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Abstract: To implement a multiple output func- 
tion, one has the option to realise each output 
with either true logic or complementary logic fol- 
lowing with an inverter. In this paper, we propose 
an efficient algorithm to solve this output phase 
assignment problem for PLA implementation. 
Instead of using the double-phase cover mini- 
misation approach, we use a property-checking 
procedure to estimate the cost of assignments. 
With the estimated costs, an assignment with 
minimum cost is chosen. The experimental results 
show that the proposed algorithm can obtain 
excellent assignment compared with other 
approaches. 

1 Introduction 

Owing to the regularity of structure and flexibility of pro- 
gramming, the PLA has become one of the most popular 
structures for the implementation of logic functions. 
However, direct implementation of logic functions with a 
PLA is sometimes wasteful and inefficient owing to a 
large number of product terms. To optimise the area and 
performance of a PLA many strategies have been devel- 
oped [l], such as logic optimisation, partition, folding, 
etc. Among them, logic optimisation for PLA design has 
been investigated for many years and most of researches 
focus on the minimisation of logic functions. Significant 
works are MINI[2], EspressoJI[3], Espresso_MV[4], 
etc. 

In addition to logic minimisation, another optim- 
isation strategy named output phase assignment was pro- 
posed to further improve the performance of PLA. Given 
a multiple output function, one has the option to realise 
either true logic or complementary logic following with 
an inverter. With proper selection of output phase, a sig- 
nificant reduction of hardware cost can be achieved. A 
PLA with and without phase assignment is shown in Fig. 
1. One can see that both inverting and noninverting 
buffers are used at the output. With output phase assign- 
ment, the number of product terms is reduced by one. Up 
to now, there are two algorithms that have been reported 
to solve the output phase assignment problem [S, 61. The 
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results of these algorithms have demonstrated the signifi- 
cant improvement to be had by introducing output phase 
assignment into PLA design. However, in these algo- 
rithms, a procedure called double-phase cover mini- 
misation is used as a major operation. For an n-input 
rn-output function, the double phase cover is an n-input 
2m-output function which is generated by adding the 
complement of an output as a new output. Experiments 
have shown that the execution time required for double- 
phase cover minimisation is much longer than the time 
for original cover minimisation. For some PLAs, double- 
phase cover minimisation may take more than four times 
the time required for onset cover minimisation. To avoid 
this time-consuming procedure without degrading the 
assignment results, we propose a new algorithm which 
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contains a cubeexamining procedure. The proposed 
algorithm has been implemented on Sun workstation in 
C language to demonstrate its performance. Among the 
benchmarks described in Reference 3, many examples 
which Sasao’s approach [SI fails to perform phase 
assignment within 50000 seconds are optimised with our 
algorithm within 3000 seconds. In addition to speed 
improvement, the total number of product terms after 
output phase optimisation is also the least in comparison 
with other algorithms. 

2 Fundamental concepts 

Given a n-input m-output logic function one can rep- 
resent each output function in sum-of-product form. For 
simplicity, each product term in the sum-of-product form 
is represented with cube notation. A cube is a (n + m)- 
tuples vector. The first n-tuples denote the conjunction of 
input variables and is written as a hit vector with each bit 
position representing a distinct variable. The value taken 
by each bit can be 1, 0 or 2 (don’t care), signifying the 
true form, negated form and nonexistence of the variable 
corresponding to that position, respectively. The last m- 
tuples denote the outputs where this product term 
appears, each tuple takes the value 1 or 0, signifying the 
product term appears or does not appear in the corres- 
ponding output. A mmterm is a cube with only 0 or 1 
entries in the first n-tuples. Given a cube c the input parts 
of cube is denoted as I@), and the output parts is denoted 
as 0(c). Cube c can be denoted as I(c) e O(c), where 
symbol e denotes concatenation operation of two 
vectors. 

The Boolean operations of two input vectors are 
defined as 

AND OR 
A 0  1 2  V O 1 2  
0 O B 0  0 0 2 2  
1 0 1  1 1 2 1 2  
2 0 1 2  2 2 2 2  

The symbol 0 denotes null variable. The Boolean oper- 
ations of two output vectors are defined as 

AND OR XOR 
A 0 1  V O 1  e 0 1  
0 0 0  0 0 1  0 0 1  
1 0 1  1 1 1  1 1 0  

The complement (-) operation of output vector is 
defined as: -(O) = 1, -(1) = 0. A cover is a set of cubes. 
Onset cover F is the set of cubes which set the output to 
1. O&t cover R is the set of cubes which set the output 
to 0. Don’t care set cover DC is the set of cubes which 
can be omitted. Output vector el is said to be contained 
in output vector e, if for any bit e, = 1 implies the 
corresponding hit of e2 is also 1, and is denoted as e, i 
e,. Cube cl is said to be covered by cube c2 if every 
minterm of c l  is contained in cube c2, and this is denoted 
as c l  c c2. Cube cl is said to be covered by cover F if 
every minterm of c l  is contained in cover F, and this is 
denoted as c l  c F. 

Dejnition I: Phase uector U: Let U be a m-tuple vector, 
and is represented as U = (U,, . . ., v,), where vi E {0, l}, for 
i = 1 to m. v is defined as a phase vector such that vi = 1 
when the ith output J. of function f is assigned to be in 
complementary phase, and ui = 0 whenfi is in true phase. 
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Definition 2: Phase cost t(v, f): Let t (v ,  f) denote the 
minimum number of product terms required to imple- 
ment logic functionfwith output phase vector v. 

With definitions 1 and 2 the problem of output phase 
assignment can be restated: Given an m-output logic 
functionJ find a phase vector U forfsuch that the cost 
t (o , f )  is minimum. 

Given a PLA with onset cover F, offset cover R and 
phase vector U, the onset cover F,,(u) of the PLA with 
phase assignment is formed as follows 

(a) In F cover, cubes which contribute to the ith output 
for some i with ui = 0 are appended to FAO). For these 
cubes, outputs with respect to ui = 1 are set to 0. 

(b) In R cover, cubes which contribute to the ith 
output for some i with ut = 1 are appended to F,(v). For 
these cubes, outputs with respect to vi = 0 are set to 0. 

Example I: Given minimised onset and offset covers F,, 
R, of a logic function with four-input three-output, the 
onset cover Fa of PLA with phase vector v = (1 10) is 

F m  R, Fe (V = 110)) 

c1 2100 010 d, 0211 001 c ,  1200 001 
CO 1211 001 do 0200 001 CO 1211 001 

c2 1200 001 d ,  1020 010 C j  0210 001 
c p  0210 101 d3 1201 001 cq 0201 001 

CS 2201 010 d s  2210 010 d S  2210 010 
c4 0201 001 d4 1210 001 d, 1020 010 

c, 0221 110 d, 1212 010 d, 1212 010 
c,  0202 110 d ,  1222 100 d ,  1222 100 

The initial cost for F,(o = (110)) is 8. 
After logic minimisation, we know that given a phase 
vector v the minimum cost t (o , f )  < the number of cubes 
in Fa@). Ef one can find out how the cubes in Fa@) are 
merged, one may obtain a value close to t(v, f). Taking 
these approximate numbers as a merit of implementation 
cost, one can assign the phase of outputs effectively. After 
investigating the relation between cubes, we summarise 
two conditions that two cubes can merge into one cube 
with output phase assigned properly. 

(i) If the input parts of two cubes can be reduced to be 
the same, these cubes can merge. 

(ii) If two cubes can merge for a subset of outputs, a 
phase assignment which excludes outputs outside the 
subset will make these cubes merge. 

Example 2: In Example 1, cube (1212 010) in R, can be 
reduced to be (1211 010) without affecting the functional- 
ity of R,. This cube can merge with cube (1211 001) in 
F ,  when phase vector is (010) or (110). Considering 
another condition, cube (0210 101) and cube (0202 110) 
in F,,, can merge into (0222 100) with respect to the first 
output, then for phase vector (011) the two cubes will 
merge into (0222 100). 

These two conditions can be formulated as the follow- 
ing properties: 

Property 1 : For cubes c E F, d E R, where I(c) A Z(d) # 0, 
if d c (R - d 
+ (Z(c) A I(d)) e qd)) then cubes c and d can merge when 

phase vector U satisfies (-U) A 0(c) # 0 and U A Q(d) # 0. 

Property 2: For cubes el, c2 E F, where O(c1) A O(c2) # 
0, let e be a m-tuple vector, e < O(c1) A O(c2). If (I(c1) V 
I(c2)) e e c F, then cubes el,  c2 can merge when the 
assigned phase vector U satisfies (-U) A e # 0 and 
(( U) A ((O(c1) V O(c2)) e) = 0. 

c c (F - c + (I@) A I(d) e 0(c)) and 
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Property 3: For cubes c l ,  e2 E R ;  O(cl)AO(cZ) # 0, let e 
be a m-tuple vector, e -= O(cl)AO(cZ). If (I(c1)V 
Z(c2)) 0 e c R, then cube cl,  e2 can merge when the 
assigned phase vector U satisfies u A e  # 0 and 
U A ((O(c1) V O(c2)) 8 e) = 0. 

Example 3 :  For the PLA given in Example 1, the follow- 
ing pairs of cubes satisfy the described properties: 

co and d ,  which satisfy property 1, can merge when 
phase vector is (010) or (110) 

c5 and d 3  which satisfy property 1, can merge when 
phase vector is (001) or (101) 

c6 and d ,  which satisfy property 1, can merge when 
phase vector is (Ool), (01 1) or (101) 

c3 and c, which satisfy property 2, can merge when 
phase vector is (01 1). 

Based on these properties, an algorithm for output phase 
assignment is proposed and implemented. 

is generated. If a DC-set exists, F is recomputed from R 
and DC to ensure the mutually disjoint property among 
F,  R and DC covers. This restriction is required when 
minimising the offset cover R. After these preprocessing 

3 Phase determination algorithm 

The flow of the proposed assignment algorithm is shown 
as follows: 

A2 For each cube d in Rm 9 if A O(d) # 0 
phase~wei(index(u)) I pb-wei(index(u)) + 1, 

the algorithm, the way that the checking results are 
recorded is different and depends on the number of 
outputs. 

3.1 Minimum cost assignment algorithm 
When the number of outputs is small, an integer array 
phase-wei is allocated to store the estimated cost for each 
phase vector. 

Defdion 3 : index of a phase vector U ~ index(u). Given 
a phase vector U, the index@) is defined as the value of 
binary representation of U with U, as LSB and U, as MSB. 

For example, index of phase vector U = (110) is 
index(u) = 3. With index(u), each phase vector U is 
mapped to one content of array phase-wei. The contents 
of array phase-wei are calculated with the following 
steps: 

A1 For each cube c in F,, if ( - U ) / \  O(c) # 0 

phase-wei(index(u)) = phase-wei(index(u)) + 1. 

Algorithm 1 : Output phase assignment algorithm 
/* Input: onset cover F (+ don’t care set DC) */ 
/* Output: onset cover F after phase assignment */ 
R = complement(F,DC); compute offset cover 
If (DC set is not empty) 

F1 = minimise(F,R,DC); minimise onset cover 
R1 = minimise(R,F,DC); minimise offset cover 
If (no. of output < default-size) /* default-size is 12 in experiment */ 

else 

(Fa .RJ = phase-setup(phase, F,R); 
F ,  = minimise(F, ,RA; 
return(F,) 

F = complement(R,DC); recompute onset cover 

phase = findminimum-phase(F1,Rl); 

phase = find_near-minimu~phase(Fl,R 1); 

previous Section are checked Tor cost estimation. Because 
the proposed algorith is a heuristic algorithm and intends 
to improve the speed performance for large PLA, it does 
not guarantee the best solution. To compromise between 
optimisation quality and execution time, the procedure 
for cost estimation and phase assignment is divided into 
two parts: for small PLA, the algorithm records all phase 
vectors when estimating the cost. And for large PLA, the 
algorithm stores the mergiability for each pairs of 
outputs. When the phase of outputs are determined, the 
algorithm invokes phase-setup subroutine to generate 
the onset for the selected phase vector. After minimising 
the phase assigned PLA, the output phase optimisation 
procedure is tenninated. 

The best way for recording the checking results is to 
update the estimated cost for each phase vector U. 
However, when the number of outputs is large, the 
number of phase vectors will be unreasonably large. It is 
impractical to record all possible phase vectors. To com- 
promise between complexity and optimisation quality of 
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A3 For each pair of cubes c and d which satisfy property 
1, if (-U) A O(c) # 0 and U A O(d) # 0 
phase-wei(index(u)) = phase-wei(index(u)) - 1. 

2, if (- U) A e # 0 and (-U) A ((O(c1) V O(c2)) @ e) = 0 

phase-wei(index(u)) = phase-wei(index(u)) - 1. 

perty 3, if (U A e) # 0 and U A ((O(d1) V O(d2)) @ e) = 0 

phase-wei(index(u)) = phase-wei(index(u)) - 1. 

A4 For each pair of cubes c l  and c2 that satisfy property 

A5 For each pair of cubes d l  and d2 that satisfy pro- 

The first and second steps calculate the’initial costs for all 
phase vectors. Step 3-5 then adjusts the costs according 
to the checking results. During property checking, a cube 
is marked if it satisfies any of the three properties. This 
will restrict each cube to merge with other cubes at most 
one time. After these five steps, contents of the array 
phase-wei store the estimated cost for all possible phase 
vectors. The phase of outputs are assigned according the 
contents of the array. 
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Example 4 :  The estimated costs for PLA given in 
Example 3 are listed as: 

phase vector: (OOO) (100) (010) (110) (001) (101) (011) (111) 
indexofarray: 0 1 2 3 4 5 6 7 
afterstep1,2: 8 9 9 8 9 9 10 8 
afterstep3: 8 9 8 7 7 7 9 8 
afterstep4: 8 9 8 7 7 7 8 8 

After constructing the phase-wei array, output phase is 
assigned based on the value of phase-wei. 

Theorem 1 : For any phase vector U of functionf 

f(u, f) < phase-wei(idex(a)) 

Proof: After logic minimisation, the minimised cover 
must contain no redundant cube and every cube is maxi- 
mised such that no two cubes can merge. Given a PLA 
and phase vector U, the initial onset cover of PLA with 
phase assignment is F,(u), the initial value of phase-wei(u) 
equals to the number of product terms in Fa(u). If two 
cubes c, d i n  F,(u) satisfy any of the properties, then c and 
d can be replaced with single cube. The number of 
product terms in F&) is reduced by one, and the value 
phase-wei(u) is also decreased by one. When all pairs of 
cubes which satisfy the proposed properties are replaced 
by related cubes, the number of cubes in the final cover is 
equal to phase-wei(v). However, if the number of product 
terms in minimised cover is larger than phase-wei(u), then 
the minimised cover can be replaced by the newly formed 
F,,(u). After logic minimisation, the number of product 
terms must be less than or equal to phase-wei(u). 

For PLAs with small number of output, the estimated 
costs for each phase vector are stored in the array 
phase-wei. With Theorem 1, the value in array phase-wei 
provides an upper bound for phase assignment cost. The 
phases vector U with minimum weight is selected as the 
desired phase. 

Example 5 :  For the array phase-wei shown in Example 4, 
phase-wei(3) is the first one that has minimum value. 
Therefore, the assigned phase vector is (1, 1, 0) which 
means that the first and second outputs are in com- 
plemented phase, while the third output is in true phase. 

3.2 Near minimum cost assignment algorithm 
When the number of outputs is large it is impractical to 
record weights for all phase vectors simultaneously. 
Therefore a near optimum strategy is used. Instead of 
one-dimensional array for all phase vectors, the algo- 
rithm uses a 2m * 2m matrix for storing the mutual rela- 
tion between outputs. The contents of weight matrix M 
are formed with the following steps 

B1 Let O(c)’ denote the ith bit in the output parts of cube 
c. For any cube c in onset cover F, if O(c)’ = 1 then 

M(i, i) = M(i, i) + 1 ; 
B2 For any cube d in  offset cover R, if O(d)‘ = 1, then 

M(j, j )  = M(j ,  j) + 1, where j = i + m; 

B3 Let IO(c)l denote the number of ‘1’ in the output 
parts of cube c. For any cube c in onset cover F that does 
not ,satisfy any of the properties, if O(c)’ = 1 and 
O(cy = 1, where i # j ,  then 

M(i, j )  = Mi,  A - 2/ I O(c) I ; 
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B4 For any cube d in  offset cover R that does not satisfy 
any of the properties, if O(d)‘ = 1 and O(dy = 1, where 
i # j ,  then 

MI, n) = M(1, n) - 2/ I O(4 I ,  
where I = i + m, n = j + m; 

B5 For any pair of cubes c in F and d i n  R that satisfy 
property 1, if O(c)’ = l,O(d)‘ = 1, then 

M(i, r )  = Mi, r )  - 2/( I O(C) I + I O(4 I ) ,  
where l = j + m; 

B6 For any pair of cubes c, d in F, assume that there 
exists a m-tuple vector e, e < O(e)A O(d) such that e 
satisfy property 2. Let g , be a, m-tuple vector, 
g = e 0 (O(c)V O(d)). For any e’ = 1, gJ = 1, 

M(L = MV, n) - I/( I O(4 I * I I), 
where I = i + m, n = j + m; 

B7 For any pair of cubes c, d in R, assume that there 
exists a m-tuple vector e, e < O(c)AO(d) such that e 
satisfy property 3. Let g be a m-tuple vector, 
g,=e@(O(c)VO(d)). For any i, j, e ’=1 ,  l = i + m ,  
g J = l , n = j + m  

ML n) = M(L n) - 1M I O(4 I * I O W  I 1; 
B8 Because the matrix is symmetrical, the lower-left con- 
tents of matrix are filled as follows: 

M( j ,  i )  = M(i, 17 for all j > i, where i, j < 2m. 
In these steps, the subtracted value is determined in such 
a way that the summation of subtracted value is one 
when two cubes can merge for a given phase vector. After 
these steps are done for all cubes, the weight matrix M 
gives the number of product terms for each output and 
an approximate number of cubes which can be shared 
between any pair of outputs. Based on this matrix, a near 
optimum phase determination procedure is applied to 
assign the phase of outputs. 

Example 6 :  Taking the PLA in example 1 as an example, 
the weight matrix M is 

1 2 3 4  5 6 
3.0 -1.67 -1.0 0 -0.5 -1.17 

-1.67 4.0 0 0 0 -1.67 
-1.0 0 4.0 0 -1.0 0 

0 0 0 1.0 0 0 
-0.5 0 -1.0 0 3.0 0 
-1.17 -1.67 0 0 0 4.0 

Definiton 4:  Extended phase vector U. Given a phase 
vector U, the extended phase vector U is a 2m-tuples 
vector and is defined as: 

Definition 5:  Phase weight 4 u ) .  For a given phase vector 
U and weight matrix M, the phase weight of U in terms of 
extended phase vector U is defined as 

2* 2n 

i = 1  J = i  
w(u) = C u i  * U, * M(i,i)  

The assignment of output phase is equivalent to find a 
phase vector U such that the phase weight w(u) is 
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minimum. However, when the number of outputs is large, 
it is impossible to calculate all phase weights. To solve 

rithm shown subsequently is used which is similar to the 
algorithm proposed in Reference 5. 

Algorithm 2: near minimum assignment algorithm 

/* Output: assigned phase vector */ 

am 

j =  1 
(i) for ( i  = 1 to 2m) sm(j) = 

(ii) k = Argmax ( I  sm(k) - sm(k + m) I ) /* Argument of 

(iii) If (sm(k) > sm(k + m)) 

M ( ~ , J ) ;  
the problem efficiently, a near optimum assignment algo- 

which 1 sm(k) - sm(k + m) I is maximum. */ 

/* Input: weight matrix M */ U k "  1 ;  
clear the (k)th column of matrix M ;  

PLA 
name 

1 

cube number 
True-PLA 1 Corn-PIA I Playground 1 Sasa0 Proposed 1 Exhaustive 

adr4 
alul 
ah2  
alu3 
apla 
bcO 
bca 
bcb 
bcc 
bcd 

chkn 
Col 4 

CPS 
dc 1 
dc2 
disl 

dk17 
dk27 
dk48 
exep 

f51 m 
gary 
in0 
in1 
in2 
in3 
in4 
in5 
in6 
in7 

misg 
mish 
mlp4 
OPa 

radd 
rckl 

rd53 
rd73 

risc 
root 
sqn 

sq r6 
tial 

vg2 
wirn 

x l  dn 
x6dn 
x9dn 

74 
Z5xpl 

ibp 

add61 3551 

Zgsyrnl 
Total 

3871 

861 7 21 7 21 8 6  7 21 7 2  
I 51 521 56221 45161 46031 44601 

2931 
7 5  
1 9  
6 8  
6 6  
2 5  

179  
180 
156  
137  
117 
140  

1 4  
163  

9 
39  

123 
1 8  
1 0  
21 

109  
7 7  

107 
107 
106  
136  

74  
21 2 

6 2  
54 
5 4  

122  
6 9  
8 2  

128 
7 9  
7 5  
32  
31 

127  
29 
57  
3 8  
49 

581 
110  

9 
110  

8 2  
120  

59  
65 

293) 
8 3  
2 0  
40  
4 9  
2 6  

21 6 
1 9 0  
170 ,  
161  
139 
171  

9 2  
147  

1 1  
4 3  

122  
1 6  
1 0  
1 4  
97  
7 6  

1 1 4  
114  
1 4 4  
125 
112  
242 
1 5 0  
118  

6 6  
1 4 4  

51  
7 6  

131 
7 6  
8 3  
3 3  
3 2  

127 
2 0  
5 9  
3 3  
4 3  
393 
174  

9 
159  
161 
159 

5 9  
6 3  

61  
1 5  
43 
47 
25 

179 
180 
156 
137 
117 
138 

14  

9 
35 

104 
15 
9 

1 4  
97 
76 

107 
107 
106 
125 

74 
21 2 

62  
54 
43 

116 
34  

112 
76 
6 1  
32 
22 
93 
20 
49 
32 
3 9  

359 
110 

8 
110 

82  
107 

45 
60 

3 1  
1 5  
40  
3 7  
2 2  

185 

117 
141 

1 4  
153  

9 
3 7  

109  
1 8  

9 
1 9  

7 6  
107  
107  
106 
136  

7 9  
224 

6 2  
5 4  
43  

3 4  

111 
7 9  
6 1  
3 2  
2 2  
9 3  
27 
49  
3 2  
42  

359 
110  

8 
110  

8 2  
116 

45  
6 4  

6 1  
15 
37 
37 
25 

179 
180 
156 
137 
117 
136 

14 
147 

9 
37 

106 
16  

9 
13 
97 
76 

107 
107 
106 
116 
74  

212 
62 
54 
33 

122 
34 
53 

117 
75 
61 
32 
22 
93 
20 
48 
33 
41 

359 
110 

8 
103 

82 
104 

45 
58 

61 
15 
37 
37  
21 

134 
14  

9 
35 

103 
1 4  

9 
13  

76  

116 

110 
75  
61  
32  
2 2  
93  
20 
48 
32 
39  

110 
8 

103 
82  

104 
45 
58  



else 

Uk = 0; 
clear the (k + m)th column of matrix M; 

(iv) If (any of the outputs is not assigned) 
got0 1 ;  

4 name Pro osed s eedu 

Example 7: Given the weight matrix A4 in Example 6, the 
procedure of phase assignment is as follows: 
1-1 The summation of rows: 

add61 121 71 220951 122221 

Sm(1) sm(3) sm(4) sm(5) sm(6) 
-1.33 0.66 2.0 1.0 1.5 1.16 

1-2 Because I sm(1) - sm(4) I = 2.33 is maximum, select 

1-3 sm(1) < sm(4), let u1 = 0, the first output is set to be 
in true phase. Clear the contents in the fourth 
column. 

2-1 Recalculate the summation of each row 

sm(1) s 4 2 )  sm(3) sm(4) sm(5) sm(6) 

k = 1. 

* 0.66 2.0 1.5 1.16 

1.81 

Table 2: Comparisons of execution time for Dhase assignment alaorithms 

Z9syrnl 91 11 171 01 7291 
Total 1 I 15754431 1073004] 

PLA I 1 Execution time 1 

2.35 
1.70 

adr4 
alul 
ah2 
alu3 
apla 
bcO 
bcd 

chkn 
CO14 

CPS 
dc 1 
dc2 
dist 

d k l 7  
d k27 
dk48 
f51 rn 
P r y  

in0 
in1 
in2 
in3 
in4 
in5 
in6 
in7 
ibp 

rnisg 
mish 
rnlp4 

OPa 
radd 
rckl 

rd53 
rd73 

risc 
root 
sq" 

sqr6 
tial 

vg2 
wirn 

x l  dn 
x6dn 
x9dn 

25x01 
24 

8 
12 
10 
10  
10  
26 
26 
29 
14  
24 

4 
8 
8 
0 
9 
5 
8 
5 
5 
6 

19  
35 
32 
24 
3 3  
27 

122 
56 
94 

8 
17 

8 
32 

5 
7 
8 
8 
7 
6 

25 
25 

4 
27 
39 
27 

7 
7 

5 
8 
8 
8 

1 2  
1 1  
3 8  

7 
1 

1 0 9  
7 
7 
5 

1 1  
9 

1 7  
8 

1 1  
1 1  
1 7  
1 0  
2 9  
2 0  
1 4  
2 3  
1 0  
2 3  
2 3  
4 3  

8 
6 9  
5 
7 
3 
3 

3 1  
5 
3 

1 2  
8 
8 
7 
6 
5 
7 
4 

1 0  

1045 
137 

1503 
231 7 

91 8 
15694 

352460 
17483 

169 
859428 

43  
383 

3042 
773 
131 

1253 
2048 
3986 
351 3 
9049 
6071 

16599 
54601 
1431 8 
30057 

1899 

16800 

3953 
26848 

586 
251 2 

3 8  
452 
61 2 

1063 
331 

1071 
359 

25646 
45 

27135 
5700 

38071 
345 

1151 

551 
43 

734 
881 

1197 
15198 

468405 
16022 

141 

35 
369 

1525 
858 
146 

3687 
809 

7522 
4855 

10209 
8930 

12567 
4531 7 

9558 
11490 

763 
'44180 

1063 
'5402 
2644 

23099 
41 5 

2229 
57 

590 
1042 

760 
167 
626 
359 

21 01 4 
50  

19064 
5738 

30440 
23 9 
827 

32781 8 

1.90 
3.19 
2.05 
2.63 
0.77 
1.03 
0.75 
1.09 
1.20 
2.62 
1.23 
1.04 
1.99 
0.90 
0.90 
0.34 
2.53 
0.53 
0.72 
0.89 
0.68 
1.32 
1.20 
1.50 
2.62 
2.49 

15.80 

1.50 
1.16 
1.41 
1.13 
0.67 
0.77 
0.59 
1.40 
1.98 
1.71 
1 .oo 
1.22 
0.90 
1.42 
0.99 
1.25 
1.44 
1.39 



2-2 1 sm(2) - sm(5) 1 = 0.84, select k = 2 
2-3 sm(2) < sm(5), let u2 = 0, the second output is set to 

be in true phase. Clear the contents in the fifth 
column. 

3-1 Recalculate the summation of each row 

sdl) sm(2) srn(3) sm(4) sm(5) sm(6) 
* * 2.0 * * 1.16 

3-2 sm(3) > sm(6), let uj = 1, the third output is set to be 
in complementary phase. 

With the selected phase assignment (Ool), the final PLA 
requires seven product terms. 

4 Experimental results 

The proposed algorithm has been implemented on Sun 
4/260 workstation in C language. Espresso-MV (version 
2.3) [4] is used as the minimisation algorithm. The PLAs 
described in Reference 3 are used for output phase optim- 
isation, and the results are shown in Table 1. The fourth 
column shows the results obtained with Playground [6 ] .  
The fifth column is the optimisation results of Sasao’s 
approach [SI implemented in Espresso-MV. The sixth 
column is the results of our algorithm. The last column 
shows some results of exhaustive searching. Among the 
49 PLAs, both Playground and Sasao’s approach fail to 
generate the solution for Mish. However, the proposed 
algorithm can generate a good result within a short time. 
In addition to this PLA, there are 11 PLAs that the pro- 
posed algorithm generates the best result as compared 
with other algorithms. Although there are some PLAs 
that the proposed algorithm does not work as well with, 
it still improves the performance. Compared with the 
results of exhaustive searching, the proposed algorithm 
obtains the same results for 26 PLAs. Considering the 
total number of product terms for the 49 PLAs. Sasao’s 
approach generates 4603 product terms, Playground gen- 
erates 4516 product terms and the proposed algorithm 
generates only 4460 product terms. 

In Table 2, the speed of our algorithm is compared 
with that of Sasao’s approach. Because the execution 
time of Playground [6] is slower as compared with the 
execution time for Sasao’s approach, only the time for 
Sasao’s approach and our approach are listed in the 
Table. The column with the heading ‘Sasao’ represents 
the time used for Sasao’s approach, the column with the 
heading ‘Proposed’ represents the time spent with our 
algorithm, and the column with the heading ‘Speedup’ 
represents the value that Sasao’s time divided by the pro- 
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posed time. From the Table, one can find that the pro- 
posed algorithm is faster than Sasao’s approach for many 
PLAs. The average speedup is about 1.71, that is about 
41 % of time can be saved with our approach. Since those 
PLAs that Sasao’s approach fails to generate phase 
vector are not included in the Table, the average speedup 
is underestimated. From experimental results, the time 
needed for phase assignment procedure is about 13% of 
total time. To sum up, the proposed algorithm is superior 
to other algorithms both in speed and optimisation 
quality. 

5 Conclusions 

A new algorithm for output phase optimisation has been 
proposed and implemented. This algorithm first mini- 
mises the onset cover and offset cover individually. With 
the minimised covers, cubes in both covers are checked if 
they meet some properties. From the results of checking, 
the cost for each possible phase assignment is estimated. 
An output phase with minimum or near minimum esti- 
mated cost is chosen as the desired solution. This algo- 
rithm has been implemented on a Sun 4/260 workstation 
in C language. The experimental results demonstrate the 
excellent performance in speed and optimisation results. 
On the average, this algorithm can save 41% of execution 
time comparing with Sasao’s approach. Besides this, 
some large PLAs which conventional algorithms fail to 
process within reasonable time are optimised with the 
proposed algorithm. With this algorithm not only is 
speed improved, but the total number of product terms 
for 49 PLAs is reduced as compared with other algo- 
rithms. 
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