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GLOBAL OPTIMIZATION FOR SIGNOMIAL
DISCRETE PROGRAMMING PROBLEMS

IN ENGINEERING DESIGN

JUNG-FA TSAI, HAN-LIN LI* and NIAN-ZE HU

Institute of Information Management, National Chiao Tung University, Taiwan, Republic of China

(Received 26 November 2001; In final form 8 May 2002)

This paper proposes a novel method to solve signomial discrete programming (SDP) problems frequently occurring
in engineering design. Various signomial terms are first convexified following different strategies. The original SDP
program is then converted into a convex integer program solvable by commercialized packages to obtain globally
optimal solutions. Compared with current SDP methods, the proposed method is guaranteed to converge to a
global optimum, is computationally more efficient, and is capable of treating zero boundary problems. Numerical
examples are presented to demonstrate the usefulness of the proposed method in engineering design.

Keywords: Signomial discrete programming problem; Global optimization; Convexification

1 INTRODUCTION

Signomial discrete programming (SDP) problems occur quite frequently in various fields such as

civil and material engineering design, chemical engineering, location-allocation, inventory control,

production planning, and scheduling etc. These applications are extensively reviewed in Floudas

and Pardalos [9] and Floudas [6]. The developed methods for SDP can be divided into three

approaches. The first SDP approach includes various heuristic techniques. For instance,

Salcedo et al. [18] propose an improved random search algorithm for solving nonlinear optimiza-

tion problems. Cardoso et al. [2] solve nonconvex nonlinear integer programming problems with

simulated annealing. Wang and Liao [21] develop methods for solving polynomial integer pro-

grams by the genetic algorithm. Their methods, however, can only guarantee to find local optima.

Moreover, the probability of finding the global solution decreases when the problem size increases.

The second SDP approach for global optimization is the use of stochastic methods such as

the Multi-Level Single Linkage method proposed by Rinnooy and Timmer [17] and the

Multistart method proposed by Li and Chou [12]. These techniques have a high probability

of finding a global optimum for a SDP problem. However, since this approach requires the eva-

luation of a large number of starting points, it can only be applied to solve small size problems.

The third approach is the deterministic method. Duran and Grossmann [4] treat a class of SDP

problems by outer approximation techniques. Michelon and Maculan [15] solve SDP problems by
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Lagrangean decomposition techniques. Li and Chang [11] solve SDP problems, where all

signomial terms have integer power values, by piecewise linearization techniques. Pörn et al. [16]

introduce different convexification strategies for SDP problems with both posynomial and nega-

tive binomial terms in the constraints. The above methods, however, can only handle some

specially-structured SDP problems. Recently, Floudas and Pardalos [9], Maranas and Floudas

[14], and Floudas ½7; 8� have proposed more general methods to treat SDP problems. Their meth-

ods have been applied widely to solve engineering design problems. The core concept of

Floudas’s approach is to convert a SDP problem into a new problem in which both the constraints

and the objective are decomposed into the difference of two convex functions. By utilizing expo-

nential variable transformation, Floudas’s method transform each signomial term z ¼ xa1x
b
2, where

x1 and x2 are positive integers, into an exponential term z0 ¼ ea ln x1þb ln x2 . Since (i) the exponen-

tiation of a linear expression is convex, and (ii) ln x1 and ln x2 can be conveniently expressed using

0–1 variables, the signomial term can then be fully expressed as the combination of convex integer

terms. Floudas’s method therefore can find the global optimum of a SDP problem successfully.

However, since Floudas’s method performs exponential transformation for all product terms, it

requires the use of a large number of 0–1 variables to piecewisely linearize the logarithmic

terms. In addition, the exponential transformation technique can only be applied to positive vari-

ables and is unable to treat zero boundary problems where variables might have zero value.

This paper proposes another method to treat SDP problems and develops several strategies

for convexifying a signomial term. The advantages of the proposed methods over the current

SDP methods mentioned above are given below:

(i) Compared with the heuristic approaches and the stochastic methods of Duran and

Grossmann [4], and Michelon and Maculan [15], the proposed method is guaranteed to

find a global optimum of a SDP problem.

(ii) Compared with Floudas’s method, for many cases, the proposed method uses fewer extra

0–1 variables to linearize a signomial term. In addition, the proposed method can treat non-

negative integer variables while Floudas’s method can only treat positive integer variables.

This study first discusses some theoretical propositions about SDP programs. The rules of

convexification are then proposed. Following that, some numerical examples of engineering

design are solved to demonstrate the usefulness of the proposed method.

2 THEORETICAL DEVELOPMENT

A Signomial Discrete Programming (SDP) problem discussed here is formulated below:

P1

Minimize ZðX Þ ¼
X
P

cpzp

Subject to
X
q

hkqzkq � lk ; k ¼ 1; 2; . . . ;K

Ym
j¼1

fjðxÞ ¼ 0; j ¼ 1; 2; . . . ;m

zp ¼ xap1

p1
xap2

p2
� � � xapmðpÞpmðpÞ

zkq ¼ x
bkq1

kq1 x
bkq2

kq2 � � � x
bkqmðkqÞ
kqmðkqÞ

X ¼ ðx1; x2; . . . ; xnÞ; 0 � xi � xi � �xxi; xi 2 X

are non-negative discrete variables.
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In problem P1, cp, api, bkqi, hkq, lk are constants and unrestricted in sign, xi and �xxi are

respectively the lower and upper bounds of discrete variables xi.

P1 is a nonconvex integer problem which can only be solved to obtain the local optimum.

In order to obtain its global optimum, P1 must be converted into a convex integer problem.

The conventional convex integer techniques proposed by Borchers and Mitchell [1] and

Floudas [5] have traditionally been used to solve convex integer programs to obtain global

optima. This paper proposes various techniques for convexifying signomial terms zp, �zp,

zkq, and �zkq. The convexified SDP program can be expressed as a linear integer program-

ming problem solvable by many commercialized optimization packages to obtain a globally

optimal solution. Some propositions related to convexification techniques are described as

follows.

PROPOSITION 1 For positive discrete variables xi 2 fdi1; di2; . . . ; dinig where di; jþ1 > dij > 0

for j ¼ 1; 2; . . . ; ni � 1; a product term xr1

1 x
r2

2 � � � xrnn with r1; r2; . . . ; rn real constants can be

transformed to a function er1y1þ���þrnyn where yi ¼ ln di1 þ
Pni�1

j¼1 uijðln di; jþ1 � ln di1Þ;Pni�1
j¼1 uij � 1 for uij 2 f0; 1g.

Proof Let xi ¼ eyi and yi ¼ ln xi, expressing xi as

xi ¼ di1 þ
Xni�1

j¼1

uijðdi; jþ1 � di1Þ;
Xni�1

j¼1

uij � 1; where uij 2 f0; 1g:

We then have xr1

1 x
r2

2 � � � xrnn ¼ er1y1þ���þrnyn and yi ¼ ln di1 þ
Pni�1

j¼1 uijðln di; jþ1 � ln di1Þ,Pni�1
j¼1 uij � 1, for uij 2 f0; 1g.

Suppose a variable xi in Proposition 1 may have zero value, then Proposition 1 needs to be

modified as in the following proposition:

PROPOSITION 2 For non-negative discrete variables xi 2 f0; di1; di2; . . . ; dinig where

di; jþ1 > dij > 0 for j ¼ 1; 2; . . . ; ni � 1; then a product term z ¼ xr1

1 x
r2

2 � � � xrnn can be

expressed as

(i) 0 � z � �zzð
Pni

j¼1 uijÞ,

(ii) �zzð
Pn

i¼1

Pni
j¼1 uij � nÞ þ er1y1þ���þrnyn � z � �zzðn�

Pn
i¼1

Pni
j¼1 uijÞ þ Lðer1y1þ���þrnynÞ,

where xi ¼
Pni

j¼1 uijdij, yi ¼
Pni

j¼1 uijðln dijÞ,
Pni

j¼1 uij � 1, uij 2 f0; 1g, Lðer1y1þ���þrnynÞ is a

piecewisely linearized expression of er1y1þ���þrnyn , and �zz is the upper bound of z.

Proof If there is xi ¼ 0 for some i, then
Pni

j¼1 uij ¼ 0 and z ¼ 0. If xi > 0 for all

i ¼ 1; 2; . . . ; n, then
Pn

i¼1

Pni
j¼1 uij ¼ n and er1y1þ���þrnyn � z � Lðer1y1þ���þrnynÞ. Therefore, the

proposition is then proven.

Remark 1 For a discrete variable x, x 2 fd1; d2; . . . ; dng, d1; d2; . . . ; dn are positive values,

the exponential term xa where a is a real constant can be represented as

xa ¼ da1 þ
Xn�1

j¼1

ujðd
a
jþ1 � da1Þ where

Xn�1

j¼1

uj � 1; uj 2 f0; 1g:
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PROPOSITION 3 A product term z ¼ uf ðxÞ is equivalent to the following linear inequalities

(i) M ðu� 1Þ þ f ðxÞ � z � Mð1 � uÞ þ f ðxÞ,

(ii) �Mu � z � Mu,

u 2 f0; 1g, z is an unrestricted in sign variable, and M ¼ max f ðxÞ is a large constant.

Proof If u ¼ 1 then z ¼ f ðxÞ, and if u ¼ 0 then z ¼ 0.

Remark 2 The product term u1u2 � � � um where ui 2 f0; 1g for i ¼ 1; 2; . . . ;m can be

replaced by a variable u expressed as

(i) 0 � u � ui, for i ¼ 1; 2; . . . ;m,

(ii) u �
Pm

i¼1 ui � mþ 1.

Proof If ui ¼ 0 for any i, then u ¼ 0. If ui ¼ 1 for all i, then u ¼ 1.

PROPOSITION 4 A twice-differentiable function f ðx1; x2; x3Þ ¼ �xa1x
b
2x

g
3 is convex for

aþ bþ g � 1 where x1; x2; x3; a; b; g � 0.

Proof Denote Hðx1; x2; x3Þ as the Hessian matrix of f ðx1; x2; x3Þ.

Hðx1; x2; x3Þ ¼

q2f ðx1; x2; x3Þ

qx1qx1

q2f ðx1; x2; x3Þ

qx1qx2

q2f ðx1; x2; x3Þ

qx1qx3

q2f ðx1; x2; x3Þ

qx2qx1

q2f ðx1; x2; x3Þ

qx2qx2

q2f ðx1; x2; x3Þ

qx2qx3

q2f ðx1; x2; x3Þ

qx3qx1

q2f ðx1; x2; x3Þ

qx3qx2

q2f ðx1; x2; x3Þ

qx3qx3

2
66666664

3
77777775

¼

�aða� 1Þxa�2
1 x

b
2x

g
3 �abxa�1

1 x
b�1
2 x

g
3 �agxa�1

1 x
b
2x

g�1
3

�abxa�1
1 x

b�1
2 x

g
3 �bðb� 1Þxa1x

b�2
2 x

g
3 �bgxa1x

b�1
2 x

g�1
3

�agxa�1
1 x

b
2x

g�1
3 �gbxa1x

b�1
2 x

g�1
3 �gðg� 1Þxa1x

b
2x

g�2
3

2
64

3
75

The ith principal minor, denoted by Hi, of a n� n matrix is the i� i matrix obtained by

deleting the last n� i rows and columns of the matrix. It is clear that if detH1 � 0,

detH2 � 0, and detH3 � 0, then f ðx1; x2; x3Þ is convex.

Check:

(i) detH1 � 0 (

:_:

x1; x2; x3; a; b; g � 0 and �aða� 1Þxa�2
1 x

b
2x

g
3 � 0).

(ii) detH2 � 0 (

:_:

detH2 ¼ abx2a�2
1 x

2b�2
2 x

2g
3 ð�a� bþ 1Þ � 0).

(iii) detH3 � 0 (

:_:

detH3 ¼ abgx3a�2
1 x

3b�2
2 x

3g�2
3 ð�a� b� gþ 1Þ � 0).

Following (i), (ii), and (iii), the proposition is proven.

PROPOSITION 5 An equality constraint
Qm

j¼1 fjðxÞ ¼ 0 can be replaced by following

expressions.

(i) �M ð1 � ujÞ < fjðxÞ < M ð1 � ujÞ,

(ii)
Pm

j¼1 uj � 1,

where M is a large constant, M ¼ max f0; fjðxÞg, and uj 2 f0; 1g for j 2 f1; 2; . . . ;mg.
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Proof Expression (i) means if and only if uj ¼ 1 then fjðxÞ ¼ 0. Expression (ii) means there

is at least one j 2 f1; 2; . . . ;mg such that uj ¼ 1. Both expressions ensure
Qm

j¼1 fjðxÞ ¼ 0.

3 CONVEXIFICATION STRATEGIES

Following the above discussion, a signomial term with three variables is here used as

an example to describe the strategy of convexification. The strategy can be extended to

convexify a signomial term containing n variables.

Consider a signomial term cxa1x
b
2x

g
3 composed of three positive discrete variables x1; x2; x3,

where xi ¼ di1 þ
Pni�1

j¼1 uijðdi; jþ1 � di1Þ,
Pni�1

j¼1 uij � 1. This term can be convexified by

following rules:

Rule 1 If c > 0, then let cxa1x
b
2x

g
3 ¼ cea ln x1þb ln x2þg ln x3 where ln xi ¼ ln di1 þPni�1

j¼1 uijðln di; jþ1 � ln di1Þ,
Pni�1

j¼1 uij � 1, for uij 2 f0; 1g.

Rule 2 If c < 0, a; b; g � 0, and aþ bþ g � 1, then cxa1x
b
2x

g
3 is already a convex term

following Proposition 4. No convexification is required.

Rule 3 If c < 0, 0 � a; b < 1, g � 0, aþ b < 1, and aþ bþ g > 1, then let cxa1x
b
2x

g
3 ¼

cxa1x
b
2y

1�a�b
3 and y3 ¼ x

g=ð1�a�bÞ
3 where cxa1x

b
2y

1�a�b
3 is regarded as a convex term, and

y3 is a discrete variable, y3 ¼ h31 þ
Pn3�1

j¼1 u3jðh3;jþ1 � h31Þ, h3j ¼ ðd3jÞ
g=ðaþbþgÞ for

j 2 f1; 2; . . . ; ni � 1g.

Rule 4 If c < 0, a; b; g > 0, and aþ bþ g > 1, then let cxa1x
b
2x

g
3 ¼ cy

a=ðaþbþgÞ
1 y

b=ðaþbþgÞ
2 �

y
g=ðaþbþgÞ
3 where y1 ¼ x

aþbþg
1 , y2 ¼ x

aþbþg
2 , y3 ¼ x

aþbþg
3 . cy

a=ðaþbþgÞ
1 y

b=ðaþbþgÞ
2 y

g=ðaþbþgÞ
3 is a

convex term, and yi ¼ hi1 þ
Pni�1

j¼1 uijðhi; jþ1 � hi1Þ, hij ¼ ðdijÞ
g=ðaþbþgÞ for i ¼ 1; 2; 3, and

j 2 f1; 2; . . . ; ni � 1g.

Rule 5 If a; b > 0, x3 ¼ 1, and aþ b > 1, then let cxa1x
b
2 ¼ c½da11 þ

Pn1�1
j¼1 u1jðd

a
1; jþ1 �

da11Þ�x
b
2 for j 2 f1; 2; . . . ; n1 � 1g. By Proposition 3, the product term u1jx

b
2 can be trans-

formed into linear inequalities.

4 NUMERICAL EXAMPLES

According to the convexification strategies described above, several examples are presented

in the following to demonstrate its usefulness in engineering design.

Example 1 Consider the following nonconvex minimization problem containing three

integer variables.

Minimize x2
1x

3:5
2 x3 � x2x

2:6
3 � x3

1

Subject to x1 þ x2 þ x3 � 10

1 � x1 � 5; 1 � x2 � 5; 1 � x3 � 5; x1; x2; x3 are inter variables:

This program is a nonconvex integer program. Solving it by LINGO 7.0 [13], the obtained

solution is ðx1; x2; x3Þ ¼ ð1; 2; 5Þ and the objective value is �75:7579. This is, however, a
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local optimum. In order to obtain a global optimum, all signomial terms are transformed into

convex terms as follows:

(i) x2
1x

3:5
2 x3 is convexified as e2y1þ3:5y2þy3 by Rule 1.

(ii) �x2x
2:6
3 is convexified as

�x2x
2:6
3 ¼ �ð1 þ u21 þ 2u22 þ 3u23 þ 4u24Þx

2:6
3

¼ �h1 � z1 � 2z2 � 3z3 � 4z4 by Rule 5:

(iii) �x3
1 is treated directly as

�x3
1 ¼ �1 � ð23 � 1Þu11 � ð33 � 1Þu12 � ð43 � 1Þu13 � ð53 � 1Þu14

¼ �1 � 7u11 � 26u12 � 63u13 � 124u14:

The transformed program is then presented as a convex integer program below:

Minimize e2y1þ3:5y2þy3 � h1 � z1 � 2z2 � 3z3 � 4z4 � h2

Subject to x1 þ x2 þ x3 � 10

x1 ¼ 1 þ u11 þ 2u12 þ 3u13 þ 4u14

y1 ¼ u11 � ln 2 þ u12 � ln 3 þ u13 � ln 4 þ u14 � ln 5

u11 þ u12 þ u13 þ u14 � 1

x2 ¼ 1 þ u21 þ 2u22 þ 3u23 þ 4u24

y2 ¼ u21 � ln 2 þ u22 � ln 3 þ u23 � ln 4 þ u24 � ln 5

u21 þ u22 þ u23 þ u24 � 1

x3 ¼ 1 þ u31 þ 2u32 þ 3u33 þ 4u34

y3 ¼ u31 � ln 2 þ u32 � ln 3 þ u33 � ln 4 þ u34 � ln 5

u31 þ u32 þ u33 þ u34 � 1

h1 ¼ 1 þ ð22:6 � 1Þu31 þ ð32:6 � 1Þu32 þ ð42:6 � 1Þu33 þ ð52:6 � 1Þu34

h2 ¼ 1 þ ð23 � 1Þu11 þ ð33 � 1Þu12 þ ð43 � 1Þu13 þ ð53 � 1Þu14

M ðu21 � 1Þ þ h1 � z1 � M ð1 � u21Þ þ h1 0 � z1 � Mu21

M ðu22 � 1Þ þ h1 � z2 � M ð1 � u22Þ þ h1 0 � z2 � Mu22

M ðu23 � 1Þ þ h1 � z3 � M ð1 � u23Þ þ h1 0 � z3 � Mu23

M ðu24 � 1Þ þ h1 � z4 � M ð1 � u24Þ þ h1 0 � z4 � Mu24

ð1; 1; 1; 0; 0; 0Þ � ðx1; x2; x3; y1; y2; y3Þ � ð5; 5; 5; ln 5; ln 5; ln 5Þ

where uij 2 f0; 1g;M is a large constant:

Solving the above convex integer program by LINGO 7.0 [13], the obtained global optimal

solution is ðx1; x2; x3Þ ¼ ð5; 1; 1Þ and the objective value is �101.

If we let 0 � x1 � 5, 0 � x2 � 5, 0 � x3 � 5, Example 1 becomes a nonconvex integer

problem with non-negative variables. Floudas’s method, however, cannot be used to solve

this kind of problem. By Proposition 2, we can treat zero boundary problems effectively.

Solving a modified Example 1 with non-negative variables by LINGO 7.0 [13] yields the

global solution ðx1; x2; x3Þ ¼ ð5; 4; 0Þ and the objective value is �125.
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Example 2 Consider the optimal design problem of a pressure vessel given in Sandgren

[19] depicted in Figure 1 where x1 (the spherical head thickness) and x2 (the shell thickness)

are discrete variables and x3 (the radius of the shell) and x4 (the length of the shell) are

continuous variables. This problem was solved by Sandgren [19] and Fu et al. [10] to obtain

a locally optimal solution. Li and Chou [12] and Li and Chang [11] solved this problem to

obtain an approximate solution. In order to illustrate the applicability of the present method

in solving signomial discrete programs, all variables x1, x2, x3, and x4 are treated as discrete

variables. The problem is formulated below:

Minimize 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x2

1x4 þ 19:84x2
1x3

Subject to �x1 þ 0:0193x3 � 0

�x2 þ 0:00954x3 � 0

�px2
3x4 �

4

3
px3

3 þ 750 � 1728 � 0

�240 þ x4 � 0

1 � x1 � 1:375

0:625 � x2 � 1

48 � x3 � 52

90 � x4 � 112

where x1 and x2 are discrete variables with discreteness 0.0625, and x3 and x4 are integer

variables.

x1 is the spherical head thickness, x2 is the shell thickness, x3 is the radius and x4 is the

length of the shell. The product term x1x3x4 can be treated by Rule 1; product terms x2x
2
3,

x2
1x4, and x2

1x3 can be treated by Rule 5. x1; x2; x3 and x4 can be completely expressed by

binary variables as follows:

x1 ¼ 1 þ 0:0625u11 þ 0:125u12 þ 0:25u13

x2 ¼ 0:625 þ 0:0625u21 þ 0:125u22 þ 0:25u23

x3 ¼ 48 þ u31 þ 2u32 þ 4u33

x4 ¼ 90 þ u41 þ 2u42 þ 4u43 þ 8u44 þ 16u45; uij 2 f0; 1g

This program can then be completely transformed to a convex 0–1 program solvable to

obtain a globally optimal solution. A detail description about how to solve a convex 0–1

FIGURE 1 Tube and pressure vessel (Sandgren [19]).
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program can be found in Borchers and Mitchell [1] and Floudas [5]. By utilizing a branch-

bound algorithm or an outer approximation algorithm, a convex 0–1 program can be solved

conveniently to reach a global optimum. A commercialized optimization package (i.e.

LINGO [13]) is also available for solving convex integer programs. Solving this program

by LINGO 7.0 [13], the obtained global solution is ðx1; x2; x3; x4Þ ¼ ð1; 0:625; 51; 91Þ and

the objective is 7079.037. The comparison of the solutions for this example is given in

Table I. Table I illustrates that even with the extra restriction of the discreteness requirements

on the variables x3 and x4, the present method obtains a better solution than other methods do.

Example 3 This example shows the detailed process of solving a global nonlinear mixed

discrete programming (GDP) problem with Proposition 5. The problem is modified from Cha

and Mayne [3].

Minimize 2x2
1 þ x3

2 � 16x1x2 � 10x2

Subject to ðx2
1 � 6x1 þ 4x2 � 11Þ½ð3:25x1 � 3:1x2Þ

2
þ ðx1 þ x2 � 6:35Þ2�

½ð3:55x1 � 3:3x2Þ
2
þ ðx1 þ x2 � 6:85Þ2�½ð3:6x1 � 3:5x2Þ

2
þ

ðx1 þ x2 � 7:1Þ2�½ð3:8x1 � 4:1x2Þ
2
þ ðx1 þ x2 � 7:9Þ2�2 ¼ 0

�x1x2 þ 3x2 þ e x1�3 � 1 � 0

3 � x1 � 6

3 � x2 � 5

where x1 is an integer variable and x2 is a discrete variable with discreteness 0.2.

x1 and x2 are expressed as:

x1 ¼ 3 þ u11 þ 2u12; u11; u12 2 f0; 1g

x2 ¼ 3 þ 0:2u21 þ 0:4u22 þ 0:8u23 þ 1:6u24; u21; u22; u23; u24 2 f0; 1g

Here the product term �x1x2 can be treated by Rule 5, and the first constraint can be trea-

ted by Proposition 5. This program can then be converted into a linear integer program. By

Proposition 5, the first constraint in the program can be reformulated with following inequa-

lity constraints.

�M ð1 � u1Þ � x2
1 � 6x1 þ 4x2 � 11 � Mð1 � u1Þ

�M ð1 � u2Þ � ð3:25x1 � 3:1x2Þ
2
þ ðx1 þ x2 � 6:35Þ2 � Mð1 � u2Þ

�M ð1 � u3Þ � ð3:55x1 � 3:3x2Þ
2
þ ðx1 þ x2 � 6:85Þ2 � Mð1 � u3Þ

�M ð1 � u4Þ � ð3:6x1 � 3:5x2Þ
2
þ ðx1 þ x2 � 7:1Þ2 � M ð1 � u4Þ

�M ð1 � u5Þ � ½ð3:8x1 � 4:1x2Þ
2
þ ðx1 þ x2 � 7:9Þ2�2 � M ð1 � u5Þ

u1 þ u2 þ u3 þ u4 þ u5 � 1; where M is a large constant, uj 2 f0; 1g; j ¼ 1; 2; . . . ; 5.

TABLE I A Comparison of Optimum Solutions for Example 2.

Items Sandgren Fu et al.
Li and
Chou

Li and
Chang

The proposed
method

x1 1.125 1.125 1 1 1
x2 0.625 0.625 0.625 0.625 0.625
x3 48.95 48.38 51.25 51.25 51
x4 106.72 111.745 90.991 90.991 91
Objective 7982.5 8048.6 7127.3 7127.3 7079.037
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Solving the transformed program with LINGO 7.0 [13], the global optimal solution is

found as ðx1; x2Þ ¼ ð5; 4Þ and the objective value is �246.

Example 4 This example is an optimal design problem introduced in Shin et al. [20]. This

is a three-bar truss design problem as depicted in Figure 2. The indeterminate three bar truss

is subject to vertical and horizontal forces. The weight is to be minimized under the constraint

that the stress in all members should be smaller than the allowable stress. The problem can be

stated as follows.

Minimize 2x1 þ x2 þ
ffiffiffi
2

p
x3

Subject to �1 þ

ffiffiffi
3

p
x2 þ 1:932x3

1:5x1x2 þ
ffiffiffi
2

p
x2x3 þ 1:319x1x3

� 0

�1 þ
0:634x1 þ 2:828x3

1:5x1x2 þ
ffiffiffi
2

p
x2x3 þ 1:319x1x3

� 0

�1 þ
0:5x1 � 2x2

1:5x1x2 þ
ffiffiffi
2

p
x2x3 þ 1:319x1x3

� 0

�1 �
0:5x1 � 2x2

1:5x1x2 þ
ffiffiffi
2

p
x2x3 þ 1:319x1x3

� 0

where xi are discrete variables, xi 2 f0:1; 0:2; 0:3; 0:5; 0:8; 1:0; 1:2g; i ¼ 1; 2; 3.

This problem is nonconvex because of the constraints. The nonconvex terms �x1x2,

�x1x3, and �x2x3 can be treated by Rule 4. The problem is then transformed into an equiva-

lent convex integer program as follows.

Minimize 2x1 þ x2 þ
ffiffiffi
2

p
x3

Subject to
ffiffiffi
3

p
x2 þ 1:932x3 � 1:5X 0:5

1 X 0:5
2 �

ffiffiffi
2

p
X 0:5

2 X 0:5
3 � 1:319X 0:5

1 X 0:5
3 � 0

0:634x1 þ 2:828x3 � 1:5X 0:5
1 X 0:5

2 �
ffiffiffi
2

p
X 0:5

2 X 0:5
3 � 1:319X 0:5

1 X 0:5
3 � 0

0:5x1 � 2x2 � 1:5X 0:5
1 X 0:5

2 �
ffiffiffi
2

p
X 0:5

2 X 0:5
3 � 1:319X 0:5

1 X 0:5
3 � 0

�0:5x1 þ 2x2 � 1:5X 0:5
1 X 0:5

2 �
ffiffiffi
2

p
X 0:5

2 X 0:5
3 � 1:319X 0:5

1 X 0:5
3 � 0

x1 ¼ 0:1 þ 0:1u11 þ 0:2u12 þ 0:4u13 þ 0:7u14 þ 0:9u15 þ 1:1u16

x2 ¼ 0:1 þ 0:1u21 þ 0:2u22 þ 0:4u23 þ 0:7u24 þ 0:9u25 þ 1:1u26

x3 ¼ 0:1 þ 0:1u31 þ 0:2u32 þ 0:4u33 þ 0:7u34 þ 0:9u35 þ 1:1u36

X1 ¼ 0:01 þ 0:03u11 þ 0:08u12 þ 0:24u13 þ 0:63u14 þ 0:99u15 þ 1:43u16

X2 ¼ 0:01 þ 0:03u21 þ 0:08u22 þ 0:24u23 þ 0:63u24 þ 0:99u25 þ 1:43u26

X3 ¼ 0:01 þ 0:03u31 þ 0:08u32 þ 0:24u33 þ 0:63u34 þ 0:99u35 þ 1:43u36

u11 þ u12 þ u13 þ u14 þ u15 þ u16 � 1

u21 þ u22 þ u23 þ u24 þ u25 þ u26 � 1

u31 þ u32 þ u33 þ u34 þ u35 þ u36 � 1

FIGURE 2 Three bar truss for Example 4 (Shin et al. [20]).
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where uij 2 f0; 1g, xi are discrete variables, xi 2 f0:1; 0:2; 0:3; 0:5; 0:8; 1:0; 1:2g; i ¼ 1; 2; 3,

and j ¼ 1; 2; . . . ; 6.

Solving this convex integer program by LINGO 7.0 [13] gives the global optimal solution

ðx1; x2; x3Þ ¼ ð1:2; 0:5; 0:1Þ and the objective value 3.0414. Shin et al. [20] and Li and

Chou [12] solved this problem and got the same solution. Their methods, however, cannot

claim the solution found is a global optimum.

5 CONCLUSIONS

This study proposes global optimization techniques to obtain the global optimal solutions of

several types of SDP problems. Different convexification techniques for SDP problems were

presented. The transformation methods are general and practical for many kinds of noncon-

vex global optimization problems. The numerical examples chosen from the literature

demonstrate that the proposed methods can obtain the global solutions effectively.
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