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Abstract: Tracking performance of the I-Q 
carrier recovery loop for BPSK signal in band- 
limited channel with multipath interference is 
analysed. The multipath fading channel is charac- 
terised by the Rummler’s model (a simplified 
three-ray model) for line-of-sight digital radio 
system. A closed-form expression for the phase- 
error variance related to the multipath inter- 
ference, intersymbol interference and channel 
noise. is derived. Excess phase offset induced from 
the multipath interference is also examined. The 
closed-form expression of the jitter variance can 
be evaluated numerically to assess the degradation 
of synchroniser performance. Asymptotic limits of 
the performance are also discussed. 

1 Introduction 

Carrier recovery is crucial for coherent detection in 
digital communication systems. It recovers the carrier 
phase from noise-corrupted and severely interfered 
signals. The main impairments which degrade the per- 
formance of a carrier synchroniser are self noise, cyclic 
slipping, channel noise, intersymbol interference (ISI) and 
sometimes multipath interference. Among these impair- 
ments, the IS1 effects on the carrier recovery loop have 
been well discussed in the literature [l-61. Hinedi and 
Lindsey [6] have derived a closed-form expression for the 
phase error variance due to ISI. Most HF radio channels 
in which fading is encountered are basically line-of-sight 
(LOS) communication links with multipath components 
arising from secondary reflections, or signal paths from 
surrounding terrain. In such channels the number of 
multipath components is small, so the channel can be 
modelled by a two- or three-ray model [7]. The statistics 
of the model parameters for two or three rays can be 
determined empirically through the field measurement 
data. The properties of the three-ray propagation models 
are studied in References 14 and 15. Channel models 
based on three rays have been proposed in References 11 
and 16-19. 

In this paper, by using the simplified three-ray multi- 
path model (Rummler’s model [l l]), the statistical char- 
acteristics of the phase error for the I/Q carrier-recovery 
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loop in the multipath channel are obtained in several 
closed-form expressions. Asymptotic bounds of the per- 
formance and numerical examples in terms of the channel 
characteristics are also examined. 

2 Formulation 

A BPSK signal can be written in the following general 
form 

s(t) = J(ZP)m(t) sin (w,, t + e) (1) 
where 

m 

m(t) = akp(t - kT) 
k = - m  

represents the data modulation on the signal after bandli- 
miting filtering. In eqn. 1, the carrier phase is denoted by 
8, ak is chosen from symbol set { + 1, - 1 )  with equal 
probability and p(t)  = g(t) h(t), where * represents the 
convolution operation. Here, g(t) stands for the signalling 
pulse and h(t) is the impulse response of the bandlimited 
channel. The signal encounters IS1 effects due to the 
bandlimitation. 

In radio communications, the transmitted signal may 
be reflected by obstacles and the received signal is dif- 
fused with the reflected interferences from multiple paths. 
Owing to the frequency selective fading it will induce 
another source of IS1 on the received signal, in addition 
to that by bandlimitation. Dispersion due to multipath 
propagation degrades digital transmission via the gener- 
ation of ISI. In this paper, these two different sources of 
IS1 effects are considered simultaneously on the per- 
formance of the carrier tracking loop for BPSK signal. 

A simplified three-ray model based on channel meas- 
urement performed on microwave LOS radio channels 
has been proposed by Rummler [ll-131. The low-pass 
equivalent transfer function of the three-ray model with 
fixed delay parameters can be written 

C( j0 )  = a{1 - Be-~(”-op)r} E 4 1  - BD(j41 (3) 
where the frequencies w and oF are measured from the 
central frequency wo . In eqn. 3, parameter CI is the overall 
attenuation factor, /3 is a shape parameter due to the 
multipath component, wF is the angular frequency of the 
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fade minimum (or referred to as notch frequency), and z 
is the relative time delay between the direct and the 
multipath components. The transfer function can be 
interpreted as the response of a channel that provides a 
direct transmission path with amplitude factor a and a 
secondary path with relative strength B, at a fixed delay T 
and a phase offset wPr  + A at the central frequency 
(phase A results in a minus sign in eqn. 3). Note that eqn. 
3 has the appearance of a two-path response. This 
response can be viewed as arising from three different 
paths. Among these three components, the direct path 
signal is unfaded, and the second path is similar in 
strength and close enough in delay to the first one such 
that their composite response is constant (here denoted 
by a). The third path at relative delay z and relative 
strength j? provides the frequency shaping of C(jo). The 
block diagram of the simplified three-ray model is shown 
in Fig. 1, where WO) can be viewed as an allpass trans- 
fer function with linear phase &,(w) = -(U - o& and 

D(jw)=exp-j(w-wF,F)r 

SimpI$ed three-ray model for multipath channel Fig. 1 

flat magnitude response I D ( j o )  I = 1 .  Assume that the 
envelope m(t) of the signal varies slowly, the output signal 
of the lower arm can be approximated by 

(4) 

where T and T,, represent the group delay and the phase 
delay ofD( jw)  at the neighbourhood of carrier frequency 
coo, respectively. 

rAt) = aS{,/(2P)m(t - re) sin (wo(t - T,,) + e)} 

Therefore, by using eqns. 4 and 5, the received signal at 
the channel output can be written 

r(t) = a,/(2~)m(t) sin (ao t + e) - a&/(2P)m(t - T )  

x sin(wot + + e) + dt) (6) 

The first term represents the signal component, the 
second term is viewed as the multipath interference and 
the third term is the channel noise. The channel noise n(t) 
considered here is a white Gaussian noise, expressed by 

n(t) = ,/(Z)[n,(t) cos (ao t + cp) - nAt) sin (wo t + cp)] 

where cp is the noise phase. The in-phase and quadrature 
components of the noise are assumed to be statistically 
independent, stationary white Gaussian noise processes 
with (two-sided) power spectral density N0/2  watt/Hz. 
These noise components can be rewritten from eqn. 7 as 

(7) 

dt) = ,/(2)[N,(t) COS (w0 t + e) - Ndt) sin (ao t + e)] 
(8) 
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where 

N,(t) = n,(t) cos (0 - cp) + n i t )  sin (e - cp) (94 
(94 NXt) = -no@) sin (e - cp) + n&) cos (e - cp) 

and 

N,(t)  + jNs(t )  = In&) + jns(t)]e-"8-P' (10) 

The quadrature components N,(t)  and N J t )  have exactly 
the same statistical characteristics as n,(t) and n#). 

sign01 - 

multipath 
interference 

Fig. 2 I Q  carrier recovery loop for BPSK signal 

A conventional maximum-likelihood (ML) phase- 
recovery loop for BPSK signal is shown in Fig. 2 [lo]. 
The loop input is composed of the signal component, the 
multipath interference and the channel noise. The quad- 
rature reference signals generated from the voltage- 
controlled oscillator (VCO) can be written, respectively, 

(1 14 
( 1 W  

where &t) and K1 represent the VCO estimate for the 
signal phase and the root mean square (RMS) value of 
the reference signals, respectively. In the usual way, the 
phase error is defined as 

(12) 

which is assumed to be constant over each 7'-second 
interval. In the sequel, to make the problem mathematic- 
ally tractable, we assume that frequency offset is negligi- 
ble and only phase uncertainty is considered. By using 
eqns. 6, 8 and 11, the phase detector (PD) outputs in the 
I / Q  channels can be arranged into cos 4 and sin 4 terms, 
neglecting the double frequency components, as 

by 

rAt) = J(2)K1 cos (wo t + &)) 

rdt) = , / (2 )K1 sin (coot + &t)) 

&(t) = e - &t) 

E&) = K,K,{a&/(P)m(t  - T) sin (-OW) + N,(t)}  

x COS 4 + K , ~ , { a J ( % O )  - abJ(P)m(t - 4 
x cos (wpr)  - N&)} sin 4 ( 1 3 4  

d t )  = K,K,{a,/(P)m(t) - aS,/(P)m(t - r )  

x COS ( w ~ T )  - N,(t)} COS 4 + K I K ,  

x {aB,/(P)m(t - T )  sin ( w ~ T )  - N,(t)}  sin 4 
(13b) 

where K ,  is the gain of the loop multiplier, with dimen- 
sion V - ' .  On the other hand, the respective signal at the 
I/D filter output through a sample-and-hold (S/H) device 
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L. 

k = O  
- sin (wF T )  sin 4} 1 a, Qk 

f K I K m { ( a , / ( P ) T  k = O  ? a k l k  - " )  
I x cos (4) - N, sin 4 

where 

The noise responses N ,  and N ,  at the I /D filter output 
are independent Gaussian random variables with identi- 
cal variances u2 = N o  T/2.  The parameters L, and Li in 
eqn. 14 represent the memory lengths of the bandlimited 
channel with and without multipath effect, respectively. 
The quantities I, and Qk in eqn. 15 can be easily calcu- 
lated once g(t) and h(t) are known. The ower of the 
signal baseband pulse is unity, i.e. (1/T) 5 $(t) dt = 1. In 
the interval kT < t < (k + 1)T, the normalised dynamic 
error signal z'(t) at the input of loop filter can be 
expressed as 

+ taZ/?ZPT2 sin ( 2 4  + 2 0 , ~ )  1 akQk 
( k T 0  >' 

The low-frequency component (near DC) of z'(t) is 
extracted by the loop filter and used to adjust the phase 
estimate. By using linear model analysis [8-lo], we adopt 
the approximation sin 2 4  E 24*, the phase estimate at 
the VCO output can be written as 

where p is the Heaviside operator defined by p = d/dt 
and K ,  is the gain constant of VCO with dimension rad/ 
s / V .  Referring to Fig. 2, the system equation for the phase 
error is written as 

2p4 = - 2K,  F(p)z(t) = - 2K'F@)z'(t) (19) 

K' = K,(KIK,)Z (20) 

with 

where F(p) is the transfer function of the loop filter. Sub- 
stituting eqn. 17 into eqn. 19, after some mathematical 
manipulation the loop equation can be rearranged as 

2p4 + K'PT2F(p)x(t, 2 4 )  sin 2 4  = K'F(p)N,(t, 2 4 )  

(14b) 

( 1 5 4  (21) 
where 

+ E'/?' cos (2wF z) a, Q, 
( k T 0  >' 

- a2/?PT2 sin ( 2 4  + (u.z)( 3 aklk)(  f akQk) 
k = O  k = O  

and 

N&, 2 4 )  = N:(t) cos 2 4  + Nzt) sin 2 4  (23) 
with 

N",(t) = -2a/?, / (P)T[N,  cos 

+ N 2  sin m p r ]  1 ak Qk 
( k T 0  ) 

+2aBJ(P)T[N2 cos wFz  - N ,  sin mFr] 

* For practical cases, even if the phase error is in the region of n/3 or 
W, the PLL can be well treated as a linear system [20, p. 17J 
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The term x(t, 2 4 )  conveys all the information regarding 
the phase of the received signal. The terms N&, 2 4 )  con- 
situting the channel noises and other impairments are 
referred to as equivalent noise. From eqn. 22, it can be 
found that there are self noises induced from the random 

x(t, w). Since these self-noise components are pro- 
portional to sin 24,  they can be neglected in the linear 
analysis for small phase error. As discussed in Reference 
14 the signal at the loop filter input can be approximated 
by the expectation value of the term x(t, 2 4 )  over {ak} .  
The effective signal amplitude is 

terms (CaiIi)' ,  (CakQd' and ( C a k I a  U k Q t )  in 

= PT2E[x(t ,  2411 (25) 

where E[x(t ,24)] is assumed to be independent of the 
time index k. The baseband linear model of the synchron- 
iser in Fig. 2 is shown in Fig. 3. Using linear loop 

loopfilter 

F(P) 
2 9 + m  

n, 

Z e ( 0  I F- I 
Fig. 3 Linear bawband model ofsynchronism in Fig. 2 

analysis, the small phase error 2 4  can be expressed in 
terms of the transfer function by 

1 K'PT'F(p)E{x(t, 2 4 ) )  
P + K'PTzFOE{x(t ,  2 4 ) )  

24=[  

where N(t)  is the equivalent noise for small phase error, 
that is, 

N(t)  Ne@, 0) = NXt)  (27) 

and the expectation value of x( t ,24)  can be further 
manipulated and expressed as 

Define r I y/az to normalise y to the amplitude factor 
a'. For shorthand notation, the closed-loop transfer func- 
tion for the phase error can be denoted by 

where 

E{N( t ) }  = -a'b2PT' sin ( 2 0 , ~ )  CO Q: ) 
mi. (Li. L d  

( zo I k Q k )  (31) + %z'BPT' sin (oF z) 

and H2+(0) = 1. After some mathematical manipulation 
of eqns. 30 and 31, the mean (averaged) value of phase 
error can be expressed as 

- 8' sin ( 2 0 p  T) Q: 
( k r 0  ) 

From eqn. 32, it is very obvious that pl+ is an odd func- 
tion of the phase o,z. Except for some special com- 
bination of O ~ T  and b such that pz0 = 0, the multipath 
interference makes 4 be a biased estimate of the signal 
phase 8. That is, the process 8 will converge to a steady 
state with an offset $pa+ from 8. The excess phase offset is 
determined only by the multipath channel parameters 
and the IS1 (BT parameter), and is independent of the 
additive white Gaussian noise. It cannot be reduced even 
if the loop bandwidth becomes very small. As 8 
approaches zero, i.e. multipath-free channel, the excess 
phase offset becomes zero 

(34) 

That is, 4 is an unbiased estimate for 0 at the absence of 
multipath fading. 

Now, we find the phase error variance. Instead of 
using U:+ = E{(24)'} - {p1+}' relation, we adopt the 
linear transfer function approach. First, define the zero- 
mean noise process N'(t) as N ( t )  = N(t)  - E{N( t ) } .  Thus, 
the variance U:, is equivalent to the output power of 
H,+(p) with W(t) as input. Assuming that the loop band- 
width for the transfer function in eqn. 29 in the presence 
of IS1 and multipath effects is still narrow relative to the 
bandwidth of the equivalent noise, then the variance of 
2 4  can be approximated [ l o ]  by 

2S,.(0)BL 2S,.(0)BL 
U;+ = 2 = 

A, PZT4E{x(t ,  24)}' (35) 

K'PT'F(~)E{ x( t, 24)} 
(29) where the loop noise bandwidth B, is calculated by H2+@) = + K'PT (p) 

(36) 
1 J- 

'F E{x(t, 2 4 ) )  

The mean value of 2 4  can be obtained from eqn. 26 as B L - 2 n j  =-I I Hi&) 1' ds 

(30) Owing to the sample-and-hold effect, the autocorrelation 
function R&) for "(0, which is constant in each symbol 
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period, can be written [6, l o ]  A ,  = -2P3 sin 20,z sin W ~ T  -!$I 1 ~ 1  d T 

otherwise 
R”(T) = 

The Fourier transform of RN@) appears as 

S,.(W) = uf j-y (1 - d7 

with 

(37) 

(39) 

where the noise variance U$ is defined as the expectation 
value of the squared equivalent noise process N’( t )  

U $  E E{N”(t)} = E{N2(t)}  - (E(N( t ) } ) ’  

= a4B4P2T4 sin2(2wFz) 2 1 Qi - 2 1 Q: { ( k T 0  >’ k r 0  } 
min (Li. L,) 

+ 4a4B2P2T4 sin’(w,?){( k = O  1 I kQk) ,  

- 2 r  k = O  5 L m ) I ~ Q ~ )  + ( k = O  f I:)( k = O  QE)} 

-4a4B3P2T4 sin ( 2 0 ~ 5 )  sin ( 0 ~ 5 )  2 1 Q: { ( k r 0  ) 

(40) 
where the expression for E { N ( t ) }  is given by eqn. 31 and 
that for E { N 2 ( t ) }  is derived in the Appendix. Thus, the 
variance can be rearranged as 

where 

A = j4 sin2 20, T 

A, = 2B2 sin2 o F z  
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B2 A,  = - 
P 

1 
A -7 ’ - 2 p  (42s) 

and p = a2PT/No defines the desired signal energy to 
noise density at the loop input. The analytical result in 
eqn. 41 relates the jitter variance performance to the 
effects of bandwidth limitation and multipath inter- 
ference. 

3 Asymptotic bound 

Since the derivation of the analytic results in eqns. 32 and 
41 is independent of the signalling pulse shape g(t), they 
become the analytical bounds for the performance of 
carrier recovery loop in the bandlimited multipath 
channel. The most significant point of these analytic 
results is that they relate the first- and second-order sta- 
tistical characteristics of the phase jitter to the impair- 
ments of ISI, multipath interference and channel noise. 

In eqn. 41, as signal-to-noise ratio p in the multipath 
channel becomes large, the jitter variance becomes 

mln (Li. L.) 
+A,[( k = O  1 I kQk) ,  - 2(”‘”2””1:~:) k = O  

+ ( k = O  2 I : ) (  k = o  5 e:)] + A1[2( k = O  2 Q:) 

(43) 
where coefficients {A;}  are defined in eqns. 42u-c. That is, 
even in the higher signal-to-noise case, the jitter variance 
is not zero. There exists a residual jitter variance deter- 
mined by the IS1 components from selective fading and 
band limiting. Since the values of coefficients {A;}  are 
equal to zero as /3 approaches zero, thus the residual 
jitter variance in eqn. 43 is also zero in the extreme case. 

Furthermore, as the factor B approaches zero, eqn. 41 
becomes 

4N0 BL{ u2PT4( k = O  I:> + +NOT3 
lim ci0 = 

0 - 0  e4P2T4( k = O  1;)’ 

or expressed as a function of p by 

The result in eqn. 44 is the same as developed in Refer- 
ence 6, where only IS1 due to band-limiting is considered. 
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The jitter variance, in this case, is determined by the IS1 
and the channel noise. Furthermore, if an ISI-free 
channel is considered, the jitter performance becomes 
that in Reference 10 (p. 255), 

(46) 
In this case, it is obvious that the performance of the 
carrier recovery loop is dominated by the channel noise. 

4 Numerical examples 

Without loss of generality, a fifth-order Butterworth low- 
pass filter is used as an example of the bandlimited 
channel. The IS1 effect caused by bandlimitation can be 
controlled by the parameter BT, where E is the 3 dB 
cut-off frequency. Fig. 4 shows a family of pulse responses 
for such an LPF with BT = 0.7,0.9 and 1.1, respectively. 

-041 , 
0 1 2 3 4 5 6 7 8  

normabsed time, in T 

Fig. 4 Pulse responses offifth-order Butterworth LPF 
BT - 0.7,0.9, 1.1 

Once the multipath channel parameters are given by 
using the closed-form expression in eqn. 41 the jitter 
variance can be calculated numerically. Fig. 5 shows a 
numerical result of eqn. 41, normalised to loop parameter 
4B,T, for a channel with severe fading, where the channel 
is described by the following model parameters: 
7 = 6.31 ns, a = 0.0322, f? = 0.9010,fF = 5.78 MHz* and 

1 o3 

"0 102 

$ 10' 
5 5 100 

P 

% 
E 10-1 
;e 

i 
; 10'2 
E 

10 15 20 25 30 35 40 10 15 20 25 30 35 40 

slgnal-to-noise ratio p ,dB 

Fig. 6 
a = 0.0322, BT - 1.0,~ = 0.164T, I, = 5.78 MHz 

Numerical results for normalisedjitter variance 

Fitting parameters for measured fade in Reference 13 (Fig. 2) 
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ET = 1.0. The relative notch depth, E = -2Ol0gl0(l - f?) 
is 20.1 dB, the scale factor A = -20 log,oa, is 29.8 dB, and 
the notch frequency is 5.78 MHz above the central fre- 
quency. It is a severe fade both in shape and depth. In 
Fig. 5, to compare the effect of frequency selectivity, 
numerical calculation results for various values of f? are 
also shown (f? = 0.7, 0.5, 0.3, 0.1, O.O), where f? = 0.0 rep- 
resents the case without multipath interference. The 
timing for the I/D filter is chosen at that the signal has 
minimum ISI. 

The numerical results shown in Fig: 5 are obtained 
with deterministic channel parameters. However, these 
parameters are usually random in practice, thereby it will 
be more realistic to examine the result for random quant- 
ities. In general, given the joint statistical distributions of 
a, f? and wF,  the expectation value of the loop per- 
formance can be evaluated directly. For the sake of con- 
venience, variable transformations are taken to ease the 
mathematical manipulation. Here, we introduce the new 
random variables A, B and Y, which are related to the 
channel parameters a, f?, T and wF T by 

A = -20 logloa 0 < a Q 1 
E G -20 lOg,,(l - f?) 0 Q f? Q 1 

Y = 360f,t (47) 
Define pAsr(A, B, Y) as an arbitrary joint probability 
density function of A, E and '4'. Then the statistical aver- 
ages of U$ and p z ,  with respect to the channel statistics 
can be manipulated in a general form, respectively, by 

z, = E[u$,] = pAIPY(A, B, Y)u& d A  dB d" (48) JJJ sss 
52 - 

Pz, G Ebzml = PAIFY(A, 4 WPZ,  dA dB (49) 

In fact, the probability density functions of the channel 
parameters for Rummler's model have been well recog- 
nised [l 11. Based on the statistics, an illustrative example 
for eqns. 48 and 49 is described in the following. 

First, the choice of the parameter 7 in the fixed delay 
model is dependent on the channel bandwidth. In Refer- 
ence 11, the choice of T = 6.31 nsf provides the best 
fitting of the model from measurement data. The dis- 
tribution of the relative strength factor f? can be written 
in exponential form (1 - f?)z.3. The probability finding f? 
between 0.0 and 0.5 is Prob (0.0 < < 0.5) = 0.79. Simi- 
larly, the probability Prob (0.0 < f? < 0.7) is 0.94. That is, 
the small value of f? (less selective) occurs more frequent- 
ly. On the other hand, the overall attenuation factor a is 
characterised with lognormal distribution. The standard 
deviation of the distribution is approximately 5 dB for all 
f?. The mean of the distribution is dependent on the f? 
factor. For f? > 0.5, the mean value is close to 25 dB. In 
contrast, for smaller value of f?, the mean value decreases 
to 15 dB. The probability density function offF = wF/2n 
is uniform at two levels and can be expressed as 

t In Reference 11, the radio channel was equipped with 8 PSK at a rate 
of 78 Mbit/s occupying 30 MHz bandwidth. To keep the consistency of 
this channel condition (statistics) for BPSK, in the illustrative examples, 
transmission at a rate of 26 Mbit/s in the same bandwidth is assumed 
so that T Y 0.164T(T: bit period for BPSK). 
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where T is the fixed delay. Taking the variable transform- 
ation in eqn. 47, the statistical distributions of A, B and 
Y can be written, respectively, [12] 

In fact, because pz4 is an odd function of Y (see eqn. 32) 
and the distribution of Y is even in [ - 180”, + 180”1, & 
is equal to zero. 

with 

p, = 24.6(B4 + 500)/(B4 + 800) 

In particular, the distribution of Y (or notch frequency) 
is independent of the other parameters. There exists 
dependence between parameters A and B as shown in 
eqn. 51, where the mean value of A ,  p A ,  can be expressed 
in a simple form of B. Although the distribution of A is 
dependent on the value of B, the dependence is limited 
and may often be ignored [13]. Introducing eqn. 51, the 
expectation value of the jitter variance in eqn. 48 can be 
written by 

oz -24 - - [ -~~h’(y)  r p A ( A ) p d B )  

x &(A, B, Y, T) d A  dB d Y  (52) 
Fig. 6 shows the numerical results of (normalized to 
loop parameter 4B,T) against p with BT as the param- 
eters. It is found that the jitter increases with the 
reduction of BT and the signal-to-noise ratio p .  
Reduction of BT or p will introduce more IS1 or noise 
fluctuation, and thus, the jitter variance will increase. In a 
similar way, the expectation value of the excess phase 
offset (pzc) in eqn. 49 can be evaluated by 

x p2+(A, B, Y, T) d A  dB d Y  (53) 
Since the channel noise has no contribution to pz4 (eqn. 
32), so is independent of the signal-to-noise ratio p .  

.- 3 
I J  

t 
c 

U 
% s 100 
E 
b 

h 1 

- 1 

lo-’ L 
10 15 20 25 30 35 40 

signal-to-noise ratio p ,dB 

Fig. 8 
the multipath fading channel 

Expectation value of normalised jitter variance against SNR in 

0 ET = 0.9 * ET = 1.0 
+ ET = 1.1 
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5 Conclusions 

Closed-form expressions of the jitter variance and the 
excess phase error for I-Q carrier recovery loop with 
BPSK signal in the band-limited multipath channel are 
derived. The analytical bound can be evaluated by 
numerical calculation. From these results, the degrada- 
tion of synchronizer performance due to multipath and 
IS1 effects can be predicted directly. Further extension of 
the results for random channel parameters are also 
shown by numerical illustration. 
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7 Appendix 

The equivalent noise N ( t )  for small phase error can be 
obtained from 

N(t)  = N&, 29)@4 U 0 
= N:(t) (54) 
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and 

+ 2aB,/(P)T(NZ cos (0,~) 

Note that N ,  and N ,  are two independent noise pro- 
cesses with zero-mean and identical variance u2. Per- 
forming the expectation operation on the squared 
equivalent noise, obtains 

E{N2(t)} 
= a 4 p P 2 T 4  sin2(2u,r) 

- 4a4B3p2T4 sin ( 2 0 , ~ )  sin (0,~) 
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+ 4a4BZPZT4 sin3(w,r) 

+ 4aZBZPT2E{[Nz  cos (mor) + N, sin (00r)]2} 

x E { [ N ,  cos (U,?) - N ,  sin (0,412} 

+ 4E{N:}E{N$}  (56) 
By using the following relations, 

E{N:} = E{N:} = U ,  (57) 

= 6kl (58) 
where 6,, denotes the Kronecker delta function, the 
higher-order moment 

E{ak a, a,. a,} = 6,, ak., + 6,. all. 
+ 61,. - 2ak1 6k.r. (59) 

we obtain 

Combining eqns. 56-62 and 31, the final formula in eqn. 
40 is obtained. 
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