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Hot-Carrier-Induced Degradation for Partially
Depleted SOI 0.25-0.m CMOSFET
With 2-nm Thin Gate Oxide

Wen-Kuan YehMember, IEEEWen-Han Wang, Yean-Kuen Fang, Mao-Chieh Chen, and Fu-Liang Yang

Abstract—Hot-carrier-induced degradation of partially —maximum gate current (witlvg = Vp) [3], [4]. However,
depleted SOI CMOSFETs was investigated with respect to HCE in SOI devices is more complex than that in bulk de-
body-contact (BC-SOI) and floating-body (FB-SOI) for channel - \;ceq pecause of the parasitic bipolar transistor effect (PBT)
lengths ranging from 0.25 down to 0.1um with 2 nm gate oxide. It ST . .
is found that the valence-band electron tunneling is the main factor and FBE [5]. Reduction in dlmenS|ons of the deep sgbmlcron
of device degradation for the SOI CMOSFET. In the FB-SOI MOSFET could further deteriorate these problems, including
nNMOSFET, both the floating body effect (FBE) and the parasitic the increase in transistor electric fields. High fields provide suf-
bipolar transistor effect (PBT) affect the hot-carrier-induced ficient energy to channel carriers and enhance the impact ion-
degradation of device characteristics. Without apparent FBE 7 4ii0n rate, increasing the PBT current gain and the impact ion-
on pMOSFET, the worst hot-carrier stress condition of the 0.1 ._ . . . .
4um FB-SOI pMOSFET is similar to that of the 0.1 m BC-SOI |zat|on multiplication factor. Moreover, as the gate oxide thlc_k—
pMOSFET. ness is scaled down to a thickness less than 3 nm, the direct

Index Terms—Hot-carrier effect, hot-carrier-induced degrada- tunnelin.g current and the oxide reliability problem beco_me im-
tion, partially depleted SOI. portant issues of concern. There are a number of studies about
the reliability of 0.1m SOI devices [6]-[8], but few studies are
reported regarding the devices with ultra-thin gate-oxide of less
than 3 nm. This work investigates the HCE in @uh partially

ILICON-ON-INSULATOR (SOI) CMOS devices are at-depleted SOl CMOSFET with 2 nm gate-oxide. The hot-car-

ractive since they provide full dielectric isolation and rerier-induced degradation of device characteristics is investigated
duced junction capacitance as compared to bulk-Si devices. Harthe devices with a channel length ranging from 0.25 down to
tially depleted SOI (PD-SOI) devices, in which threshold vol9.1 zm with respect to body-contact SOI (BC-SOI) MOSFET
ages are decoupled from silicon film thicknesses [1], are pref@nd floating-body SOI (FB-SOI) MOSFET.
able for high-performance applications because of their better
feasibility of scaling and manufacture. However, the large drop Il. EXPERIMENTS

in threshold voltage at high drain biases due to the floating-body )
effect (FBE) remains to be a critical issue regarding the use of” D-SO! CMOSFET devices on IMplanted OXygen (SIMOX)

PD-SOI devices. The body-contact (BC) configuration is one 5! substrate were fabricated with 190 nm thick Si active layer
the most effective and practical methods of suppressing the FBd 150 nm thick buried oxide (BOX). A 0/m dual poly-Si.
[2]. Thus, body-tie is necessary for the suppression of FBE, &&t€ technology was employed for the formation of 2 nm nitride
pecially for the 1/O logic circuit. As devices are scaled dowrfate 0xide grown by rapid thermal oxidation in NO ambient,
SOl MOSFETS also suffer from the hot-carrier effect (HCEfOMPOSite oxide/SiN spacers via low-temperature processing,

Thus, a study on hot-carrier injection is needed for the prediDd junctions via arsenic (As) and boron (B) ion implantations.

tion of the long-term reliability of MOSFETs. The relevant op£tér CoSk salicidation, devices were metalized using a typ-

eration regimes for HCE in conventional bulk-Si devices af§a Packend flow. To investigate the HCE, device stressing and
the maximum substrate current (szb ~ VD/Q) and the measurements were made on a probe station at various drain
voltages {p = 1.2-2.4 V) and gate voltagest; = 0-2.4 V)
) ) ) ~with a stressing time ranging from 0 to 100 min.
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1200 P atVp = 2.4 and various gate voltages.
010imnMOS  solid line : fresh -
1000[FBSOLT,=2nm  dotline : stressed Vet v ) ) ) ] ] )
['stressed V=V =2.4V l marily to the interface state generation. In the thin-oxide devices
— 800F Ve (Tox < 3nm), channel holes are also created at highevalues
€ ¢ (b) Vo | due to the valence-band electron tunneling [10]; these generated
3600' == holes promote the probability of recombination with electrons
o400l a2 V06V in the channel region and transfer the excess energy to the other
W e conduction electrons, accelerating hot electron tailing and in-
200f Ve03y terface trap generation rate. Thus, greater inifjad.; degra-
o dation in the BC-SOI nMOSFET occurred at maximum sub-
00 04 08 12 16 strate current,,;, whenVg ~ Vp /2 due to impact ionization,

while higher valence-band electron tunneling occurred appar-

Fig. 1. Drain current versus drain voltage,-V'p) characteristics for (a) 0.1 e_ntly whenVg = Vp, which _enhanced the interface ggnera-
um BC-SOI and (b) 0.J:m FB-SOI nMOSFETS before and after a voltageion rate and finally resulted in the largeks,.; degradation,

stress al’p = Vi = 2.4V for 100 min. as shown in Fig. 2(a). When FBE was present in the FB-SOI
1 16 NMOSFET,I ps.« degradation at first did not occur at maximum
o, ,.08V @ 0407 MOS0~ Ve 03 gate currenfs (Ve = Vp) or at maximumlg,, (Ve ~ Vp/2),
12 O Va2V /o 12 Tom 20y gy but occurred wheiVg ~ Vi, as shown in Fig. 2(b). Electron
V= Vg gress2-4V yd Vo._sress = 2.4V L. N
< | o1umnmos ’ S s and hole injection occurred at low gate voltadé: ~ Vi)
2\_: 8 BCsol T = 8 %a because of the PBT effect [11]. The PBT action generated hot
2%’ n Vo 24V 3 4l D/D/g holes by impact ionization, resulting in interface defect genera-
- O,,/""_,,/jz P ”/g /s/ (b) tion. Bipolar injection can induce greater interface state density
ob o v, J  than pure electron injection. Thus, initiallf; = Vr yielded
10 100 10 100 a higher change iffip..:, however, the largest interface genera-

: : Stress Ti in. .
Stress Time (min.) ss Time (min.) tion rate occurred dt; = Vp due to the valence-band electron

tunneling, resulting in finally the largest degradation/j..: .

Fig.2. Saturated drain currefp..: ) degradation as a function of stress time, . . .
under a drain voltage df,, = 2.4 V and various gate voltages for (a) uin 1 NUS, the stressing condition B, = Vp resulted in the largest

BC-SOI and (b) 0.J:m FB-SOI nMOSFET. degradation il p,; after the 100 min stressing for both Qufin
BC-SOIl and FB-SOI nMOSFETSs.
terminals placed in the channel-width direction on the sourceFig. 3 shows the subthreshold swing and gate-induced drain
or drain side [9]. It is apparent that the saturated drain currdatkage (GIDL) in the 0.Lm SOl nMOSFET before and after
(Ipsat) Was degraded after the 100 min stressing and the hwegrious hot carrier stresses. After the hot carrier stress, the sub-
carrier-induced/ p,,; degradation of BC-SOI was larger tharthreshold swing exhibited degradation and the degradation ap-
that of FB-SOI. Fig. 2 shows the time-dependént.; degra- parently became more serious as the gate stress was increased.
dation forthe 0.1m BC-SOl and FB-SOI nMOSFETSs, stressed he swing degradation indicates the creation of interface traps
by a constant drain voltagd’y = 2.4 V) and various gate resulting in a threshold voltage shift [Fig. 3(a)] [6]. The GIDL
voltages. In the BC-SOI devices, it can be seen that initialig the BC-SOI nMOSFET at a negative gate bia¥gf= —0.6
Ve = Vp/2 yields a higher change ifips.t, then the highest V also increased with the gate voltage stress. It has been re-
gate voltage stres€V; = Vp) resulted in the largest final ported that GIDL is a direct result of the generation of interface
degradation off p,; after the 100 min stressing [Fig. 2(a)]. Itstates [12]; thus, the largest degradatiofin.; coincides with
has been reported that the hot-carrier-induced degradationthe# largest increase in interface state density. For the FB-SOI
0.1 um bulk NMOSFETs undeV; = Vp stress is more se- nNMOSFET, the subthreshold swing was also degraded after the
rious than that occurring undéfz ~ Vp/2 stress [4]. For stress and the degradation also became more pronounced as the
the 0.1um device, hot channel electrons are confined closgate stress was increased, similar to the behavior of the BC-SOI
to the Si surface at highdrg values, which leads to greatermMOSFET, as shown in Fig. 3(b). Moreover, the PBT and im-
Si surface damage. As with bulk devices, the hot-carrier-ipact ionization effects also affected the subthreshold slope sub-
duced degradation in the QuIn BC-SOI nMOSFET is due pri- stantially, leading to the degradation of the device’s hot-carrier
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and after various hot-carrier stresses. The inset in the figure shows the output 2 (b) BC-sol
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E
o
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performance [13]. However, GIDL of the FB-SOI devices de- S 400
creased only slightly with the increasing gate stress. It is be- ] rosh
. . A . ©
lieved that the potential difference between substrate and drain S 00l V=03V
in the FB-SOI nMOSFET is reduced due to the FBE; thus, GIDL 2 T Vo2V
. . . G_stress -
is suppressed as the gate stress is increased. 2 Vg =24V
0 i I I
0.0 0.5 1.0 1.5 2.0
B. Long Channel BC-SOI nMOSFET Versus @m BC-SOI v, (volts)
nMOSFET Fig.5. Transconductan¢é?,,, ) as a function of gate voltadé’c ) for () 0.25

Fig. 4 shows the transfer characteristicp-¥) and ,umandl(b)O.Jum BC-SOI nMOSFET stressed wiiti, = 2.4 V and various
the output characteristics ftVg) for a 0.25 um BC-SOI gate voltages.

NMOSFET before and after various hot carrier stresses. It can 10°
be seen that the voltage stress resulted in a smaller degra- 12 o oiam  BCSOINMOS,V, =24V
dation in the output current (drain currehp) and that the o'l o, S .
subthreshold swing remained nearly unchanged following 5 e
the stresses, as compared with those observed in therd.1 e 101r v— ' v
BC-SOI nMOSFET [Fig. 1(a) and Fig. 3(a)]. In general, when o Jeesomes \
a transistor is stressed by hot carrier injection, the maximum _&10% “/—_
transconductancéGm,,.) degradation is mainly associated = 10% f1‘°’ ‘8’;52
with the trapped charges and the creation of defect states at 10*} wildd ‘fzmu il
the Si/SiQ interface [5]. Fig. 5 shows the hot-carrier-induced 10° A B

00 05 10 15 20 25

degradation on transconductance for the Quaband 0.1um
BC-SOI nMOSFETSs. It is obvious that the devices with a _ _ ,

shorter channel resulted in a larger degradation after the g%%e(ﬁjguf?%dc‘?rsag f]lfvrlrg'SﬂI?ETt; svei%rZ?f?g'rzﬂf:hzgunn;t:gEg(’tfh?tﬁfesigigi
stress. In fact, as the device channel length is scaled dowhe figure shows the substrate curréht,,) as a function of gate voltage for

to 0.1 um, hot-carrier-induced transconductance degrad@C-SO!I nMOSFETSs with different channel lengths.

tion becomes very serious. The scaling down of the device

dimension increases the electric field in the transistors aftreases with stress gate voltage, implying that the gate tun-
thus aggravates the hot carrier effect, because the high figlsling will enhance the device degradation. Similar to the bulk
provides a large amount of energy to the channel carriers aflice, hot-carrier-inducedp.,; degradation of the 0.Lm

thus enhances the impact ionization rate and the creationBg-SOI device al/z = Vp, stress is more serious than that at
interface defect states. The inset in Fig. 6 shows the substrate ~ Vp /2. Fig. 8 shows the dependence of impact ionization
current (Isyp) as a function of gate voltagelc) for the (Isyp/Ip) on channel length for the SOl NMOSFET. For long
BC-SOI nMOSFETs with different channel length. For thehannel device, the maximum impact ionization rate occurs at
device of 0.25um channel length, the worst stress conditioy,, — Vp /2 with maximum ;. In deep submicron device
with maximumZ,,;, happened for maximum impact ionization(..; < 0.15 xm), the maximum impact ionization rate occurs
(Ve = Vp/2); thus, the maximunip,,; degradation of this atV, = V with maximum gate tunneling. Thus for thin oxide
device occurred ate =~ Vp/2, as shown in Fig. 6. However, (<3 nm), the valence-band electron tunneling will enhance the
for the device of 0.1um channel length, the maximuifi,;, device degradation for the BC-SOlI nMOSFET in the worst
is more easily found at; ~ V), because the charge carriergase of HCE. The device lifetim@-) can be predicted by the
not only need sufficiently high energy but they also have f@llowing logarithmic law [5]

bombard the Si/Si@interface to generate the interface states.

Fig. 7 shows that the hot-carrier-induced device’s gate leakage In(7) o exp(B/Va)

Stress V,, (volts)
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at 5%I ps,: degradation, versuy Vy_stress iS Shown in the inset
n F|g- 8 for the O-me and O'J#m BC-SOI nMOSFETs. In Fig. 11. Transconductandé€,,,) as a function of gate voltagé’c) for (a)

this work, lifetime larger than ten years can be obtainddak  0.25:m and (b) 0.1:m BC-SOI pMOSFETSs with different stress conditions.
1.9 V stress for the 0.2xm device, and atp < 1.3 V stress

for the 0.1m device. In general, it is more safe to stress the OThus, the worst stress condition is nearly same for both the 0.1

pm BC-SOI nMOSFET with a drain voltage of 1 V. pm FB-SOI and 0.Jum BC-SOI pMOSFETSs.
C. An 0.1zym BC-SOI pMOSFET Versus O.in FB-SOI D. Long Channel BC-SOI pMOSFET Versus (i BC-SOI
PMOSFET PMOSFET

For the 0.1um FB-SOI pMOSFET, FBE is insignificant be- TransconductancéG,,) as a function of gate voltage for
cause of lower hole mobility and thus negligible impact ionthe 0.25um and 0.1xm BC-SOI pMOSFETSs with different
ization. Thus, there is no obvious difference of hot-carrier-irstress conditions was observed, as shown in Fig. 11. There is
ducedlps,: degradation between the BC-SOI and the FB-S®ilo apparent device degradation until significant gate oxide tun-
PMOSFETS, as shown in the insets of Fig. 9. Fig. 9 also showsling occurred in the devices. Fig. 12 shows the hot-carrier-in-
that there is no apparent hot-carrier-induced subthreshold swihgced gate leakage as a function of gate voltage before and
degradation for both 0.4m SOI devices. The time dependenafter V, = Vi stressing for the 0.Lm BC-SOI pMOSFET.
degradation in/pg,; for both SOl pMOSFETs was also in-It is apparent that the gate leakage increased with gate voltage
vestigated. The worst stress condition on the 01 BC-SOI and decreased with drain voltage. Thus, larger gate leakage oc-
PMOSFET occurred foVg = Vp, as shown in Fig. 10(a), curred after hot carrier (hole) stressing, which enhances the de-
which is presumably due to higher valence-band hole tunnelingce degradation. Fig. 13 shows thg,,; degradation as a func-
resulting in an enhanced interface generation rate and thus mi#on of stressing gate voltagé; for the SOl pMOSFET with
imum Ipg,; degradation. Without obvious FBE, the maximundifferent channel length. For the channel length of 0.2540n1
hot-carrier-induced ps,;, degradation of the 0.Lm FB-SOI devices, maximunip,,; degradation always occur at maximum
PMOSFET also occurred ovi; = Vp, as shown in Fig. 10(b). I whenVs = Vp because of the creation of maximum amount
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IV. CONCLUSION

This work investigates the hot-carrier-induced degradation
on current driving capacity and subthreshold characteristics of
CMOSFETSs with respect to the BC-SOI and FB-SOI devices
with 2 nm thin gate-oxide. For the BC-SOI nMOSFET, the in-
terface defect states created by valence-band electron tunneling
is the major origin of the hot-carrier-inducég,.; degradation

onVg = Vp. Inthe 0.1um FB-SOI nMOSFET, hole genera- Wen-Kuan Yeh (M'00) received the M.S. degree
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