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Abstract—Future broad-band integrated services networks
based on the asynchronous transfer mode (ATM) technology are
expected to support multiple types of multimedia information
with diverse statistical characteristics and quality of service (QoS)
requirements. To meet these requirements, efficient scheduling
methods are important for traffic control in the ATM networks.
Among the general scheduling schemes, the rate monotonic
algorithm is simple enough to be used in high-speed networks,
but it does not attain as high a system utilization as the deadline
driven algorithm does. However, the deadline driven scheme is
computationally complex and hard to implement in hardware.
The mixed scheduling algorithm is the combination of the rate
monotonic algorithm and the deadline driven algorithm; thus it
can provide most of the benefits of these two algorithms. In this
paper, we use the mixed scheduling algorithm to achieve high
system utilization under the hardware constraint. Because there
is no analytic method for the schedulability test of the mixed
scheduling, we propose a genetic algorithm-based neural fuzzy
decision tree (GANFDT) to realize it in a real-time environment.
The GANFDT combines the GA and a neural fuzzy network into a
binary classification tree. This approach also exploits the power of
the classification tree. Simulation results show that the GANFDT
provides an efficient way to carry out the mixed scheduling in the
ATM networks.

Index Terms—Binary decision tree, deadline driven algorithm,
quality of service (QoS), rate monotonic algorithm, recursive least
square (RLS), schedulability test.

I. INTRODUCTION

T HE broad-band integrated services digital networks
(B-ISDN) is conceived to support a wide range of services

such as video, voice, and numerical data. The asynchronous
transfer mode (ATM) technique is considered the ground on
which B-ISDN is to be built [4], [6]. ATM is a packet and
connection-oriented switching technique and has the advantage
of accommodating the variety traffic which possess different
characteristics and service requirements. The diversity of traffic
complicates the traffic control in the ATM networks, and thus
the connection admission control (CAC) plays an important
role among the traffic control functions. A new connection is
accepted only when the network resources can provide enough
bandwidth to ensure the required quality of service (QoS) while
keeping high QoS.
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Cell loss ratio and cell transfer delay are two important
parameters to describe the QoS. Since the cell loss rate can be
kept very low with the use of advanced transmission equip-
ment, cell transfer delay is considered as the most important
parameter in real-time communication services [20]. In order
to meet diverse QoS, several packet multiplexing techniques
have been proposed for different real-time applications [8],
[9]. These schemes are different in traffic specification, system
utilization, and implementation complexity. Among them,
traffic-controlled rate-monotonic priority scheduling (TCRM)
[9] provides bounded local delays to individual cells using a
rate-monotonic priority scheduler. It is simple enough to be
used in the high-speed ATM networks, but does not attain as
high a system utilization as the deadline scheduling scheme,
such as packet-by-packet generalized processor sharing (PGPS)
[18], [19]. However, the deadline scheduling scheme is compu-
tationally expensive because the priorities of connections need
to be updated at every time slot.

In this paper, we use a mixed scheduling scheme to achieve
high utilization under the hardware constraint in the ATM net-
works. During the call set-up phase, when the schedulability test
is successful for every switch along the path of the call, the new
call can be accepted by the CAC. Because the condition for the
schedulability test of the mixed scheduling involves a large set
of inequalities and no analytic closed-form solution can be ob-
tained, we propose a genetic algorithm-based neural fuzzy de-
cision tree (GANFDT) to realize the mixed scheduling scheme
efficiently. Neural networks and fuzzy systems have been ap-
plied for ATM traffic control recently [2], [5], [22], because they
are thought to have a lot potential in this area, especially for
their learning and adaptive capabilities. The neural fuzzy net-
works require no explicit model of the traffic, and the parallel
structure of neural networks can be exploited in hardware im-
plementations, which provides short response time. To obtain
higher decision accuracy of the schedulability test, we combine
the structure of the binary classification tree into our method. Bi-
nary classification trees [1] and neural fuzzy networks are two
popular approaches to the pattern recognition problems [3]. We
use the GA-based neural fuzzy network at the decision nodes
of a binary classification tree to extract linear and nonlinear
traffic features. This scheme expands the capability of the clas-
sification trees. Simulation results show that the system can at-
tain high utilization by the mixed scheduling algorithm with the
schedulability test performed by the proposed GANFDT.

The rest of this paper is organized as follows. Section II de-
scribes the mixed scheduling algorithm of ATM cells. In Sec-
tion III, we propose the GANFDT method to do the schedu-
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lability test for the mixed scheduling algorithm efficiently. In
Section IV, we illustrate some simulation examples to justify the
feasibility of our scheme. Concluding remarks are presented in
Section V.

II. M IXED SCHEDULING OF ATM CELLS

The rate monotonic priority scheduling had been proved
optimal among the fixed priority scheduling schemes [16] if a
packet must be served before its succeeding packet of the same
connection is generated. Packets can have variable length as in
[16], but in this paper, we focus on fixed-length packets called
cells in ATM networks. The rate monotonic priority scheduling
scheme has the advantage of simple implementation. However,
full processor utilization can be achieved by the deadline driven
scheduling scheme with the cost of expensive implementation.
In general, it needs a mechanism to update priorities and a
sorting mechanism to select a packet for service.

The mixed scheduling is a combination of the rate monotonic
scheduling and the deadline driven scheduling. We employ the
mixed scheduling for transmitting cells to achieve high system
utilization under the hardware constraint. If the mixed sched-
uling scheme is not feasible at any switch along the path of the
connection, the call request will be rejected by the CAC.

A. The Investigated System

Since ATM is a packet switching technique, it breaks the mes-
sage up into cells of the same length (53 bytes). The basic com-
ponents of an ATM network are ATM switches. Every switch
has several input ports and several output ports. The main task
for an ATM switch is transporting cells from its input ports to its
destination output ports according to the predetermined routing
table. To prevent excessive cell loss in the case of internal col-
lisions of two or more cells competing for the same output port
simultaneously, buffers should be provided within the switch.

We can view the ATM switch as the combinations of sev-
eral multiplexers (see Fig. 1). A multiplexer multiplexes sev-
eral signals originating from different customers onto a single
access line. Cells which have the same destination output port
are scheduled by a multiplexer. All incoming idle cells will be
sorted out in an ATM multiplexer, thus concentrating the ATM
traffic.

In this paper, we consider a multiplexer which accepts con-
stant bit rate (CBR) traffic. That is, all connections generate cells
periodically. We split time into time slots so that a slot is equal
to the transmission time of a cell. We also normalize a slot to
one unit time. Each connection is specified by its period which
is assumed to be an integer. Letdenote the period of connec-
tion through this paper.

B. Three Scheduling Algorithms

A scheduling algorithm is a set of rules that determine which
cell is to be served at a particular moment by a multiplexer.
In this subsection, three priority driven scheduling algorithms
are studied. First, a scheduling algorithm is said to bestatic if
priorities are assigned to connections once and for all. A static
algorithm is also called afixed-priority scheduling algorithm.
Second, a scheduling algorithm is said to bedynamicif priorities

Fig. 1. ATM switch.

of connections might change from cell to cell. Third, a sched-
uling algorithm is said to be amixed scheduling algorithmif the
priorities of some connections are fixed yet the priorities of the
remaining connections vary from cell to cell.

For a particular priority assignment scheme, we say that a set
of connections is schedulable if every cell is served before the
arrival time of its succeeding cell. Rate monotonic scheduling
algorithm is a fixed-priority scheduling algorithm which is op-
timum in the sense that if a set of connections are schedulable
by a fixed-priority assignment scheme, they must be schedulable
by rate monotonic assignment scheme. Using the fixed-priority
rate monotonic scheduling, connections with higher cell trans-
mission rates (shorter periods) will have higher priority. That is,
if , then connection has higher priority than connec-
tion .

We define the utilization factor to be the fraction of processor
time spent in the service of the cells. In other words, the uti-
lization factor is equal to one minus the fraction of idle pro-
cessor time. Since is the fraction of processor time spent
in serving cells of connection, for a set of connections, the
utilization factor is

Since the rate monotonic priority assignment is the optimum
fixed priority assignment, the utilization factor achieved by the
rate monotonic priority assignment for a given set of connec-
tions is greater than or equal to the utilization factor of any other
fixed priority assignment for the same set of connections. For a
set of connections with fixed priority order, the least upper
bound to processor utilization is [16], and
for large , which approximates 70%.

On the other hand, the dynamic-priority deadline driven
scheduling assigns the priorities to connections according to
the deadlines of their current cells. That is, a connection will
be assigned the highest priority if the deadline of its current
cell is the nearest, and will be assigned the lowest priority if
the deadline of its current cell is the furthest. In our case, the
deadline of a current cell is the arrival time of the next cell for
the same connection. Such a scheme of assigning priorities is a
dynamic one, in contrast to a fixed priority scheduling in which
priorities of connections do not change with time. Deadline
driven scheduling policy is optimum in the sense that if a set
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of connections can be scheduled by any algorithm, it can be
scheduled by the deadline driven scheduling algorithm.

The employment of the mixed scheduling is motivated by
combining the advantages of the above two scheduling poli-
cies. The rate monotonic scheduling policy has the advantage
of simplicity, while the deadline driven scheduling policy has
the advantage of high system utilization. Specifically, if there
are connections to be scheduled by the mixed scheduling al-
gorithm, connections , the connections of shortest
periods, will be scheduled according to the fixed-priority rate
monotonic scheduling algorithm, and the remains, connections

, be scheduled according to the deadline
driven scheduling algorithm when the multiplexer is not occu-
pied by connections . We use the mixed scheduling
policy as the cell multiplexer for the efficiency of cell transmis-
sion. Since one cell is permitted to be transmitted before the
deadline, at most one cell will stay in the multiplexer at any
time. Hence, the multiplexer needs a buffer of one cell for every
connection.

C. Schedulability Test

To provide QoS guarantee with a scheduling scheme, schedu-
lability test must be done at every involved switch. If the test
fails at any switch along the path of a connection, the connec-
tion request must be rejected. Here, the QoS guarantee means
no cell should be lost and the delay of any connectioncell at
each switch is bounded by . Thus, when each cell arrives at
the multiplexer with period , the multiplexer must finish trans-
mission within time slots.

Since the deadline driven scheduling algorithm can achieve
full utilization, its schedulability test condition is very simple. A
set of connections are schedulable by the deadline driven sched-
uling algorithm if and only if the system utilization factor is
smaller than or equal to 1, i.e., .

The schedulability test of the rate monotonic scheduling al-
gorithm for ATM networks has been discussed in [10]. Lee and
Chang proved the following theorem in [10].

Theorem 1: A set of connections with periods
is schedulable by the rate monotonic

scheduling algorithm if and only if there exists an integer
such that and for all ,

.
The schedulability test at each switch with the mixed sched-

uling scheme is similar to the one in [16]. Suppose there are
CBR connections to be scheduled by the mixed scheduling

scheme. Assume that . Let
the cells of connections be scheduled according to
the rate monotonic scheduling algorithm, and the cells of con-
nections be scheduled according to the
deadline driven algorithm when the multiplexer is not occupied
by connections . The connections with shorter pe-
riods are scheduled by the rate monotonic scheduling algorithm
because if the connection with longer period has higher priority
than the one with shorter period, it will impede the service of the
connection with shorter period. In other words, if the connection
with shorter period has higher priority than the one with longer
period, more sets of connections have the opportunities to be

schedulable by the mixed scheduling. Thus, the system can have
higher utilization. This can be seen with the following example.
Let there be three connections with periods 2, 3, and 6, respec-
tively. Clearly, the utilization factor is .
When the connections with periods 2 and 3 are scheduled by the
rate monotonic algorithm and the connection with period 6 is
scheduled by the deadline driven algorithm, this set of connec-
tions is schedulable. However, if the connections with periods
2 and 6 are scheduled by the rate monotonic algorithm and the
connection with period 3 is scheduled by the deadline driven al-
gorithm, this set of connections is not schedulable.

In addition, in Theorem 1, the integer represents a pe-
riod, in which form a fixed schedulable pattern. In other
words, every time slots, will be sent out in the same
time sequence. The meaning of can be also caught from
the proof of Theorem 1. Suppose is schedulable. Let

be the slot packet that is served, where denotes the
packet generated by connection. The number of connection

( ) packets served up to slot is and hence
. Since is assumed to be schedu-

lable, we have . Therefore, there exists an such that
and . Hence, is

schedulable implies the arguments in Theorem 1 must hold for
all , .

The schedulability test for the mixed scheduling involves an
availability function . The availability function for a set
of connections is defined as the accumulated transmission time
slots from 0 to available to this set of connections. Let
denote the availability function of the scheduler for connections

. Clearly, is a nondecreasing function
of . Then, the schedulability test for the mixed scheduling with
availability function is given by

(1)

for all s which are multiples of , or , or .
From the above descriptions, we know that the schedulability

test for the mixed scheduling police with availability function
is given by (1) for all s which are multiples of , ,

, and . Hence, the above inequality should be checked for
LCM time slots, where LCM is the least common multiple of

, , , and , which is equal to in the
worst case. The availability function in the above equation
counts the sum of the empty time slots which are not occupied
by connections until time . Hence, we have

To calculate , we need multiplications, additions, and
supremum operations. Furthermore, we need multi-
plications, additions, supremum operations,
and one comparison operation in obtaining the left-hand side of
(1). As a total, we need multiplications, additions,

supremum operations, and one comparison operation in
each inequality check in (1). Hence, the computation load of the
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schedulability test of the mixed scheduling algorithm according
to (1) is

multiplications additions

supremums comparison

in the worst case. In short, this computation load can be written
as ( ) (operations).

Note that this condition is a necessary and sufficient
condition. The left-hand side of (1) represents the sum of
the needed service time slots which belong to connections

between time 0 and time. The avail-
ability function counts the sum of the empty time slots
which are not occupied by connections until
time . Conceptually, the schedulability condition implies that
if the available empty time slots left by the rate monotonic
connections are enough for the connections scheduled by
the deadline driven scheduling policy, these connections
are schedulable. This test involves the solution of a large set
of inequalities and no analytic closed-form solution can be
obtained, so its application is not easy to be dealt with in a
real-time environment. In Section III, we shall propose a new
scheme to do the schedulability test efficiently.

Lemma 1 that follows is induced from (1). It states that if a set
of connections is schedulable by a mixed scheduling algorithm,
it is also schedulable by the same algorithm except that a con-
nection scheduled by the rate monotonic algorithm originally is
changed to be scheduled by the deadline driven algorithm. This
lemma will be used in Section IV-A.

Lemma 1: If a set of connections with periods
is schedulable by the

mixed scheduling algorithm with connections
scheduled by the rate monotonic algorithm, and connections

scheduled by the deadline driven al-
gorithm, then it is also schedulable by the mixed scheduling
algorithm with connections scheduled by the
rate monotonic algorithm, and connections
scheduled by the deadline driven algorithm.

Proof: At any moment, the total demand of service time
cannot exceed the total available service time. Thus, we must
have

for any

Since

we have

for any

According to (1), this completes the proof.

III. GA-B ASED NEURAL FUZZY DECISION TREE

In this section, we propose a GANFDT to do the schedu-
lability test of the mixed scheduling algorithm. A classifica-
tion/decision tree is a popular method for deciding boundaries
of some classes. In our case, there are only a boundary be-
tween schedulable class and unschedulable class to be found.
We use a GA or a self-constructing neural fuzzy inference net-
work (SONFIN) at each decision node of a classification tree to
extract a feature. When the features represent the traffic charac-
teristic better, the decision made by the tree can be more precise.
To represent the traffic characteristic well, we choose the utiliza-
tion factor and the connection numbers of each traffic type as the
input parameters of our GANFDT. Connections with the same
period belong to the same traffic type. The single output of the
GANFDT indicates whether the schedulability test is successful
or not.

We shall introduce the GA and the SONFIN in Sections III-A
and III-B, respectively. Then, the GA and SONFIN are com-
bined with the binary classification tree to form the GANFDT
method in Section III-C.

A. Basics of GA

The GA is a general purpose stochastic optimization method
for search problems [11]. GAs differ from normal optimization
and search procedures in several ways [12], [13]. First, the algo-
rithm works with a population of strings, searching many peaks
in parallel. By employing genetic operators, it exchanges in-
formation between the peaks, hence lowering the possibility of
ending at a local minimum and missing the global minimum.
Second, it works with coding of the parameters, not the param-
eters themselves. Third, the algorithm only needs to evaluate
the objective function to guide its search, and there is no re-
quirement for derivatives or other knowledge. The only avail-
able feedback from the system is the value of the performance
measure (fitness) of the current population. Finally, the tran-
sition rules in GAs are probabilistic rather than deterministic.
The randomized search is guided by the fitness values of each
string and how they compare to others. Using the operators on
the chromosomes which are taken from the population, the al-
gorithm efficiently explores parts of the search space where the
probability of finding improved performance is high.

The basic element processed by a GA is the string formed by
concatenating substrings, each of which is a binary coding of
a parameter of the search space. Thus, each string represents
a point in the search space and hence a possible solution to
the problem. Each string is decoded by an evaluator to obtain
the objective function value of an individual point in the search
space. This function value, which should be maximized or min-
imized by the algorithm, is then converted to a fitness value
which determines the probability of the individual undergoing
genetic operators. The population then evolves from generation
to generation through the application of the genetic operators.
The total number of strings included in the population is kept
unchanged through generations. A GA in its simplest form uses
three operators: 1) reproduction; 2) crossover; and 3) mutation.
An abstract procedure of a simple GA is shown in Fig. 2.
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Fig. 2. Basic steps of GA.

B. Self-Constructing Neural Fuzzy Inference Network
(SONFIN)

The SONFIN is a fuzzy rule-based network possessing
learning ability. Compared with other existing neural fuzzy
networks [7], [21], [23], a major characteristic of the network
is that no preassignment and design of the rules are required.
The rules are constructed automatically during the on-line
operation. Two learning phases, the structure as well as the pa-
rameter learning phases are adopted on-line for the construction
task. One important task in the structure identification of the
SONFIN is the partition of the input space, which influences
the number of fuzzy rules generated. Traditional partitioned
results are shown in Fig. 3(a) and (b) [13]. Fig. 3(a) is a
grid-type partitioned result [7], [23]. A major problem of this
kind of partitioning is that the number of fuzzy rules increases
exponentially as the dimension of the input space increases.
Fig. 3(b) is a clustering-based partitioned result [15], [17], [23].
Compared with the grid-type partition, the number of rules is
reduced by this method, but not the number of membership
functions in each dimension. In fact, by observing the projected
membership functions in Fig. 3(b), we can find that some mem-
bership functions projected from different clusters have high
overlapping degrees. These highly overlapping membership
functions can be eliminated. An on-line input space partitioning
method, thealigned clustering-based method, is proposed in
this paper. The on-line partitioned result is shown in Fig. 3(c).

This method will reduce not only the number of rules gener-
ated, but also the number of fuzzy sets in each dimension. An-
other feature of the SONFIN is that it can optimally determine
the consequent part of fuzzy IF–THEN rules during the structure
learning phase. A fuzzy rule of the following form is adopted in
our system initially

Rule IF is and and is

THEN is (2)

Fig. 3. Fuzzy partitions of a two-dimensional (2-D) input space. (a) Grid-type
partitioning. (b) Clustering-based partitioning. (c) Proposed aligned clustering-
based partitioning.

where
and input and output variables, respectively;

fuzzy set;
position of a symmetric membership function
of the output variable with its width neglected
during the defuzzification process.

Then, by monitoring the change of the network output error, ad-
ditional terms (the linear terms used in the consequent part of
the TSK model [21]) will be included when necessary to further
reduce the output error. This consequent identification process
is employed in conjunction with the precondition identification
process to reduce both the number of rules and the number of
consequent terms. For the parameter identification scheme, the
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Fig. 4. Structure of the SONFIN.

consequent parameters are tuned by the recursive least square
(RLS) algorithm, and the precondition parameters are tuned by
the back-propagation (BP) learning algorithm. Both the struc-
ture and parameter learning are done simultaneously to achieve
fast learning.

In this subsection, the structure of the SONFIN as shown in
Fig. 4 is introduced. With this five-layered network structure of
the SONFIN, we shall define the function of each node for the
SONFIN in Section III-B1, and the learning algorithm of the
SONFIN in Section III-B2.

1) Structure of the SONFIN:Let and denote the
input and output of a node in Layer, respectively. The func-
tions of the nodes in each of the five layers of the SONFIN are
described as follows.

Layer 1: No computation is done in this layer. Each node in
this layer, which corresponds to one input variable, only trans-
mits input values to the next layer directly. That is

(3)

Layer 2: Each node in this layer corresponds to one linguistic
label (small, large, etc.) of one of the input variables in Layer
1. In other words, the membership value which specifies the
degree to which an input value belongs a fuzzy set is calculated
in Layer 2. With the use of Gaussian membership function, the
operations performed in this layer is

(4)

where and are, respectively, the center (or mean) and the
width (or variance) of the Gaussian membership function of the
th term of the th input variable . Unlike other clustering-

based partitioning methods, where each input variable has the
same number of fuzzy sets, the number of fuzzy sets of each
input variable is not necessarily identical in the SONFIN.

Layer 3: A node in this layer represents one fuzzy logic rule
and performs precondition matching of a rule. Here, we use the
following AND operation for each Layer-3 node

(5)

where is the number of Layer 2 nodes participating in the IF
part of the rule.

Layer 4: This layer is called theconsequent layer. Two types
of nodes are used in this layer, and they are denoted as blank
and shaded circles in Fig. 4, respectively. The node denoted by
a blank circle (blank node) is the essential node representing a
fuzzy set (described by a Gaussian membership function) of the
output variable. Only the center of each Gaussian membership
function is delivered to the next layer for the local mean of max-
imum (LMOM) defuzzification operation [14], and the width is
used for output clustering only. Different nodes in Layer 3 may
be connected to a same blank node in Layer 4, which means that
the same consequent fuzzy set is specified for different rules.
The function of the blank node is

(6)

where , the center of a Gaussian membership func-
tion. As for the shaded node, it is generated only when neces-
sary. Each node in Layer 3 has its own corresponding shaded
node in Layer 4. One of the inputs to a shaded node is the output
delivered from Layer 3, and the other possible inputs (terms) are
the input variables from Layer 1. The shaded node function is

(7)

where the summation is over all the inputs and is the cor-
responding parameter. Combining these two types of nodes in
Layer 5, we obtain the whole function performed by this layer
for each rule as

(8)

Layer 5: Each node in this layer corresponds to one output
variable. The node integrates all the actions recommended by
Layers 3 and 4 and acts as a defuzzifier with

(9)

2) Learning Algorithm for the SONFIN:In Fig. 5, we use a
flowchart to illustrate the entire learning process of SONFIN.
Here, two types of learning, namely, structure and parameter
learning, are used concurrently for constructing the SONFIN.
The structure learning includes both the precondition and con-
sequent structure identification of a fuzzy IF–THEN rule. There
are no rules (i.e., no nodes in the network except the input/output
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Fig. 5. Flowchart for the learning process of SONFIN.

(I/O) nodes) in the SONFIN initially. They are created dynam-
ically as learning proceeds upon receiving on-line incoming
training data by performing the following learning processes si-
multaneously: a) I/O space partitioning; b) construction of fuzzy
rules; c) consequent structure identification; and d) parameter
identification. Processes a), b), and c) belong to the structure
learning phase and process d) belongs to the parameter learning

phase. The details of these learning processes are described in
the rest of this subsection.

a) Input/output space partitioning:The way the input
space is partitioned determines the number of rules extracted
from training data as well as the number of fuzzy sets on the
universal of discourse of each input variable. For each incoming
pattern , the strength a rule is fired can be interpreted as the
degree the incoming pattern belongs to the corresponding
cluster. For computational efficiency, we can use the firing
strength given in (5) directly as this degree measure

(10)

where , , and
. Using this measure, we can ob-

tain the following criterion for the generation of a new fuzzy
rule. Let be the newly incoming pattern. Find

(11)

where is the number of existing rules at time. If
, then a new rule is generated, where is a

prespecified threshold that decays during the learning process.
Once a new rule is generated, the initial centers and widths are
set as

(12)

(13)

according to the first-nearest-neighbor heuristic [14], where
decides the overlap degree between two clusters.

After a rule is generated, the next step is to decompose the
multidimensional membership function formed in (12) and (13)
to the corresponding one-dimensional (1-D) membership func-
tion for each input variable. For the Gaussian membership func-
tion used in the SONFIN, the task can be easily performed as

(14)

where and are, respectively, the projected center and
width of the membership function in each input dimension. To
reduce the number of fuzzy sets of each input variable and to
avoid the existence of redundant ones, we should check the sim-
ilarities between the newly projected membership function and
the existing ones in each input dimension. Since bell-shaped
membership functions are used in the SONFIN, we use the for-
mula of the similarity measure, , of two fuzzy sets

and with membership function
and , respectively.

Assume , we can compute by

(15)
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where . Therefore, the approximate simi-
larity measure is

(16)

where we use the fact that . Let
represent the Gaussian membership function with

center and width . The whole algorithm for the generation
of new fuzzy rules as well as fuzzy sets in each input dimension
is as follows. Suppose no rules are existent initially.

IF is the first incoming pattern THEN
do

PART 1. Generate a new rule,
with center , width

,
where is a prespecified

constant.
After decomposition, we have 1–D

membership functions,
with and ,
.

ELSE for each newly incoming , do
PART 2. find ,

IF
do nothing

ELSE
,

generate a new fuzzy rule, with
,

.
After decomposition, we have

, ,
.

Do the following fuzzy measure
for each input variable :

, ,
where is the number of parti-

tions of the th input variable.
IF ,
THEN adopt this new membership

function, and set ,
ELSE set the projected member-

ship function as the closest one.

In the above algorithm, the threshold determines the
number of rules generated. For a higher value of , more
rules are generated, and in general, a higher accuracy is
achieved. determines the number of output clusters gen-
erated and a higher value of will result in a higher number
of output clusters. is a scalar similarity criterion which is
monotonically decreasing such that higher similarity between
two fuzzy sets is allowed in the initial stage of learning. For

the output space partitioning, the same measure in (11) is used.
Since the criterion for the generation of a new output cluster
is related to the construction of a rule, we shall describe it
together with the rule construction process in learning process
b) below.

b) Construction of fuzzy rules:As mentioned in learning
process a), the generation of a new input cluster corresponds to
the generation of a new fuzzy rule, with its precondition part
constructed by the learning algorithm in process a). At the same
time, we have to decide the consequent part of the generated
rule. Suppose a new input cluster is formed after the presenta-
tion of the current input–output training pair (, ), then the
consequent part is constructed by the following algorithm.

IF there are no output clusters,
do PART 1 in Process a), with re-

placed by
ELSE

do
find .
IF
connect input cluster to the

existing output cluster ,
ELSE
generate a new output cluster,
do the decomposition process in PART

2 of Process a),
connect input cluster to the

newly generated output cluster.
.

The algorithm is based on the fact that the preconditions of
different rules may be mapped to the same consequent fuzzy set.
Compared to the general fuzzy rule-based models with singleton
output, where each rule has its own individual singleton value
[17], [23], fewer parameters are needed in the consequent part
of the SONFIN, especially for the case with a large number of
rules.

c) Consequent structure identification:Until now, the
SONFIN contains fuzzy rules in the form of (2). Even though
such a basic SONFIN can be used directly for system mod-
eling, a large number of rules are necessary for modeling
sophisticated systems under a tolerable modeling accuracy. To
cope with this problem, we adopt the spirit of the TSK model
[21] into the SONFIN. In the TSK model, each consequent part
is represented by a linear equation of the input variables. It is
reported in [21] that the TSK model can model a sophisticated
system using a few rules. Even so, if the number of input and
output variables is large, the consequent parts used in the output
are quite considerable, some of which may be superfluous.
To cope with the dilemma between the number of rules and
the number of consequent terms, instead of using the linear
equation of all the input variables (terms) in each rule, we add
these additional terms only to some rules when necessary. The
idea is based on the fact that for different input clusters, the
corresponding output mapping may be simple or complex.
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For simple mapping, a rule with a singleton output is enough.
While for complex mapping, a rule with a linear equation in
the consequent part is needed. The criterion for deciding which
type of consequent part should be used for each rule is based
on computing

(17)

where
firing strength of rule ;
number of rules;
desired output;
current output;
accumulated error caused by rule.

By monitoring the error curve, if the error does not diminish
over a period of time and the error is still too large, we shall add
linear combinations of input variables to the rules, the
values of which are larger than a predefined threshold value.

d) Parameter identification:The parameter identification
process is done concurrently with the structure identification
process. The idea of BP is used for this supervised learning.
Considering the single-output case for clarity, our goal is to min-
imize the error function

(18)

where is the desired output, and is the current output.
The parameters in Layer 4 are tuned by the RLS algorithm
as

(19)

(20)

where
forgetting factor;
current input vector;
corresponding parameter vector;
covariance matrix.

The initial parameter vector is determined in the structure
learning phase and , where is a large positive
constant. As to the free parameters and of the input
membership functions in Layer 2, they are updated by the BP
algorithm. Hence, by using the chain rule, we derive the error
transmission in Layer 3 and the update of the parameters
and in Layer 2 in the following.

Layer 3: Only the error signal needs to be computed in this
layer

(21)

where

(22)

if

if .

(23)

Layer 2: Using (4), the update rule of is derived as in
the following:

(24)

where

(25)

if term node is

connected to rule node

otherwise.
(26)

Therefore, the update rule of is

(27)

Similarly, using (4), the update rule of is derived as

(28)

where

if term node is

connected to rule node

otherwise.
(29)

Therefore, the update rule of is

(30)

C. GA-Based Neural Fuzzy Decision Tree (GANFDT)

In this subsection, we combine the GA and SONFIN men-
tioned in Sections III-A and III-B with the binary classification
tree structure to form the GANFDT. A classification tree is a
popular form of decision rules. A binary classification tree is
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Fig. 6. Binary classification tree for a 2-class problem.

shown in Fig. 6 [3]. The circular nodes are decision nodes and
square nodes are terminal nodes. Each decision node has a func-
tion and a number associated with it. The tree classifies
an input pattern vector through a chain of binary decisions.
Starting at the root node and proceeding down the tree, tests of
the form are conducted to determine whether the pat-
tern goes to the left or right descendant. Each such test is called
a splitting rule, and and are the associated feature and
threshold, respectively. The pattern is assigned the class label
of the terminal node it lands. In Fig. 6, indicates the un-
schedulable class; indicates the schedulable class.

The power of the classification tree lies in the fact that ap-
propriate features can be selected at different nodes and levels
in the tree. In many pattern recognition problems, classifica-
tion trees use coordinate features or linear features. However,
difficult problems with complex decision boundaries may re-
quire nonlinear features. Such features would further simplify
the splitting procedure, and hence decrease the error rates and
tree size. In this paper, we propose a method for extracting cer-
tain coordinates and nonlinear features at the decision nodes of
a classification tree. This method employs a GA or a SONFIN
at each decision node to extract a feature. The idea of using the
GA in the decision tree is to partition the training data into two
suitable groups, which make the learning of the SONFIN easier.
Furthermore, by adjusting the fitness function of the GA, we can
get the desired learning result.

Our GANFDT method is designed to perform the schedula-
bility test of the mixed scheduling algorithm. Thus, the input
vector of the SONFIN must contain the parameters which rep-
resent the traffic characteristic sufficiently, and the single output

indicates whether or not the test is successful. We select the
utilization factor and the number of connections for each type
of traffic as the input parameters. Connections with the same pe-
riod belong to the same traffic type. The desired outputof the
SONFIN is equal to one if the test is successful; otherwise, it is
equal to zero.

During the tree growing phase, a tree is grown by recursively
finding splitting rules until all terminal nodes have almost pure
class membership or cannot be split anymore. The feature at a
node is determined by optimizing a splitting criterion. In our
decision tree, nodes at the odd layers use the GA to find the
threshold for , so that nodes at the even layers
can use the SONFIN to learn the decision boundary easily (see
Fig. 7). At a node of the odd layers, if the utilization factor
of an input vector is less than, this input vector is split to the

Fig. 7. Proposed binary classification tree with a GA or a SONFIN to extract
a feature at each decision node.

left child of the original node; otherwise, it is split to the right
child of the node. After that, the members of the left child and
the members of the right child are trained by two SONFINs, re-
spectively. The fitness function of the GA is basically the clas-
sification rate of these two SONFINs. In a real situation, we
prefer not to mistake an unschedulable set of connections for
a schedulable one, so we consider that the classification rate
of the unschedulable ones are more important than that of the
schedulable ones. This can be achieved by amending the fitness
function properly. The above process will be repeated until each
terminal node contains almost the same class patterns and the
classification rate cannot be improved anymore.

IV. SIMULATIONS

In this section, we illustrate some simulation examples to jus-
tify the feasibility of the proposed GANFDT method.

A. Problem Formulation

Assume that there are four types of traffic scheduled by the
mixed scheduling algorithm with periods and ,
respectively, where . Let ,
represent the number of connections with period. Let

represent the periods of connec-
tions, where and if and only if

. Define if
. In other words, s are arranged in order so that

, and for
each . Thus, the utilization factor is . In our
simulations, s are randomly generated between 1 andfor a
set of connections under the restriction thatmust be smaller
than or equal to 1, because it is clear that when the utilization
factor is larger than 1, the set of connections cannot be sched-
uled by any algorithm. Let denote the largest number of
connections which hardware can handle by the deadline driven
algorithm. This constraint exists in the real-time environment
because the computation and sorting time of the deadlines of
the cells at every time slot is very considerable. Therefore, at
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TABLE I
COMPARISON OFTWO MIXED SCHEDULING POLICIES

most, connections can be scheduled by the deadline driven
algorithm in the mixed scheduling policy; others are scheduled
by the rate monotonic algorithm.

Some experiments are simulated, and about 6000 sets of
connections are generated for each experiment. Since the least
upper bound of the utilization factor is for the rate
monotonic scheduling algorithm [16], a set of connections with
utilization factor under 0.693 must be schedulable by the mixed
scheduling algorithm. This can be proven by letting in
Lemma 1. Hence, when we collect the 6000 patterns for each
experiment, we only choose the patterns the utilization factors
of which are larger than 0.693 and smaller than 1. The desired
output for each input pattern is attained by checking (1)
for LCM times, where LCM is the least common multiple of
periods and . We check (1) for LCM times because
the same situation is repeated for every LCM time slots. Among
the 6000 patterns, we find that all the unschedulable ones have
the utilization factors larger than some threshold, and this
threshold is much larger than 0.693. We denote this threshold
by , and only the patterns which have the utilization factor
larger than are selected to train the GANFDT.

Before we do the schedulability test by using the GANFDT,
we test the sets of connections which are scheduled by the rate
monotonic algorithm with Theorem 1, so that we can ensure
the connections scheduled by the rate monotonic algorithm will
not be misclassified. As for the connections scheduled by the
deadline driven algorithm, although the classification rate of the
GANFDT can be very high after the training process, we still
cannot ensure it will not misjudge any possible set of connec-
tions. This problem must be solved because an unschedulable
connection which is misclassified to be schedulable will cause
data loss. Therefore, we provide another service which allows
the renegotiation of a connection that is scheduled by the dead-
line driven algorithm when data loss occurs. Such connections
will be charged lower than other connections and are allowed
to be scheduled by either deadline driven or rate monotonic al-
gorithms decided by our system, and other connections are all
scheduled by the rate monotonic algorithm. This kind of service
is only for type-4 traffic with period , because if other traffic
with a shorter period is scheduled by the deadline driven algo-
rithm and some traffic with period is scheduled by the rate
monotonic algorithm, the system utilization will decrease dras-
tically. In other words, if the connection with longer period has
higher priority than the one with shorter period, it will impede
the service of the connection with shorter period and may make
this set of connections unschedulable. This phenomenon can be
seen in Table I. We generate 6000 sets of connections consisting
of four types of traffic randomly and show the experiment results
in Table I. In the first experiment, we randomly divide the type-4
connections into two groups: one for rate monotonic scheduling

TABLE II
(a) PERFORMANCECOMPARISON OF THESONFINAND BP NETWORK UNDER

THE SAME MSE (CASE 1). (b) PERFORMANCECOMPARISON OF THESONFIN
AND BP NETWORK WITH THE SAME LEARNING TIME. (c) PERFORMANCE

COMPARISON OF THESONFINAND BP NETWORK UNDER THE SAME MSE
(CASE 2). (d) PERFORMANCECOMPARISON OF THEGANFDT AND BP

NETWORK UNDER THE SAME MSE. (e) PERFORMANCECOMPARISON OF

THE GANFDT AND BP NETWORK WITH THE SAME LEARNING TIME.
THE PERCENTAGEINDICATES THE PERCENT OFPATTERNS THAT ARE

MISCLASSIFIED. NOTE THAT THE RESULTS OFTABLES (a) AND (c) CAME

FROM DIFFERENTSETTING OF LEARNING PARAMETERS IN SONFIN

TABLE III
PERFORMANCE COMPARISON OF FOUR DIFFERENT

SONFIN-BASED CLASSIFIERS

and the other for deadline driven schedulin. All the other types
of connections are scheduled by the rate monotonic scheme. In
the second experiment, we randomly divide each type of con-
nections into two groups, one for rate monotonic scheduling and
the other for deadline driven scheduling. The parameters are set
as , , , , and .
If more than connections are to be scheduled by the deadline
driven algorithm, we shall let the excessive connections with
shorter periods be scheduled by the rate monotonic algorithm.
It shows that when all types of connections are allowed to be
scheduled by the deadline driven algorithm, the system utiliza-
tion decreases significantly.

So far, we can summarize that there are six inputs to the
SONFIN; they are denoted by , and ,
where and represent the numbers of type-4 connections
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TABLE IV
(a) PARAMETERSUSED IN THEFIVE EXPERIMENTS FOR THEGANFDT. (b) CLASSIFICATION RESULTS OF THEFIVE EXPERIMENTS BYUSING THEGANFDT

scheduled by the rate monotonic algorithm and by the deadline
driven algorithm, respectively, and .

In the simulations, the fitness function of the GA is defined
by

where is the number of the correctly classified unschedu-
lable sets of connections and is the number of the correctly
classified schedulable sets of connections. Since we prefer not
to mistake an unschedulable set of connections for a schedulable
one, is considered more important than and is multiplied
by a scalar in the fitness function. In the GA, the parameter
is coded by 8 b, the population size is 20, and the crossover
and mutation probabilities are 0.8 and 0.01, respectively, where
a single-bit mutation is used. After 20 generations, the process
stops and the one with the highest fitness value is chosen. If the
numbers of the unschedulable and schedulable sets of connec-
tions are, respectively, and at a node of the decision tree,
where , the tree growing phase will stop when
is smaller than 20. This is based on our experiences that when

is smaller than 20, the class is pure enough and the clas-
sification rate is hard to be improved any more by the GANFDT.

B. Simulation Results

In Table II, we compare the performance of two neural net-
works: 1) the BP network and 2) SONFIN, to illustrate why we
use the SONFIN in this paper. The BP network is the most pop-
ular neural network, and the details of the BP network can be
found in [14]. The symbol “ ” in Tables II and III repre-
sents the number of unschedulable sets of connections that are
misclassified to be schedulable and the symbol “ ” rep-
resents the number of schedulable sets of connections that are

misclassified to be unschedulable. There are 1527 sets of con-
nections for testing in this experiment and 563 of them are un-
schedulable ones; others are schedulable ones. The parameters
are set as , , , , ,
and . In Table II(a), we compare the performance of the
two neural networks under the same mean square error (MSE).
The results show that the BP network spends more time than the
SONFIN to achieve the same error, and its classification rate is
worse than that of the SONFIN. In Table II(b), we can see that
after training the two neural networks for 10 min, the SONFIN
can achieve smaller MSE than the BP network does, and has
a higher classification rate. In all our experiments, we observed
that the total numbers of errors produced by SONFIN are nearly
the same, which is much less than that produced by the BP net-
work. However, the ratio of errors and errors
can be adjusted by setting different learning parameters in the
SONFIN. In other words, while keeping the same total number
of errors, SONFIN can control the tradeoff between and

errors. For example, Table II(c) shows the results of an-
other experiment, in which SONFIN produced smaller number
of errors and errors than the BP network did.

In Table III, we compare the performance of four different
SONFIN-based classifiers, which are the combinations of the
SONFIN, binary classification tree, and GA. The training pat-
terns are the same as those used in Table II. It shows that the
GANFDT has the highest classification rate.

To make more complete testing of the proposed method, five
experiments for the GANFDT are simulated. The used parame-
ters and the results are shown in Table IV. The column with title
“ ” represents the classification rates of the GANFDT on
those test patterns, the utilization factor of which is greater than

, and the column with title “ ” represents the classi-
fication rates of the GANFDT on those test patterns whose uti-
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lization factor is greater than . The five sets of periods range
from tens to hundreds or thousands, and the allowable number

for deadline driven algorithm ranges from 32 to 256. The least
upper bound of the system utilization for the five experiments is
about 0.85, which is much larger than . The classi-
fication rates for the test patterns are all above 93.88%.

V. CONCLUSIONS

Considering the tradeoff between the high system utilization
and the hardware restriction on the number of the connec-
tions scheduled by the deadline driven algorithm, we choose
the mixed scheduling policy in ATM switches. Because the
condition for the schedulability test of the mixed scheduling
algorithm does not have an analytic closed-form solution, a
GANFDT was proposed in this paper to perform this test.
We used the GA and SONFIN at decision nodes of a binary
classification tree to extract the coordinates and nonlinear
traffic features. By adjusting the fitness function of the GA, we
can get the desired higher classification rate for the unschedu-
lable sets of connections. The proposed method was evaluated
through two performance comparisons and five experiments.
The first performance comparison showed that the SONFIN
yielded higher classification rate and shorter training time
than the popular BP network. In the second performance com-
parison, we compared three other SONFIN-based classifiers
with the GANFDT and the results showed that the GANFDT
had the highest classification rate. Finally, the five complete
experiments for the GANFDT verified the effectiveness of the
proposed method.
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