset cover minimisation. To avoid
this time-consuming procedure without degrading the
assignment results, we propose a new algorithm which

This work was supported by the National Science
Council, Republic of China, under grant NSC79-
0404-Em-24

IEE PROCEEDINGS-G, Vol. 140, No. 5, OCTOBER I993

contains a cubeexamining procedure. The proposed
algorithm has been implemented on Sun workstation in
C language to demonstrate its performance. Among the
benchmarks described in Reference 3, many examples
which Sasao’s approach [SI fails to perform phase
assignment within 50000 seconds are optimised with our
algorithm within 3000 seconds. In addition to speed
improvement, the total number of product terms after
output phase optimisation is also the least in comparison
with other algorithms.

2 Fundamental concepts

Given a n-input m-output logic function one can rep-
resent each output function in sum-of-product form. For
simplicity, each product term in the sum-of-product form
is represented with cube notation. A cube is a (n + m)-
tuples vector. The first n-tuples denote the conjunction of
input variables and is written as a hit vector with each bit
position representing a distinct variable. The value taken
by each bit can be 1, 0 or 2 (don’t care), signifying the
true form, negated form and nonexistence of the variable
corresponding to that position, respectively. The last m-
tuples denote the outputs where this product term
appears, each tuple takes the value 1 or 0, signifying the
product term appears or does not appear in the corres-
ponding output. A mmterm is a cube with only 0 or 1
entries in the first n-tuples. Given a cube c the input parts
of cube is denoted as I@), and the output parts is denoted
as 0(c). Cube c can be denoted as I(c) e O(c), where
symbol e denotes concatenation operation of two
vectors.

The Boolean operations of two input vectors are
defined as

AND OR
A 0 1 2 V O 1 2
0 O B 0 0 0 2 2
1 0 1 1 1 2 1 2
2 0 1 2 2 2 2 2

The symbol 0 denotes null variable. The Boolean oper-
ations of two output vectors are defined as

AND OR XOR
A 0 1 V O 1 e 0 1
0 0 0 0 0 1 0 0 1
1 0 1 1 1 1 1 1 0

The complement (-) operation of output vector is
defined as: -(O) = 1, -(1) = 0. A cover is a set of cubes.
Onset cover F is the set of cubes which set the output to
1. O&t cover R is the set of cubes which set the output
to 0. Don’t care set cover DC is the set of cubes which
can be omitted. Output vector el is said to be contained
in output vector e, if for any bit e, = 1 implies the
corresponding hit of e2 is also 1, and is denoted as e, i
e,. Cube cl is said to be covered by cube c2 if every
minterm of c l is contained in cube c2, and this is denoted
as c l c c2. Cube cl is said to be covered by cover F if
every minterm of c l is contained in cover F, and this is
denoted as c l c F.

Dejnition I: Phase uector U: Let U be a m-tuple vector,
and is represented as U = (U,, . . ., v,), where vi E {0, l}, for
i = 1 to m. v is defined as a phase vector such that vi = 1
when the ith output J. of function f is assigned to be in
complementary phase, and ui = 0 whenfi is in true phase.

IEE PROCEEDINGS-G, Vol. 140, No. 5 , OCTOBER 1993

Definition 2: Phase cost t(v, f): Let t (v , f) denote the
minimum number of product terms required to imple-
ment logic functionfwith output phase vector v.

With definitions 1 and 2 the problem of output phase
assignment can be restated: Given an m-output logic
functionJ find a phase vector U forfsuch that the cost
t (o , f) is minimum.

Given a PLA with onset cover F, offset cover R and
phase vector U, the onset cover F,,(u) of the PLA with
phase assignment is formed as follows

(a) In F cover, cubes which contribute to the ith output
for some i with ui = 0 are appended to FAO). For these
cubes, outputs with respect to ui = 1 are set to 0.

(b) In R cover, cubes which contribute to the ith
output for some i with ut = 1 are appended to F,(v). For
these cubes, outputs with respect to vi = 0 are set to 0.

Example I: Given minimised onset and offset covers F,,
R, of a logic function with four-input three-output, the
onset cover Fa of PLA with phase vector v = (1 10) is

F m R, Fe (V = 110))

c1 2100 010 d, 0211 001 c , 1200 001
CO 1211 001 do 0200 001 CO 1211 001

c2 1200 001 d , 1020 010 C j 0210 001
c p 0210 101 d3 1201 001 cq 0201 001

CS 2201 010 d s 2210 010 d S 2210 010
c4 0201 001 d4 1210 001 d, 1020 010

c, 0221 110 d, 1212 010 d, 1212 010
c, 0202 110 d , 1222 100 d , 1222 100

The initial cost for F,(o = (110)) is 8.
After logic minimisation, we know that given a phase
vector v the minimum cost t (o , f) < the number of cubes
in Fa@). Ef one can find out how the cubes in Fa@) are
merged, one may obtain a value close to t(v, f). Taking
these approximate numbers as a merit of implementation
cost, one can assign the phase of outputs effectively. After
investigating the relation between cubes, we summarise
two conditions that two cubes can merge into one cube
with output phase assigned properly.

(i) If the input parts of two cubes can be reduced to be
the same, these cubes can merge.

(ii) If two cubes can merge for a subset of outputs, a
phase assignment which excludes outputs outside the
subset will make these cubes merge.

Example 2: In Example 1, cube (1212 010) in R, can be
reduced to be (1211 010) without affecting the functional-
ity of R,. This cube can merge with cube (1211 001) in
F , when phase vector is (010) or (110). Considering
another condition, cube (0210 101) and cube (0202 110)
in F,,, can merge into (0222 100) with respect to the first
output, then for phase vector (011) the two cubes will
merge into (0222 100).

These two conditions can be formulated as the follow-
ing properties:

Property 1 : For cubes c E F, d E R, where I(c) A Z(d) # 0,
if d c (R - d
+ (Z(c) A I(d)) e qd)) then cubes c and d can merge when

phase vector U satisfies (-U) A 0(c) # 0 and U A Q(d) # 0.

Property 2: For cubes el, c2 E F, where O(c1) A O(c2) #
0, let e be a m-tuple vector, e < O(c1) A O(c2). If (I(c1) V
I(c2)) e e c F, then cubes el, c2 can merge when the
assigned phase vector U satisfies (-U) A e # 0 and
((U) A ((O(c1) V O(c2)) e) = 0.

c c (F - c + (I@) A I(d) e 0(c)) and

361

Property 3: For cubes c l , e2 E R ; O(cl)AO(cZ) # 0, let e
be a m-tuple vector, e -= O(cl)AO(cZ). If (I(c1)V
Z(c2)) 0 e c R, then cube cl, e2 can merge when the
assigned phase vector U satisfies u A e # 0 and
U A ((O(c1) V O(c2)) 8 e) = 0.

Example 3 : For the PLA given in Example 1, the follow-
ing pairs of cubes satisfy the described properties:

co and d , which satisfy property 1, can merge when
phase vector is (010) or (110)

c5 and d 3 which satisfy property 1, can merge when
phase vector is (001) or (101)

c6 and d , which satisfy property 1, can merge when
phase vector is (Ool), (01 1) or (101)

c3 and c, which satisfy property 2, can merge when
phase vector is (01 1).

Based on these properties, an algorithm for output phase
assignment is proposed and implemented.

is generated. If a DC-set exists, F is recomputed from R
and DC to ensure the mutually disjoint property among
F, R and DC covers. This restriction is required when
minimising the offset cover R. After these preprocessing

3 Phase determination algorithm

The flow of the proposed assignment algorithm is shown
as follows:

A2 For each cube d in Rm 9 if A O(d) # 0
phase~wei(index(u)) I pb-wei(index(u)) + 1,

the algorithm, the way that the checking results are
recorded is different and depends on the number of
outputs.

3.1 Minimum cost assignment algorithm
When the number of outputs is small, an integer array
phase-wei is allocated to store the estimated cost for each
phase vector.

Defdion 3 : index of a phase vector U ~ index(u). Given
a phase vector U, the index@) is defined as the value of
binary representation of U with U, as LSB and U, as MSB.

For example, index of phase vector U = (110) is
index(u) = 3. With index(u), each phase vector U is
mapped to one content of array phase-wei. The contents
of array phase-wei are calculated with the following
steps:

A1 For each cube c in F,, if (- U) / \ O(c) # 0

phase-wei(index(u)) = phase-wei(index(u)) + 1.

Algorithm 1 : Output phase assignment algorithm
/* Input: onset cover F (+ don’t care set DC) */
/* Output: onset cover F after phase assignment */
R = complement(F,DC); compute offset cover
If (DC set is not empty)

F1 = minimise(F,R,DC); minimise onset cover
R1 = minimise(R,F,DC); minimise offset cover
If (no. of output < default-size) /* default-size is 12 in experiment */

else

(Fa .RJ = phase-setup(phase, F,R);
F , = minimise(F, ,RA;
return(F,)

F = complement(R,DC); recompute onset cover

phase = findminimum-phase(F1,Rl);

phase = find_near-minimu~phase(Fl,R 1);

previous Section are checked Tor cost estimation. Because
the proposed algorith is a heuristic algorithm and intends
to improve the speed performance for large PLA, it does
not guarantee the best solution. To compromise between
optimisation quality and execution time, the procedure
for cost estimation and phase assignment is divided into
two parts: for small PLA, the algorithm records all phase
vectors when estimating the cost. And for large PLA, the
algorithm stores the mergiability for each pairs of
outputs. When the phase of outputs are determined, the
algorithm invokes phase-setup subroutine to generate
the onset for the selected phase vector. After minimising
the phase assigned PLA, the output phase optimisation
procedure is tenninated.

The best way for recording the checking results is to
update the estimated cost for each phase vector U.
However, when the number of outputs is large, the
number of phase vectors will be unreasonably large. It is
impractical to record all possible phase vectors. To com-
promise between complexity and optimisation quality of

362

A3 For each pair of cubes c and d which satisfy property
1, if (-U) A O(c) # 0 and U A O(d) # 0
phase-wei(index(u)) = phase-wei(index(u)) - 1.

2, if (- U) A e # 0 and (-U) A ((O(c1) V O(c2)) @ e) = 0

phase-wei(index(u)) = phase-wei(index(u)) - 1.

perty 3, if (U A e) # 0 and U A ((O(d1) V O(d2)) @ e) = 0

phase-wei(index(u)) = phase-wei(index(u)) - 1.

A4 For each pair of cubes c l and c2 that satisfy property

A5 For each pair of cubes d l and d2 that satisfy pro-

The first and second steps calculate the’initial costs for all
phase vectors. Step 3-5 then adjusts the costs according
to the checking results. During property checking, a cube
is marked if it satisfies any of the three properties. This
will restrict each cube to merge with other cubes at most
one time. After these five steps, contents of the array
phase-wei store the estimated cost for all possible phase
vectors. The phase of outputs are assigned according the
contents of the array.

I E E PROCEEDINGS-G, Vol. 140, No. 5, OCTOBER 1993

Example 4 : The estimated costs for PLA given in
Example 3 are listed as:

phase vector: (OOO) (100) (010) (110) (001) (101) (011) (111)
indexofarray: 0 1 2 3 4 5 6 7
afterstep1,2: 8 9 9 8 9 9 10 8
afterstep3: 8 9 8 7 7 7 9 8
afterstep4: 8 9 8 7 7 7 8 8

After constructing the phase-wei array, output phase is
assigned based on the value of phase-wei.

Theorem 1 : For any phase vector U of functionf

f(u, f) < phase-wei(idex(a))

Proof: After logic minimisation, the minimised cover
must contain no redundant cube and every cube is maxi-
mised such that no two cubes can merge. Given a PLA
and phase vector U, the initial onset cover of PLA with
phase assignment is F,(u), the initial value of phase-wei(u)
equals to the number of product terms in Fa(u). If two
cubes c, d i n F,(u) satisfy any of the properties, then c and
d can be replaced with single cube. The number of
product terms in F&) is reduced by one, and the value
phase-wei(u) is also decreased by one. When all pairs of
cubes which satisfy the proposed properties are replaced
by related cubes, the number of cubes in the final cover is
equal to phase-wei(v). However, if the number of product
terms in minimised cover is larger than phase-wei(u), then
the minimised cover can be replaced by the newly formed
F,,(u). After logic minimisation, the number of product
terms must be less than or equal to phase-wei(u).

For PLAs with small number of output, the estimated
costs for each phase vector are stored in the array
phase-wei. With Theorem 1, the value in array phase-wei
provides an upper bound for phase assignment cost. The
phases vector U with minimum weight is selected as the
desired phase.

Example 5 : For the array phase-wei shown in Example 4,
phase-wei(3) is the first one that has minimum value.
Therefore, the assigned phase vector is (1, 1, 0) which
means that the first and second outputs are in com-
plemented phase, while the third output is in true phase.

3.2 Near minimum cost assignment algorithm
When the number of outputs is large it is impractical to
record weights for all phase vectors simultaneously.
Therefore a near optimum strategy is used. Instead of
one-dimensional array for all phase vectors, the algo-
rithm uses a 2m * 2m matrix for storing the mutual rela-
tion between outputs. The contents of weight matrix M
are formed with the following steps

B1 Let O(c)’ denote the ith bit in the output parts of cube
c. For any cube c in onset cover F, if O(c)’ = 1 then

M(i, i) = M(i, i) + 1 ;
B2 For any cube d in offset cover R, if O(d)‘ = 1, then

M(j, j) = M(j , j) + 1, where j = i + m;

B3 Let IO(c)l denote the number of ‘1’ in the output
parts of cube c. For any cube c in onset cover F that does
not ,satisfy any of the properties, if O(c)’ = 1 and
O(cy = 1, where i # j , then

M(i, j) = Mi, A - 2/ I O(c) I ;

I E E PROCEEDINGS-G, Vol. 140, NO. 5, O C T O B E R 1993

B4 For any cube d in offset cover R that does not satisfy
any of the properties, if O(d)‘ = 1 and O(dy = 1, where
i # j , then

MI, n) = M(1, n) - 2/ I O(4 I ,
where I = i + m, n = j + m;

B5 For any pair of cubes c in F and d i n R that satisfy
property 1, if O(c)’ = l,O(d)‘ = 1, then

M(i, r) = Mi, r) - 2/(I O(C) I + I O(4 I) ,
where l = j + m;

B6 For any pair of cubes c, d in F, assume that there
exists a m-tuple vector e, e < O(e)A O(d) such that e
satisfy property 2. Let g , be a, m-tuple vector,
g = e 0 (O(c)V O(d)). For any e’ = 1, gJ = 1,

M(L = MV, n) - I/(I O(4 I * I I),
where I = i + m, n = j + m;

B7 For any pair of cubes c, d in R, assume that there
exists a m-tuple vector e, e < O(c)AO(d) such that e
satisfy property 3. Let g be a m-tuple vector,
g,=e@(O(c)VO(d)). For any i, j, e ’=1 , l = i + m ,
g J = l , n = j + m

ML n) = M(L n) - 1M I O(4 I * I O W I 1;
B8 Because the matrix is symmetrical, the lower-left con-
tents of matrix are filled as follows:

M(j , i) = M(i, 17 for all j > i, where i, j < 2m.
In these steps, the subtracted value is determined in such
a way that the summation of subtracted value is one
when two cubes can merge for a given phase vector. After
these steps are done for all cubes, the weight matrix M
gives the number of product terms for each output and
an approximate number of cubes which can be shared
between any pair of outputs. Based on this matrix, a near
optimum phase determination procedure is applied to
assign the phase of outputs.

Example 6 : Taking the PLA in example 1 as an example,
the weight matrix M is

1 2 3 4 5 6
3.0 -1.67 -1.0 0 -0.5 -1.17

-1.67 4.0 0 0 0 -1.67
-1.0 0 4.0 0 -1.0 0

0 0 0 1.0 0 0
-0.5 0 -1.0 0 3.0 0
-1.17 -1.67 0 0 0 4.0

Definiton 4: Extended phase vector U. Given a phase
vector U, the extended phase vector U is a 2m-tuples
vector and is defined as:

Definition 5: Phase weight 4 u) . For a given phase vector
U and weight matrix M, the phase weight of U in terms of
extended phase vector U is defined as

2* 2n

i = 1 J = i
w(u) = C u i * U, * M(i,i)

The assignment of output phase is equivalent to find a
phase vector U such that the phase weight w(u) is

363

minimum. However, when the number of outputs is large,
it is impossible to calculate all phase weights. To solve

rithm shown subsequently is used which is similar to the
algorithm proposed in Reference 5.

Algorithm 2: near minimum assignment algorithm

/* Output: assigned phase vector */

am

j = 1
(i) for (i = 1 to 2m) sm(j) =

(ii) k = Argmax (I sm(k) - sm(k + m) I) /* Argument of

(iii) If (sm(k) > sm(k + m))

M (~ , J) ;
the problem efficiently, a near optimum assignment algo-

which 1 sm(k) - sm(k + m) I is maximum. */

/* Input: weight matrix M */ U k " 1 ;
clear the (k)th column of matrix M ;

PLA
name

1

cube number
True-PLA 1 Corn-PIA I Playground 1 Sasa0 Proposed 1 Exhaustive

adr4
alul
ah2
alu3
apla
bcO
bca
bcb
bcc
bcd

chkn
Col 4

CPS
dc 1
dc2
disl

dk17
dk27
dk48
exep

f51 m
gary
in0
in1
in2
in3
in4
in5
in6
in7

misg
mish
mlp4
OPa

radd
rckl

rd53
rd73

risc
root
sqn

sq r6
tial

vg2
wirn

x l dn
x6dn
x9dn

74
Z5xpl

ibp

add61 3551

Zgsyrnl
Total

3871

861 7 21 7 21 8 6 7 21 7 2
I 51 521 56221 45161 46031 44601

2931
7 5
1 9
6 8
6 6
2 5

179
180
156
137
117
140

1 4
163

9
39

123
1 8
1 0
21

109
7 7

107
107
106
136

74
21 2

6 2
54
5 4

122
6 9
8 2

128
7 9
7 5
32
31

127
29
57
3 8
49

581
110

9
110

8 2
120

59
65

293)
8 3
2 0
40
4 9
2 6

21 6
1 9 0
170 ,
161
139
171

9 2
147

1 1
4 3

122
1 6
1 0
1 4
97
7 6

1 1 4
114
1 4 4
125
112
242
1 5 0
118

6 6
1 4 4

51
7 6

131
7 6
8 3
3 3
3 2

127
2 0
5 9
3 3
4 3
393
174

9
159
161
159

5 9
6 3

61
1 5
43
47
25

179
180
156
137
117
138

14

9
35

104
15
9

1 4
97
76

107
107
106
125

74
21 2

62
54
43

116
34

112
76
6 1
32
22
93
20
49
32
3 9

359
110

8
110

82
107

45
60

3 1
1 5
40
3 7
2 2

185

117
141

1 4
153

9
3 7

109
1 8

9
1 9

7 6
107
107
106
136

7 9
224

6 2
5 4
43

3 4

111
7 9
6 1
3 2
2 2
9 3
27
49
3 2
42

359
110

8
110

8 2
116

45
6 4

6 1
15
37
37
25

179
180
156
137
117
136

14
147

9
37

106
16

9
13
97
76

107
107
106
116
74

212
62
54
33

122
34
53

117
75
61
32
22
93
20
48
33
41

359
110

8
103

82
104

45
58

61
15
37
37
21

134
14

9
35

103
1 4

9
13

76

116

110
75
61
32
2 2
93
20
48
32
39

110
8

103
82

104
45
58

else

Uk = 0;
clear the (k + m)th column of matrix M;

(iv) If (any of the outputs is not assigned)
got0 1 ;

4 name Pro osed s eedu

Example 7: Given the weight matrix A4 in Example 6, the
procedure of phase assignment is as follows:
1-1 The summation of rows:

add61 121 71 220951 122221

Sm(1) sm(3) sm(4) sm(5) sm(6)
-1.33 0.66 2.0 1.0 1.5 1.16

1-2 Because I sm(1) - sm(4) I = 2.33 is maximum, select

1-3 sm(1) < sm(4), let u1 = 0, the first output is set to be
in true phase. Clear the contents in the fourth
column.

2-1 Recalculate the summation of each row

sm(1) s 4 2) sm(3) sm(4) sm(5) sm(6)

k = 1.

* 0.66 2.0 1.5 1.16

1.81

Table 2: Comparisons of execution time for Dhase assignment alaorithms

Z9syrnl 91 11 171 01 7291
Total 1 I 15754431 1073004]

PLA I 1 Execution time 1

2.35
1.70

adr4
alul
ah2
alu3
apla
bcO
bcd

chkn
CO14

CPS
dc 1
dc2
dist

d k l 7
d k27
dk48
f51 rn
P r y

in0
in1
in2
in3
in4
in5
in6
in7
ibp

rnisg
mish
rnlp4

OPa
radd
rckl

rd53
rd73

risc
root
sq"

sqr6
tial

vg2
wirn

x l dn
x6dn
x9dn

25x01
24

8
12
10
10
10
26
26
29
14
24

4
8
8
0
9
5
8
5
5
6

19
35
32
24
3 3
27

122
56
94

8
17

8
32

5
7
8
8
7
6

25
25

4
27
39
27

7
7

5
8
8
8

1 2
1 1
3 8

7
1

1 0 9
7
7
5

1 1
9

1 7
8

1 1
1 1
1 7
1 0
2 9
2 0
1 4
2 3
1 0
2 3
2 3
4 3

8
6 9
5
7
3
3

3 1
5
3

1 2
8
8
7
6
5
7
4

1 0

1045
137

1503
231 7

91 8
15694

352460
17483

169
859428

43
383

3042
773
131

1253
2048
3986
351 3
9049
6071

16599
54601
1431 8
30057

1899

16800

3953
26848

586
251 2

3 8
452
61 2

1063
331

1071
359

25646
45

27135
5700

38071
345

1151

551
43

734
881

1197
15198

468405
16022

141

35
369

1525
858
146

3687
809

7522
4855

10209
8930

12567
4531 7

9558
11490

763
'44180

1063
'5402
2644

23099
41 5

2229
57

590
1042

760
167
626
359

21 01 4
50

19064
5738

30440
23 9
827

32781 8

1.90
3.19
2.05
2.63
0.77
1.03
0.75
1.09
1.20
2.62
1.23
1.04
1.99
0.90
0.90
0.34
2.53
0.53
0.72
0.89
0.68
1.32
1.20
1.50
2.62
2.49

15.80

1.50
1.16
1.41
1.13
0.67
0.77
0.59
1.40
1.98
1.71
1 .oo
1.22
0.90
1.42
0.99
1.25
1.44
1.39

2-2 1 sm(2) - sm(5) 1 = 0.84, select k = 2
2-3 sm(2) < sm(5), let u2 = 0, the second output is set to

be in true phase. Clear the contents in the fifth
column.

3-1 Recalculate the summation of each row

sdl) sm(2) srn(3) sm(4) sm(5) sm(6)
* * 2.0 * * 1.16

3-2 sm(3) > sm(6), let uj = 1, the third output is set to be
in complementary phase.

With the selected phase assignment (Ool), the final PLA
requires seven product terms.

4 Experimental results

The proposed algorithm has been implemented on Sun
4/260 workstation in C language. Espresso-MV (version
2.3) [4] is used as the minimisation algorithm. The PLAs
described in Reference 3 are used for output phase optim-
isation, and the results are shown in Table 1. The fourth
column shows the results obtained with Playground [6] .
The fifth column is the optimisation results of Sasao’s
approach [SI implemented in Espresso-MV. The sixth
column is the results of our algorithm. The last column
shows some results of exhaustive searching. Among the
49 PLAs, both Playground and Sasao’s approach fail to
generate the solution for Mish. However, the proposed
algorithm can generate a good result within a short time.
In addition to this PLA, there are 11 PLAs that the pro-
posed algorithm generates the best result as compared
with other algorithms. Although there are some PLAs
that the proposed algorithm does not work as well with,
it still improves the performance. Compared with the
results of exhaustive searching, the proposed algorithm
obtains the same results for 26 PLAs. Considering the
total number of product terms for the 49 PLAs. Sasao’s
approach generates 4603 product terms, Playground gen-
erates 4516 product terms and the proposed algorithm
generates only 4460 product terms.

In Table 2, the speed of our algorithm is compared
with that of Sasao’s approach. Because the execution
time of Playground [6] is slower as compared with the
execution time for Sasao’s approach, only the time for
Sasao’s approach and our approach are listed in the
Table. The column with the heading ‘Sasao’ represents
the time used for Sasao’s approach, the column with the
heading ‘Proposed’ represents the time spent with our
algorithm, and the column with the heading ‘Speedup’
represents the value that Sasao’s time divided by the pro-

366

posed time. From the Table, one can find that the pro-
posed algorithm is faster than Sasao’s approach for many
PLAs. The average speedup is about 1.71, that is about
41 % of time can be saved with our approach. Since those
PLAs that Sasao’s approach fails to generate phase
vector are not included in the Table, the average speedup
is underestimated. From experimental results, the time
needed for phase assignment procedure is about 13% of
total time. To sum up, the proposed algorithm is superior
to other algorithms both in speed and optimisation
quality.

5 Conclusions

A new algorithm for output phase optimisation has been
proposed and implemented. This algorithm first mini-
mises the onset cover and offset cover individually. With
the minimised covers, cubes in both covers are checked if
they meet some properties. From the results of checking,
the cost for each possible phase assignment is estimated.
An output phase with minimum or near minimum esti-
mated cost is chosen as the desired solution. This algo-
rithm has been implemented on a Sun 4/260 workstation
in C language. The experimental results demonstrate the
excellent performance in speed and optimisation results.
On the average, this algorithm can save 41% of execution
time comparing with Sasao’s approach. Besides this,
some large PLAs which conventional algorithms fail to
process within reasonable time are optimised with the
proposed algorithm. With this algorithm not only is
speed improved, but the total number of product terms
for 49 PLAs is reduced as compared with other algo-
rithms.

0 References

1 SANGIOVANNI-VINCENTELLI, A.L.: ‘An overview of synthesis
systems’. Proceedings of IEEE Conference on Custom integrated cir-
cuits, 1985, pp. 221-225

2 HONG, S.J., CAIN, R.G., and OSTAPKO, D.L.: ‘MINI: A heuristic
approach for logic minimization’, IBM J. Res. Develop., 1974, 1% pp.
443-458

3 BRAYTON, R.K., HACHTEL, G., McMULLEN, C., and
SANGIOVANNI-VINCENTELLI, A.L. : ‘Logic minimization algo-
rithms for VLSI synthesis’ (Kluwer: Hinghan, MA, 1984)

4 RUDELL, R.L., and SANGIOVANNI-VINCENTELLI, A.L.:
’Multiple valued minimization Cor PLA optimization’, IEEE Trans.,
1987, CAD-6, (S), pp. 727-750

5 SASAO, T.: ‘Input variable assignment and output phase optim-
ization of PLA‘s’, IEEE Trans., 1984, C-33, pp. 879-894

6 WEY, C.L., and CHANG, T.Y.: ‘An eficienl output phase assign-
ment for PLA minimization’, IEEE Trans., 1990, CAD-9, (l), pp. 1-8

I E E PROCEEDINGS-G, Vol. 140, No. 5 , OCTOBER 1993

