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Abstract—Future broad-band integrated services networks  Cell loss ratio and cell transfer delay are two important
based on the asynchronous transfer mode (ATM) technology are parameters to describe the QoS. Since the cell loss rate can be
expected to support multiple types of multimedia information kept very low with the use of advanced transmission equip-
with diverse statistical characteristics and quality of service (QoS) . . .
requirements. To meet these requirements, efficient scheduling ment, cell tlransfer .delay IS Conslde_red as t_he most important
methods are important for traffic control in the ATM networks.  parameter in real-time communication services [20]. In order
Among the general scheduling schemes, the rate monotonicto meet diverse QoS, several packet multiplexing techniques
algorithm is simple enough to be used in high-speed networks, have been proposed for different real-time applications [8],
but it does not attain as high a system utilization as the deadline [9]. These schemes are different in traffic specification, system

driven algorithm does. However, the deadline driven scheme is tilizati d imol tati lexi A h
computationally complex and hard to implement in hardware. UtlliZation, and implementation complexity. Among them,

The mixed scheduling algorithm is the combination of the rate traffic-controlled rate-monotonic priority scheduling (TCRM)

monotonic algorithm and the deadline driven algorithm; thus it  [9] provides bounded local delays to individual cells using a
can provide most of the benefits of these two algorithms. In this rate-monotonic priority scheduler. It is simple enough to be
paper, we use the mixed scheduling algorithm to achieve high ,caq in the high-speed ATM networks, but does not attain as

system utilization under the hardware constraint. Because there hiah t tilizati the deadli heduli h
is no analytic method for the schedulability test of the mixed igh a system Lutlizauon as the deadliné scheduling scheme,

scheduling, we propose a genetic algorithm-based neural fuzzy SUch as packet-by-packet generalized processor sharing (PGPS)
decision tree (GANFDT) to realize it in a real-time environment.  [18], [19]. However, the deadline scheduling scheme is compu-
The GANFDT combines the GA and a neural fuzzy network into a  tationally expensive because the priorities of connections need
binary classification tree. This approach also exploits the power of to be updated at every time slot.

the (?Iassificatic.)n. tree. Simulation results show that the GA[\IFDT In this paper, we use a mixed scheduling scheme to achieve
provides an efficient way to carry out the mixed scheduling inthe | > FEFED ) O
ATM networks. high utilization under the hardware constraint in the ATM net-
Index Terms—Binary decision tree, deadline driven algorithm, yvorks. During the call Set-pp phase, when the schedulability test
quality of service (QoS), rate monotonic algorithm, recursive least is successful for every switch along the path of the C"’.‘I!' the new
square (RLS), schedulability test. call can be accepted by the CAC. Because the condition for the
schedulability test of the mixed scheduling involves a large set
of inequalities and no analytic closed-form solution can be ob-
tained, we propose a genetic algorithm-based neural fuzzy de-
HE broad-band integrated services digital networkgision tree (GANFDT) to realize the mixed scheduling scheme
(B-ISDN) is conceived to support a wide range of servicegfficiently. Neural networks and fuzzy systems have been ap-
such as video, voice, and numerical data. The asynchronglied for ATM traffic control recently [2], [5], [22], because they
transfer mode (ATM) technique is considered the ground @tie thought to have a lot potential in this area, especially for
which B-ISDN is to be built [4], [6]. ATM is a packet and their learning and adaptive capabilities. The neural fuzzy net-
connection-oriented switching technique and has the advantaeks require no explicit model of the traffic, and the parallel
of accommodating the variety traffic which possess differestructure of neural networks can be exploited in hardware im-
characteristics and service requirements. The diversity of traffitementations, which provides short response time. To obtain
complicates the traffic control in the ATM networks, and thubigher decision accuracy of the schedulability test, we combine
the connection admission control (CAC) plays an importathe structure of the binary classification tree into our method. Bi-
role among the traffic control functions. A new connection igary classification trees [1] and neural fuzzy networks are two
accepted only when the network resources can provide enoggipular approaches to the pattern recognition problems [3]. We
bandwidth to ensure the required quality of service (QoS) whilsse the GA-based neural fuzzy network at the decision nodes
keeping high QoS. of a binary classification tree to extract linear and nonlinear
traffic features. This scheme expands the capability of the clas-
. . _ sification trees. Simulation results show that the system can at-
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lability test for the mixed scheduling algorithm efficiently. In
Section IV, we illustrate some simulation examples to justify the

feasibility of our scheme. Concluding remarks are presented in S / i
Section V. . /
. ‘\\ /I .
[I. MIXED SCHEDULING OF ATM CELLS > AN >
The rate monotonic priority scheduling had been proved 4
optimal among the fixed priority scheduling schemes [16] if a ’
L o LT T T EIRPP PSR —

packet must be served before its succeeding packet of the same
connection is generated. Packets can have variable length as in
[16], but in this paper, we focus on fixed-length packets called
cellsin ATM networks. The rate monotonic priority schedulingrig. 1. ATM switch.
scheme has the advantage of simple implementation. However,

full processor utilization can be achieved by the deadline drive

scheduling scheme with the cost of expensive implementaticg)r?.connecnonS might change from cell to cell. Third, a sched-

In general, it needs a mechanism to update priorities an Iéng algorithm is said to bemixed scheduling algorithifithe
sorting me’chanism to select a packet for service priorities of some connections are fixed yet the priorities of the
The mixed scheduling is a combination of the rate monotonic "anng cpnnecﬂqn; vary f.rom cell to cell.

scheduling and the deadline driven scheduling. We employ th For a particular priority assignment scheme, we say that a set

mixed scheduling for transmitting cells to achieve high Systeﬂfconnectmns is schedulable if every cell is served before the

utilization under the hardware constraint. If the mixed schea—mval time of its succeeding cell. Rate monotonic scheduling

uling scheme is not feasible at any switch along the path of t leqonthm IS & f|xed-pr|or|_ty scheduling algqnthm which is op-
. X . Imum in the sense that if a set of connections are schedulable
connection, the call request will be rejected by the CAC.

by a fixed-priority assignment scheme, they must be schedulable
by rate monotonic assignment scheme. Using the fixed-priority
rate monotonic scheduling, connections with higher cell trans-
Since ATM is a packet switching technique, it breaks the megrission rates (shorter periods) will have higher priority. That s,
sage up into cells of the same length (53 bytes). The basic cqm7; < 77, then connection has higher priority than connec-
ponents of an ATM network are ATM switches. Every switchign j.
has several input ports and several output ports. The main taskye define the utilization factor to be the fraction of processor
foran ATM switch is transporting cells from its input ports to itgime spent in the service of the cells. In other words, the uti-
destination output ports according to the predetermined routifightion factor is equal to one minus the fraction of idle pro-
table. To prevent excessive cell loss in the case of internal cekssor time. Since /T, is the fraction of processor time spent

lisions of two or more cells competing for the same output pag serving cells of connectioi for a set ofm connections, the
simultaneously, buffers should be provided within the switch.tilization factor is

We can view the ATM switch as the combinations of sev-
eral multiplexers (see Fig. 1). A multiplexer multiplexes sev- m
eral signals originating from different customers onto a single U= Z VT
access line. Cells which have the same destination output port =1

are schedgled by a multiplexer. All incoming idle pells will be  gince the rate monotonic priority assignment is the optimum
sorted outin an ATM multiplexer, thus concentrating the ATMiyeq priority assignment, the utilization factor achieved by the
traffic. ) ) i . rate monotonic priority assignment for a given set of connec-
In this paper, we consider a multiplexer which accepts Cofigns is greater than or equal to the utilization factor of any other
stant bitrate (CBR) traffic. Thatis, all connections generate ceflgqq priority assignment for the same set of connections. For a

periodically. We split time into time slots so that a slot is equakt of;, connections with fixed priority order, the least upper
to the transmission time of a cell. We also normalize a slot {9, ,nd to processor utilization & = m(21/™ — 1) [16], and

one unit time. Each connection is specified by its period whigh, largem, U ~ In 2 which approximates 70%.
is assumed to be an integer. Ligtdenote the period of connec- 5 the other hand, the dynamic-priority deadline driven

tion 7 through this paper. scheduling assigns the priorities to connections according to
the deadlines of their current cells. That is, a connection will
be assigned the highest priority if the deadline of its current
A scheduling algorithm is a set of rules that determine whiddell is the nearest, and will be assigned the lowest priority if
cell is to be served at a particular moment by a multiplexehe deadline of its current cell is the furthest. In our case, the
In this subsection, three priority driven scheduling algorithndeadline of a current cell is the arrival time of the next cell for
are studied. First, a scheduling algorithm is said tstagicif the same connection. Such a scheme of assigning priorities is a
priorities are assigned to connections once and for all. A statignamic one, in contrast to a fixed priority scheduling in which
algorithm is also called éixed-priority scheduling algorithm. priorities of connections do not change with time. Deadline
Second, a scheduling algorithm is said tallyaamidf priorities  driven scheduling policy is optimum in the sense that if a set

A. The Investigated System

B. Three Scheduling Algorithms



834 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 6, DECEMBER 2002

of connections can be scheduled by any algorithm, it can behedulable by the mixed scheduling. Thus, the system can have
scheduled by the deadline driven scheduling algorithm. higher utilization. This can be seen with the following example.
The employment of the mixed scheduling is motivated blyet there be three connections with periods 2, 3, and 6, respec-
combining the advantages of the above two scheduling pdiively. Clearly, the utilization factor i& = 1/2+1/3+1/6 = 1.
cies. The rate monotonic scheduling policy has the advantagen the connections with periods 2 and 3 are scheduled by the
of simplicity, while the deadline driven scheduling policy hasate monotonic algorithm and the connection with period 6 is
the advantage of high system utilization. Specifically, if therecheduled by the deadline driven algorithm, this set of connec-
aremn connections to be scheduled by the mixed scheduling &ibns is schedulable. However, if the connections with periods
gorithm, connections, 2, ..., k, thek connections of shortest 2 and 6 are scheduled by the rate monotonic algorithm and the
periods, will be scheduled according to the fixed-priority rateonnection with period 3 is scheduled by the deadline driven al-
monotonic scheduling algorithm, and the remains, connectiogarithm, this set of connections is not schedulable.
k+1,k+2,..., m, be scheduled according to the deadline In addition, in Theorem 1, the integg¥. represents a pe-
driven scheduling algorithm when the multiplexer is not occuiod, in which1; ~1}, form a fixed schedulable pattern. In other
pied by connections, 2, ..., k. We use the mixed schedulingwords, everyf;. time slots, T ~T}, will be sent out in the same
policy as the cell multiplexer for the efficiency of cell transmistime sequence. The meaning ff can be also caught from
sion. Since one cell is permitted to be transmitted before ttiee proof of Theorem 1. Suppodg~T,, is schedulable. Let
deadline, at most one cell will stay in the multiplexer at any be the slot packet tha® is served, where’, denotes the
time. Hence, the multiplexer needs a buffer of one cell for evepacket generated by connectibnThe number of connection

connection. Jj (G < k) packets served up to slgtis [f/T;] and hence
Zle[f/Tﬂ = f. SinceT;~T} is assumed to be schedu-
C. Schedulability Test lable, we havef < Tj,. Therefore, there exists afy such that

1 < frx < T and 25:1 [f/T;]1 = fr. Hence, T1~T} is

To provide QoS guarantee with a scheduling scheme, schedohedulable implies the arguments in Theorem 1 must hold for
lability test must be done at every involved switch. If the testll £, 1 < k& < m.
fails at any switch along the path of a connection, the connec-The schedulability test for the mixed scheduling involves an
tion request must be rejected. Here, the QoS guarantee meanglability functiona(t). The availability functioru(t) for a set
no cell should be lost and the delay of any connectioell at of connections is defined as the accumulated transmission time
each switch is bounded B§;. Thus, when each cell arrives atslots from 0 tot available to this set of connections. Lgi(t)
the multiplexer with period’;, the multiplexer must finish trans- denote the availability function of the scheduler for connections
mission within7; time slots. k+1, k+2, ..., m.Clearly,ax(t) is a nondecreasing function

Since the deadline driven scheduling algorithm can achiew&t. Then, the schedulability test for the mixed scheduling with
full utilization, its schedulability test condition is very simple. Aavailability functionay(t) is given by
set of connections are schedulable by the deadline driven sched-
uling algorithm if and only if the system utilization factor is
smaller than or equal to 1, i.€/, < 1.

The schedulability test of the rate monotonic scheduling al-

[/ Thgr] + [/ gl + -+ [/ T < ar(t) (1)

gorithm for ATM networks has been discussed in [10]. Lee argr all ts which are multiples ofq1, Or Tiyo, ..., OF Ty

Chang proved the following theorem in [10]. From the above descriptions, we know that the schedulability
Theorem 1:A set of m connections with periods test for the mixed scheduling police with availability function

T, T, ..., T, is schedulable by the rate monotoni, (t)isgiven by (1) for alks which are multiples dfy 41, Ty 12,

scheduling algorithm if and only if there exists an integer ... andT},. Hence, the above inequality should be checked for

such thatl < f, < T andY%_,[fi/T;] < fi for all k, LCM time slots, where LCM is the least common multiple of

1 <k<m. Tit1, Trya, - - - andT,,, which is equal tJ -, , , 7; in the

The schedulability test at each switch with the mixed schedrorst case. The availability function,(¢) in the above equation
uling scheme is similar to the one in [16]. Suppose there ateunts the sum of the empty time slots which are not occupied
m CBR connections to be scheduled by the mixed schedulibg connectiond, 2, ..., k until time¢. Hence, we have
scheme. Assume thdy < Th < - < T,—1 < Tp,. Let

the cells of connections, 2, ..., k be scheduled according to ' ' .
the rate monotonic scheduling algorithm, and the cells of con-  a(t) =t — Q—J + Q J +-- 4 Q J) .

nectionsk + 1, k + 2, ..., m be scheduled according to the L T Tk
deadline driven algorithm when the multiplexer is not occupied
by connectiong, 2, ..., k. Thek connections with shorter pe- To calculate: (¢), we need: multiplications k additions, and:

riods are scheduled by the rate monotonic scheduling algoritlsupremum operations. Furthermore, we n@ed- £+ 1) multi-
because if the connection with longer period has higher prioripjications,(m — k) additions(m—k+1) supremum operations,
than the one with shorter period, it willimpede the service of thend one comparison operation in obtaining the left-hand side of
connection with shorter period. In other words, if the connectiq). As a total, we nee@in + 1) multiplications,m additions,
with shorter period has higher priority than the one with longéfr. + 1) supremum operations, and one comparison operation in
period, more sets of connections have the opportunities to dxch inequality check in (1). Hence, the computation load of the
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schedulability test of the mixed scheduling algorithm according [ll. GA-BASED NEURAL Fuzzy DECISION TREE

to(1)is In this section, we propose a GANFDT to do the schedu-

lability test of the mixed scheduling algorithm. A classifica-
tion/decision tree is a popular method for deciding boundaries
of some classes. In our case, there are only a boundary be-

H T tween schedulable class and unschedulable class to be found.
J=ktl We use a GA or a self-constructing neural fuzzy inference net-
in the worst case. In short, this computation load can be writtt\é\ﬁ)rk (SONFIN) at each decision node of a classificatio.n tree to
as Bm +2) [[™.., T; (operations). ext'ra.ct a feature. Whgq the features represent the traffic char'ac—

J=k+1"7J
Note that this condition is a necessary and sufficiefgristic better, the decision made by the tree can be more precise.

condition. The left-hand side of (1) represents the sum le represent the traffic characteristic well, we choose the utiliza-

the needed service time slots which belong to connectio}‘l‘%” factor and the connection numbers of each traffic type as the

((m 4+ 1) multiplications+ (m) additions

+ (m + 1) supremumst+ comparison

kE+1.k+2 ... m between time 0 and timg The avail- NPUt parameters of our GANFDT. Connections with the same
ability function a(¢) counts the sum of the empty time slotg€riod belong to the same traffic type. The single output of the
which are not occupied by connectioris 2, ..., k unti GANFDT indicates whether the schedulability testis successful

time ¢. Conceptually, the schedulability condition implies tha®! Not. _ _ _
if the available empty time slots left by the rate monotonic We shall introduce the GA and the SONFIN in Sections IlI-A

connections are enough for the connections scheduled aid IlI-B, respectively. Then, the GA and SONFIN are com-
the deadline driven scheduling policy, these connections bined with the binary classification tree to form the GANFDT
are schedulable. This test involves the solution of a large $eethod in Section I1I-C.

of inequalities and no analytic closed-form solution can be

obtained, so its application is not easy to be dealt with inA& Basics of GA

real-time environment. In Section Ill, we shall propose a new the GA is a general purpose stochastic optimization method
scheme to do the schedulability test efficiently. _ for search problems [11]. GAs differ from normal optimization
Lemma 1 thatfollows is induced from (1). It states that if a Sef, § search procedures in several ways [12], [13]. First, the algo-
pf_connectlons is schedulable by a m|xeq scheduling algorithgly -\ \vorks with a population of strings, searching many peaks
it is also schedulable by the same algorithm except that a C?H'parallel. By employing genetic operators, it exchanges in-

nection scheduled by the rate monotor_lic algorithm originally Lgrmation between the peaks, hence lowering the possibility of
changed to be scheduled by the deadline driven algorithm. Te'nsding at a local minimum and missing the global minimum.

lemma will be used in Section IV-A. . . .

Lemma 1:1f a set of m connections with periods Second, it works with coding of the parameters, not the param-
T < T <' < T < T, is schedulable by the eters themselves. Third, the algorithm only needs to evaluate
mlixe_d sc2:he_duling _algor:it_hlm _Withm connectionis 2 k the objective function to guide its search, and there is no re-
scheduled by the rate monotonic algorithm, and conhectioglg'remem for derivatives or othgr knowledge. The only avail-
k+ 1,k +2, ..., m scheduled by the deadline driven q120le feedback from the system is the value of the performance
gorithm, then it is also schedulable by the mixed schedulif§éasure (fitness) of the current population. Finally, the tran-
algorithm with connections, 2, ..., k — 1 scheduled by the sition rules in GAs are probabilistic rather than deterministic.
rate monotonic algorithm énd cohnectiokysk +1.....m The randomized search is guided by the fitness values of each

scheduled by the deadline driven algorithm. string and how they compare to others. Using the operators on
Proof: At any moment, the total demand of service timghe chromosomes which are taken from the population, the al-

cannot exceed the total available service time. Thus, we m@8fithm efficiently explores parts of the search space where the
have probability of finding improved performance is high.

The basic element processed by a GA is the string formed by
|t/ Tha1] + |t/ Thao] + -+ [t/Tm]| < ax(t), foranyt. concatenating substrings, each of which is a binary coding of
a parameter of the search space. Thus, each string represents
Since a point in the search space and hence a possible solution to
the problem. Each string is decoded by an evaluator to obtain
ap—1(t) — ax(t) > { ¢ J the objective function value of an individual point in the search
space. This function value, which should be maximized or min-
imized by the algorithm, is then converted to a fitness value
ar(t) <ap-1(t) — L?J which determines the probability of the individual undergoing
r genetic operators. The population then evolves from generation
we have to generation through the application of the genetic operators.
The total number of strings included in the population is kept
[t/Ti| + [t/Ths1] +---+ [t/Ton] < ar_1(t) foranyt.  unchanged through generations. A GA in its simplest form uses
three operators: 1) reproduction; 2) crossover; and 3) mutation.
According to (1), this completes the proof. An abstract procedure of a simple GA is shown in Fig. 2.
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Stepl: Establish a base population of chromosomes.

A

Step2: Determine the fitness value of each
chromosome.

A 4

\ 4
Step3: Duplicate the chromosomes accroding to their
fitness values and create new chromosomes by mating
current chromosomes (e.q., mutation, recombination).

Continue until the v
predetermined condition is . .
achieved Step4: Delete undesirable member of the population..

A

Stepl: Insert the new chromosomes into the
population to form a new population pool.

Fig. 2. Basic steps of GA.

B. Self-Constructing Neural Fuzzy Inference Network (a) ®)
(SONFIN)

The SONFIN is a fuzzy rule-based network possessir
learning ability. Compared with other existing neural fuzz
networks [7], [21], [23], @ major characteristic of the networl
is that no preassignment and design of the rules are requir
The rules are constructed automatically during the on-lir
operation. Two learning phases, the structure as well as the | /m m
rameter learning phases are adopted on-line for the construct.... ©
task. One important task in the structure identification of the
SONFIN is the partition of the input space, which influences
the number of fuzzy rules generated. Traditional partitioned
results are shown in Fig. 3(a) and (b) [13]. Fig. 3(a) is a
grid-type partitioned result [7], [23]. A major problem of this
kind of partitioning is that the number of fuzzy rules increases
exponentially as the dimension of the input space increases.
Fig. 3(b) is a clustering-based partitioned result [15], [17], [23]. m(\
Compared with the grid-type partition, the number of rules is
reduced by this method, but not the number of membershig. 3. Fuzzy partitions of a two-dimensional (2-D) input space. (a) Grid-type
functions in each dimension. In fact, by observing the projectegtitioning. (b) Clustering-based partitioning. (c) Proposed aligned clustering-
membership functions in Fig. 3(b), we can find that some mefigsed partitioning.
bership functions projected from different clusters have high
overlapping degrees. These highly overlapping membershipere
functions can be eliminated. An on-line input space partitioning z: andy;  input and output variables, respectively;

method, thealigned clustering-based methoi$ proposed in  Aij fuzzy set;

this paper. The on-line partitioned result is shown in Fig. 3(c). position of a symmetric membership function
This method will reduce not only the number of rules gener- of the output variable with its width neglected

ated, but also the number of fuzzy sets in each dimension. An- during the defuzzification process.

other feature of the SONFIN is that it can optimally determin&hen, by monitoring the change of the network output error, ad-
the consequent part of fuzzy IF-THEN rules during the structuéional terms (the linear terms used in the consequent part of
learning phase. A fuzzy rule of the following form is adopted ithe TSK model [21]) will be included when necessary to further

our system initially reduce the output error. This consequent identification process
) ] ] is employed in conjunction with the precondition identification
Rulej: IF z; is A;; and- - - andz,, is A;, process to reduce both the number of rules and the number of

THENy; ism; (2) consequentterms. For the parameter identification scheme, the
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wherem,; ando;; are, respectively, the center (or mean) and the
width (or variance) of the Gaussian membership function of the
jth term of theith input variablez;. Unlike other clustering-
based partitioning methods, where each input variable has the
same number of fuzzy sets, the number of fuzzy sets of each
input variable is not necessarily identical in the SONFIN.

Layer 3 A node in this layer represents one fuzzy logic rule
and performs precondition matching of a rule. Here, we use the
following AND operation for each Layer-3 node

a® =] w?” 5)

wheren is the number of Layer 2 nodes participating in the IF
part of the rule.
Layer 4 This layer is called theonsequent layeifwo types

of nodes are used in this layer, and they are denoted as blank
and shaded circles in Fig. 4, respectively. The node denoted by
a blank circle (blank node) is the essential node representing a
fuzzy set (described by a Gaussian membership function) of the
output variable. Only the center of each Gaussian membership
function is delivered to the next layer for the local mean of max-
imum (LMOM) defuzzification operation [14], and the width is
used for output clustering only. Different nodes in Layer 3 may
X X be connected to a same blank node in Layer 4, which means that

1 2 the same consequent fuzzy set is specified for different rules.
The function of the blank node is

a(4) = Z u§-4) - apg (6)
consequent parameters are tuned by the recursive least squ?e !

Layer 5

Layer 4

Layer3

Layer2

Layer 1

Fig. 4. Structure of the SONFIN.

(RLS) algorithm, and the precondition parameters are tuned §/€"€@0i = mao;, the center of a Gaussian membership func-
the back-propagation (BP) learning algorithm. Both the strulion- As for the shaded node, it is generated only when neces-

ture and parameter learning are done simultaneously to achie@sy- Each node in Layer 3 has its own corresponding shaded
fast learning. node in Layer 4. One of the inputs to a shaded node is the output

In this subsection, the structure of the SONFIN as shown fi¢livered from Layer 3, and the other possible inputs (terms) are
Fig. 4 is introduced. With this five-layered network structure df’€ input variables from Layer 1. The shaded node function is
the SONFIN, we shall define the function of each node for the a® = Z ajiT; - u§4) @)
SONFIN in Section 1lI-B1, and the learning algorithm of the ;

SONFIN in Section I11-B2.

1) Structure of the SONFINLet «*) anda*) denote the
input and output of a node in Layét respectively. The func-
tions of the nodes in each of the five layers of the SONFIN a
described as follows.

Layer I No computation is done in this layer. Each node in

where the summation is over all the inputs anglis the cor-
responding parameter. Combining these two types of nodes in
Layer 5, we obtain the whole function performed by this layer
fr each rule as

this layer, which corresponds to one input variable, only trans- o = Z aji%Tj + ao; “54)~ (8)
mits input values to the next layer directly. That is J
Layer 5 Each node in this layer corresponds to one output
M) = u,§1> = ;. (3) variable. The node integrates all the actions recommended by

Layers 3 and 4 and acts as a defuzzifier with

Layer 2 Each node in this layer corresponds to one linguistic
label (small, large, etc.) of one of the input variables in Layer a® = Z a7(4> /Z a§3) ) 9)
1. In other words, the membership value which specifies the e i
degree to which an input value belongs a fuzzy set is calculatedz) Learning Algorithm for the SONFININ Fig. 5, we use a
in Layer 2. With the use of Gaussian membership function, th8chart to illustrate the entire learning process of SONFIN.
operations performed in this layer is Here, two types of learning, namely, structure and parameter

@ 9 learning, are used concurrently for constructing the SONFIN.
@) (u - mi,j) The structure learning includes both the precondition and con-
a” =exp | —m——5—"— (4)  sequent structure identification of a fuzzy IF~-THEN rule. There
I are norules (i.e., no nodes in the network except the input/output
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Yes
Generate a
new rule
Yes Rule
similarity
y measure
End
No
Generate a new
fuzzy rule
A 4
Perform decomposition and
fuzzy measure on each input
variable
Adopt this new Input
membership similarity
function measurg

Set the projected
membership
function as the
closest one

A new input
cluster is generated?

Yes
Adopt this new No
membership Existing output clusters?
function
Yes

End
Output similarity
measure

y
Generate a new output cluster
connect the input cluster to the
newly generated output cluster

Connect the new input cluster to
the existing output cluster J

Y
End

Fig. 5. Flowchart for the learning process of SONFIN.

(I/0O) nodes) in the SONFIN initially. They are created dynam-

phase. The details of these learning processes are described in
the rest of this subsection.

a) Input/output space partitioningThe way the input
space is partitioned determines the number of rules extracted
from training data as well as the number of fuzzy sets on the
universal of discourse of each input variable. For each incoming
patternx, the strength a rule is fired can be interpreted as the
degree the incoming pattern belongs to the corresponding
cluster. For computational efficiency, we can use the firing
strength given in (5) directly as this degree measure

Fl(x) = H u§3) — e_[Di(x_mz)]T[Di(x_mi)] (10)

whereF" S [0, 1], D, = diag(l/oﬂ, 1/0i27 ey 1/0,‘”), and
m; = (m;1, M2, ..., mi,) T . Using this measure, we can ob-
tain the following criterion for the generation of a new fuzzy
rule. Letx(¢) be the newly incoming pattern. Find
J= FI 11

E, G2, T ”
wherec(t) is the number of existing rules at tintelf £/ <
F(t), then a new rule is generated, wherét) € (0, 1) is a
prespecified threshold that decays during the learning process.
Once a new rule is generated, the initial centers and widths are
set as

m(()+1) =X (12)
1 .
Dictey4n) == - diag(l/Wn(F7), ..., 1/In(F7)  (13)

according to the first-nearest-neighbor heuristic [14], where
B > 0 decides the overlap degree between two clusters.

After a rule is generated, the next step is to decompose the
multidimensional membership function formed in (12) and (13)
to the corresponding one-dimensional (1-D) membership func-
tion for each input variable. For the Gaussian membership func-
tion used in the SONFIN, the task can be easily performed as

o= (D (=, )| (D, (x—m,)] _ H exp <_M> (14)
i Tij

wherem,;; ando;; are, respectively, the projected center and
width of the membership function in each input dimension. To
reduce the number of fuzzy sets of each input variable and to
avoid the existence of redundant ones, we should check the sim-
ilarities between the newly projected membership function and
the existing ones in each input dimension. Since bell-shaped
membership functions are used in the SONFIN, we use the for-
mula of the similarity measurey(A, B), of two fuzzy sets
A and B with membership functionus(z) = exp{—(z —
m1)?/ol} andug(z) = exp{—(z — m2)?/03}, respectively.
Assumem; > my, we can computed N B| by

1 h? (ma — m1 + /7 (01 + 02))

: . . e : |ANB|=
ically as learning proceeds upon receiving on-line incoming 2 V(o1 + 02)
training data t?y performing the fqlloyvm'g learning processes si- 1 B2 (ma — my + V(01 — 02))
multaneously: a) I/O space partitioning; b) construction of fuzzy + -
2 \/7_1'(0'2 — 0'1)

rules; c) consequent structure identification; and d) parameter
identification. Processes a), b), and c) belong to the structure
learning phase and process d) belongs to the parameter learning

1 h2 (m2 —my — \/7_1'(0'1 +0'2))

"2 V(o1 — 02)

(15)
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whereh(z) = max{0, z}. Therefore, the approximate simi-the output space partitioning, the same measure in (11) is used.
larity measure is Since the criterion for the generation of a new output cluster
is related to the construction of a rule, we shall describe it
together with the rule construction process in learning process
b) below.

b) Construction of fuzzy rulesAs mentioned in learning
where we use the fact thpt| + |B| = |AN B| + |A U B|. Let process a), the generation of a new input cluster corresponds to
w(m;, o;) represent the Gaussian membership function withe generation of a new fuzzy rule, with its precondition part
centerm; and widtho;. The whole algorithm for the generationconstructed by the learning algorithm in process a). At the same
of new fuzzy rules as well as fuzzy sets in each input dimensitime, we have to decide the consequent part of the generated
is as follows. Suppose no rules are existent initially. rule. Suppose a new input cluster is formed after the presenta-
tion of the current input—output training paix,(d), then the
consequent part is constructed by the following algorithm.

_|AmB|_ |A N B

E(A, B) = =
( ’ ) |AUB| 01\/7_r~|—02\/_—|AﬂB|

(16)

IF x is the first incoming pattern THEN
do

PART 1. { Generate a new rule, IF there are no output clusters,

IF  degree(i, t) < a(t),
THEN adopt this new membership

function, and set ki = k; +1,
ELSE set the projected member-
ship function as the closest one. }

}

with center m; = x, width D, = do { PART 1in Process a), with X re-
diag(l/o'inih ce 1/Uinit)n placed by d }
where o;,;: IS a prespecified ELSE
constant. do {
After decomposition, we have n 1-D find J = argmax; Fi(d).
membership functions, IF F7 > Fou(t)
_ with my; = @ and ou = G, connect input cluster et + 1) to the
i=1--n existing output cluster J,
. . ELSE
ELSE for each newly incoming x, do generate a new output cluster,
PART 2. { find = J = argmaxic;<e 1 (%), do the decomposition process in PART
IFdfnoZthﬁg(t) 2 of Process a),
ELSE connect input cluster et + 1) to the
(ot +1) = c(t) +1, newli/ generated output cluster.
generate a new fuzzy rule, with '
me(t41 = X Dc(t+1) = —(1/8)-
diag(1/In(F7), ..., 1/In(F’)). The algorithm is based on the fact that the preconditions of
After decomposition, we have different rules may be mapped to the same consequent fuzzy set.
Muew—i = Tiy Onew—i = —3-In(F7), i = Comparedtothe generalfuzzy rule-based models with singleton
1.--m. output, where each rule has its own individual singleton value
Do the following fuzzy measure [17], [23], fewer parameters are needed in the consequent part
for each input variable i of the SONFIN, especially for the case with a large number of
{degree(i, t) = maxi<;j<k; rules.
Elpu(Mmnew—i, Onew—i)s f(mji, oji)], c) Consequent structure identificatioyntil now, the
where Fk; is the number of parti- SONFIN contains fuzzy rules in the form of (2). Even though
tions of the ith input variable. such a basic SONFIN can be used directly for system mod-

eling, a large number of rules are necessary for modeling
sophisticated systems under a tolerable modeling accuracy. To
cope with this problem, we adopt the spirit of the TSK model
[21] into the SONFIN. In the TSK model, each consequent part
is represented by a linear equation of the input variables. It is
reported in [21] that the TSK model can model a sophisticated
system using a few rules. Even so, if the number of input and

In the above algorithm, the threshold;,, determines the output variables is large, the consequent parts used in the output

number of rules generated. For a higher valueFgf, more are quite considerable, some of which may be superfluous.
rules are generated, and in general, a higher accuracyTscope with the dilemma between the number of rules and
achieved.F,,; determines the number of output clusters gerthe number of consequent terms, instead of using the linear
erated and a higher value 6%,,,; will result in a higher number equation of all the input variables (terms) in each rule, we add
of output clustersp(t) is a scalar similarity criterion which is these additional terms only to some rules when necessary. The
monotonically decreasing such that higher similarity betweédea is based on the fact that for different input clusters, the
two fuzzy sets is allowed in the initial stage of learning. Fororresponding output mapping may be simple or complex.
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For simple mapping, a rule with a singleton output is enougiwhere

While for complex mapping, a rule with a linear equation in OF
the consequent part is needed. The criterion for deciding which S0 = y(t) — y’l(t) (22)
type of consequent part should be used for each rule is based Y
on computing ( Z a53) _ a§3)
! - 5, fj=i
3) (Z <3>>
. a; d a;
REG) =) =) —y'(0) (a7 o _ ) \& (23)
> af” 9a® ®)
k=1 ¢ —a; L
- 5 if 7 #1.
®3)
) firing strength of rule;
c number of rules; Layer 2: Using (4), the update rule @hﬁf) is derived as in
y4(t) desired output; the following:
y(t)  current output; 5 @)
RE(i) accumulated error caused by rile _ 8E2 _ 3E3 3a(2) 3%2 (24)
By monitoring the error curve, if the error does not diminish 3m§j) da® A 3a;(€ ) 3m§j)
over a period of time and the error is still too large, we shall addh
linear combinations of input variables to the rules, (i) V€€
values of which are larger than a predefined threshold value. 5,3 43
d) Parameter identification:The parameter identification o) = W (29)
process is done concurrently with the structure identification =~ *
process. The idea of BP is used for this supervised learning. @) 2(x; —mij) . .
o ) . . . (2) a 72, if term nodej is
Considering the single-output case for clarity, our goalisto min- da;~” i
imize the error function om® connected to rule node
! 0, otherwise.
E =3yt -y (1)’ (18) (26)
Therefore, the update rule m,ﬁ? is
wherey?(t) is the desired output, andt) is the current output.
- i oFE
The parameters;; in Layer 4 are tuned by the RLS algorithm mg?(t +1) = mg?(t) s @27)
as om;;
a(t + 1) =a(t) + P(t + Du(t + 1)(y*(t) — y(t)) (19) Similarly, using (4), the update rule 0@ is derived as
1 P(t +1)P(¢ 2
P(t+1) =+ P(t) - A( X T(t 1);( ) (1) (20) _OB OB <~ 0a® Ou (28)
+ul(t+1)P(tult +1) 90D~ 008 L2 5, 55
where where
0<A<1 forgettm_g factor; o) 2(zi mi? N
u current input vector; 94 L if term nodej is
; . ko _ ij
a corregpondlng pgrameter vector; o connected to rule node
P covariance matrix. Tij i
The initial parameter vectar(0) is determined in the structure 0, otherwise. (29)
learning phase an#(0) = oI, whereo is a large positive Therefore, the update rule ef is
constant. As to the free parameters; ando;; of the input
mem_bershlp functions i in Layer 2, they are update_d by the BP (2)(t )= (2)(t) _OE (30)
algorithm. Hence, by using the chain rule, we derive the error = Tij N PO
transmission in Layer 3 and the update of the parametgys t

ando;; in Layer 2 in the following.
Layer 3 Only the error signal needs to be computed in thig. GA-Based Neural Fuzzy Decision Tree (GANFDT)

layer In this subsection, we combine the GA and SONFIN men-
tioned in Sections IlI-A and I11-B with the binary classification

§G) — Z OF ﬂ (21) tree structure to form the GANFDT. A classification tree is a

‘ 3a(3> dy 8a§3) popular form of decision rules. A binary classification tree is
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y=0 y=1

Fig. 6. Binary classification tree for a 2-class problem.

B
[e)

shown in Fig. 6 [3]. The circular nodes are decision nodes an
square nodes are terminal nodes. Each decision node has a fu
tion f(-) and a numbe# associated with it. The tree classifies y=0 y=1 | | ¥=0 Y
an input pattern vectax through a chain of binary decisions.
Starting at the root node and proceeding down the tree, test&igf 7. Proposed bir!a_ry classification tree with a GA or a SONFIN to extract
the form f(x) < 6 are conducted to determine whether the paf- €3 at each decision node.
tern goes to the left or right descendant. Each such test is called
asplitting rule, and f(x) and#¢ are the associated feature andeft child of the original node; otherwise, it is split to the right
threshold, respectively. The pattern is assigned the class laitgld of the node. After that, the members of the left child and
of the terminal node it lands. In Fig. §,= 0 indicates the un- the members of the right child are trained by two SONFINs, re-
schedulable clasg; = 1 indicates the schedulable class. spectively. The fitness function of the GA is basically the clas-
The power of the classification tree lies in the fact that asification rate of these two SONFINSs. In a real situation, we
propriate features can be selected at different nodes and leyekfer not to mistake an unschedulable set of connections for
in the tree. In many pattern recognition problems, classifica-schedulable one, so we consider that the classification rate
tion trees use coordinate features or linear features. Howewdrthe unschedulable ones are more important than that of the
difficult problems with complex decision boundaries may reschedulable ones. This can be achieved by amending the fitness
quire nonlinear features. Such features would further simplifynction properly. The above process will be repeated until each
the splitting procedure, and hence decrease the error rates tmohinal node contains almost the same class patterns and the
tree size. In this paper, we propose a method for extracting celassification rate cannot be improved anymore.
tain coordinates and nonlinear features at the decision nodes of
a classification tree. This method employs a GA or a SONFIN V. SIMULATIONS
at each decision node to extract a feature. The idea of using th? ) . . . . .
GA in the decision tree is to partition the training data into twq n this seqtl_o_n, we illustrate some simulation examples 10 jus-
suitable groups, which make the learning of the SONFIN easigw the feasibility of the proposed GANFDT method.
Furthermore, by adjusting the fitness function of the GA, we can )
get the desired learning result. A. Problem Formulation
Our GANFDT method is designed to perform the schedula- Assume that there are four types of traffic scheduled by the
bility test of the mixed scheduling algorithm. Thus, the inpunixed scheduling algorithm with periods, ¢2, ¢35, andty,
vector of the SONFIN must contain the parameters which repespectively, where; < ¢, < t3 < t4. Let N;, 1 < i < 4,
resent the traffic characteristic sufficiently, and the single outptgpresent the number of connections with perigd Let
y indicates whether or not the test is successful. We select the 15, ..., 1, represent the periods ofin connec-
utilization factorU and the number of connections for each typtons, wherem = Z?:l N; and1; = t, if and only if
of traffic as the input parameters. Connections with the same p&5—' N; < j < Y., N;. Define Y/ 'N; = 0 if
riod belong to the same traffic type. The desired outpuifthe n = 1. In other words,T;s are arranged in order so that
SONFIN is equal to one if the test is successful; otherwise, it1s < Tp < -+ < Ty—1 < T,,, @andT; € {t1, to, ts, ta} for
equal to zero. eachi. Thus, the utilization factor i& = ., (N;/t;). Inour
During the tree growing phase, a tree is grown by recursivedymulations NV; s are randomly generated between 1 aridr a
finding splitting rules until all terminal nodes have almost purset of connections under the restriction thamust be smaller
class membership or cannot be split anymore. The feature dahan or equal to 1, because it is clear that when the utilization
node is determined by optimizing a splitting criterion. In oufactor is larger than 1, the set of connections cannot be sched-
decision tree, nodes at the odd layers use the GA to find thied by any algorithm. LetD denote the largest number of
thresholdd for f(x) = U, so that nodes at the even layersonnections which hardware can handle by the deadline driven
can use the SONFIN to learn the decision boundary easily (sggorithm. This constraint exists in the real-time environment
Fig. 7). At a node of the odd layers, if the utilization factér because the computation and sorting time of the deadlines of
of an input vector is less thah this input vector is split to the the cells at every time slot is very considerable. Therefore, at

=1
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TABLE |

COMPARISON OFTWO MIXED SCHEDULING POLICIES

Traffic types that can be
scheduled by the deadline
driven algorithm

Minimum utilization fac-
tor of unschedulable ones

Number of un-
schedulable ones

type 4

0.939664

563

all types

0.693361

2021

most, D connections can be scheduled by the deadline driven

TABLE 1l

(a) FERFORMANCE COMPARISON OF THESONFINAND BP NETWORK UNDER
THE SAME MSE (CasE 1). (b) FERFORMANCE COMPARISON OF THESONFIN
AND BP NETWORK WITH THE SAME LEARNING TIME. (C) PERFORMANCE
COMPARISON OF THESONFIN AND BP NETWORK UNDER THE SAME MSE
(CAsE 2). (d) FERFORMANCE COMPARISON OF THEGANFDT AND BP
NETWORK UNDER THE SAME MSE. (€) ERFORMANCE COMPARISON OF
THE GANFDT AND BP NETWORK WITH THE SAME LEARNING TIME.
THE PERCENTAGEINDICATES THE PERCENT OFPATTERNS THAT ARE
MISCLASSIFIED. NOTE THAT THE RESULTS OFTABLES (&) AND (c) CAME

FROM DIFFERENT SETTING OF LEARNING PARAMETERS IN SONFIN

algorithm in the mixed scheduling policy; others are scheduled SONFIN | BP
by the rate monotonic algorithm. 0—1 14% 6%
Some experiments are simulated, and about 6000 sets of 1-0 | 43% |22%
connections are generated for each experiment. Since the least time(sec) 43 299
upper bound of the utilization factoris 2 = 0.693 for the rate (2)
monotonic scheduling algorithm [16], a set of connections with SONFIN | BP
utilization factor under 0.693 must be schedulable by the mixed 0—1] 76% | 6%
scheduling algorithm. This can be proven by letting= % in 1-0] 35% | 23%
Lemma 1. Hence, when we collect the 6000 patterns for each MSE | 0082 |0.127
experiment, we only choose the patterns the utilization factors (b)
of which are larger than 0.693 and smaller than 1. The desired SONFIN | BP
outputy, for each input pattern is attained by checking (1) 0—1 | 58% |6.3%
for LCM times, where LCM is the least common multiple of ,1 —0 9.5% 21%
periodst, t», t3, andt,. We check (1) for LCM times because ime(sec) 45 302
the same situation is repeated for every LCM time slots. Among ©
the 6000 patterns, we find that all the unschedulable ones have GANFDT | BP
the utilization factors larger than some threshold, and this 0—1 3'48;6 6%
threshold is much larger than 0.693. We denote this threshold T.l —0 5.7% 22%
: S ime(sec) 48 299
by u, and only the patterns which have the utilization factor @
larger thanu are selected to train the GANFDT. GANFDT | BP
Before we do the schedulability test by using the GANFDT, 05T 37% %
we test the sets of connections which are scheduled by the rate 1500 23% 23%
monotonic algorithm with Theorem 1, so that we can ensure MSE | 0.074 | 0.127
the connections scheduled by the rate monotonic algorithm will (©
not be misclassified. As for the connections scheduled by the
deadline driven algorithm, although the classification rate of the
GANFDT can be very high after the training process, we still TABLE Il

PERFORMANCE COMPARISON OF FOUR DIFFERENT
SONFIN-BASED CLASSIFIERS

cannot ensure it will not misjudge any possible set of connec-
tions. This problem must be solved because an unschedulable

connection which is misclassified to be schedulable will caus SONFIN | SONFIN+Tree | SONFIN+GA | GANFDT
data loss. Therefore, we provide another service which allovg =1 76% 7.6% 6.6% 47%
the renegotiation of a connection that is scheduled by the dec1 =0 35% 2.7% 2.4% 2.4%

line driven algorithm when data loss occurs. Such connections
will be charged lower than other connections and are allowed

to be scheduled by either deadline driven or rate monotonic akd the other for deadline driven schedulin. All the other types
gorithms decided by our system, and other connections aredadlconnections are scheduled by the rate monotonic scheme. In
scheduled by the rate monotonic algorithm. This kind of servitke second experiment, we randomly divide each type of con-
is only for type-4 traffic with period,, because if other traffic nections into two groups, one for rate monotonic scheduling and
with a shorter period is scheduled by the deadline driven algie other for deadline driven scheduling. The parameters are set
rithm and some traffic with period, is scheduled by the rateast; = 35, to = 140, t3 = 1700, t4 = 5950, andD = 256.
monotonic algorithm, the system utilization will decrease dra-more thanD connections are to be scheduled by the deadline
tically. In other words, if the connection with longer period hadriven algorithm, we shall let the excessive connections with
higher priority than the one with shorter period, it will impedeshorter periods be scheduled by the rate monotonic algorithm.
the service of the connection with shorter period and may makeshows that when all types of connections are allowed to be
this set of connections unschedulable. This phenomenon carsbkeduled by the deadline driven algorithm, the system utiliza-
seen in Table I. We generate 6000 sets of connections consisting decreases significantly.

of four types of traffic randomly and show the experiment results So far, we can summarize that there are six inputs to the
in Table I. In the first experiment, we randomly divide the type-8ONFIN; they are denoted by, N, N2, N3, Nj, and N/,
connections into two groups: one for rate monotonic schedulinghere N; and N} represent the numbers of type-4 connections
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TABLE IV
(a) PARAMETERS USED IN THE FIVE EXPERIMENTS FOR THEGANFDT. (b) QLASSIFICATION RESULTS OF THEFIVE EXPERIMENTS BY USING THEGANFDT

Number of Number of training Number of test
t1,t2,t3,14 D nodes patterns patterns U
(ya=0,y4=1) (ya=0,ya=1)
1527 996
1| 35, 140, 1700, 5950 | 256 8 (563, 964) (330, 666) 0.93
1610 818
2 | 35, 100, 500, 1250 | 128 12 (628, 982) (340, 478) 0.91
1458 2108
3| 50, 120, 700, 1000 | 128 12 (687, 771) (959, 1149) 0.86
1486 1463
4| 75, 100, 420, 810 64 16 (342, 1144) (295, 1168) 0.89
1340 2625
5 12, 20, 65, 100 32 18 (660, 630) (1304, 1321) 0.85

(a)

Classification rate for test patterns
0—-1{1—-0|U>u |U>In2
26 17 | 95.68% | 98.57%
27 23 | 93.89% | 97.50%
52 77 193.88% | 96.31%
19 34 |96.38% | 98.23%
47 68 |95.62% | 97.13%

(b)

QY| W N~

scheduled by the rate monotonic algorithm and by the deadlimésclassified to be unschedulable. There are 1527 sets of con-

driven algorithm, respectively, amdl; + N = Ny. nections for testing in this experiment and 563 of them are un-
In the simulations, the fithess function of the GA is definedchedulable ones; others are schedulable ones. The parameters
by are set as; = 35, ty = 140, t3 = 1700, t4, = 5950, D = 256,
andu = 0.93. In Table li(a), we compare the performance of the
fit() = C1 3+ Cy two neural networks under the same mean square error (MSE).

. _ The results show that the BP network spends more time than the
where(, is the number of the correctly classified unschedw,oNFIN to achieve the same error, and its classification rate is
lable sets of connections a4 is the number of the correctly \,orse than that of the SONFIN. In Table lI(b), we can see that
classified schedulable sets of connections. Since we prefer gk, training the two neural networks for 10 min, the SONFIN
to mistake an unschedulable set of connections for a schedulallg achieve smaller MSE than the BP network does, and has
one,C; is considered more important théh and is multiplied 4 higher classification rate. In all our experiments, we observed
by a scalar in the fitness function. In the GA, the parameter it the total numbers of errors produced by SONFIN are nearly
is coded by 8 b, the population size is 20, and the crossoygg same, which is much less than that produced by the BP net-
and mutation probabilities are 0.8 and 0.01, respectively, whe{g k. However, the ratio o6 — 1 errors andl — 0 errors
a single-bit mutation is used. After 20 generations, the procgss, pe adjusted by setting different learning parameters in the
stops and the one with the highest fitness value is chosen. If §§NEIN. In other words, while keeping the same total number
numbers of the unschedulable and schedulable sets of CONNRG&rrors, SONFIN can control the tradeoff betweers 1 and
tions are, respectively,; andn? at a node qf the decision tree,; _, ( errors. For example, Table 11(c) shows the results of an-
wheren; > ny, the tree growing phase will stop when/n>  other experiment, in which SONFIN produced smaller number
is smaller than 20. This is based on our experiences that Whgmy _, { errors and. — 0 errors than the BP network did.
n1/ny is smaller than 20, the class is pure enough and the clasy, Taple 111, we compare the performance of four different
sification rate is hard to be improved any more by the GANFDEONFIN-based classifiers, which are the combinations of the

. . SONFIN, binary classification tree, and GA. The training pat-
B. Simulation Results terns are the same as those used in Table II. It shows that the

In Table I, we compare the performance of two neural neBANFDT has the highest classification rate.

works: 1) the BP network and 2) SONFIN, to illustrate why we To make more complete testing of the proposed method, five
use the SONFIN in this paper. The BP network is the most pogxperiments for the GANFDT are simulated. The used parame-
ular neural network, and the details of the BP network can lers and the results are shown in Table IV. The column with title
found in [14]. The symbol0 — 1" in Tables Il and Ill repre- “U > u” represents the classification rates of the GANFDT on
sents the number of unschedulable sets of connections thatthose test patterns, the utilization factor of which is greater than
misclassified to be schedulable and the symldol$ 0” rep- w, and the column with titleU' > 1n 2" represents the classi-
resents the number of schedulable sets of connections thatfenation rates of the GANFDT on those test patterns whose uti-
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