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For more than 30 years, expression

divergence has been considered as a major

reason for retaining duplicated genes in a

genome, but how often and how fast

duplicate genes diverge in expression has

not been studied at the genomic level.

Using yeast microarray data, we show that

expression divergence between duplicate

genes is significantly correlated with their

synonymous divergence (K
S
) and also with

their nonsynonymous divergence (K
A
) 

if K
A

≤≤  0.3. Thus, expression divergence

increases with evolutionary time, and 

K
A

is initially coupled with expression

divergence. More interestingly, a large

proportion of duplicate genes have

diverged quickly in expression and the vast

majority of gene pairs eventually become

divergent in expression. Indeed, more than

40% of gene pairs show expression

divergence even when K
S

is ≤≤ 0.10, and 

this proportion becomes >>80% for K
S

>>  1.5.

Only a small fraction of ancient gene pairs

do not show expression divergence.

Published online: 01 November 2002

Expression divergence between duplicate
genes has long been a subject of great
interest to geneticists and evolutionists
[1–4]. Indeed, Ohno [2] and others [3,4]
had proposed expression divergence as 
the first step towards the retention of
duplicate genes. In the past, however,
studies of expression divergence were
usually conducted for a limited number 
of gene families, providing no general
picture of the rate of expression
divergence between duplicate genes in a
genome. Fortunately, a general picture
can now be seen thanks to the advent of
microarray gene expression technology
(Box 1) and the complete sequences of
many genomes. Indeed, using the
microarray technology, Ferea et al. [5]
showed that rapid change in gene
expression can occur in experimental
lineages of yeast.

These advances notwithstanding,
there remains the difficulty of dating the
divergence time between two duplicate
genes, which is needed for inferring the
rate of expression divergence. In a

pioneering study using microarray data
from Saccharomyces cerevisiae, Wagner [6]
found no significant correlation 
(−0.30, P = 0.18) between expression
divergence and protein sequence
divergence (d) between duplicate genes,
and concluded that expression divergence
and sequence divergence are decoupled.
This result, however, does not imply that
expression divergence and evolutionary
time are decoupled because d might not 
be a good proxy of divergence time.
Because the rate of amino acid
substitution varies tremendously among
proteins [7,8], no single d value can be
applied to date the divergence times of
different protein or gene pairs. By
comparison, the rate of synonymous
substitution is more uniform among 
genes [7,8], and so KS is a better proxy of
divergence time. We shall therefore rely
more on KS than d.

To avoid using correlated data points,
we selected independent pairs of duplicate
genes in the yeast genome (Box 2). 

For each gene family, we started with the
pair with the smallest KS and continued
selecting pairs with increasing KS,
because gene pairs with a small KS are
fewer than those with a large KS and
because a smaller KS can more accurately
reflect the time course of expression
divergence. Moreover, we selected gene
pairs where neither duplicate shows
strong codon usage bias, because this bias
can retard the increase of KS so as to make
KS a poor proxy of divergence time. Then
we analysed the expression divergence for
each gene pair using expression data from
microarray analyses (see Box 2).

Figure 1a shows a significant negative
correlation (−0.47, P < 2 ×10−5) between
�n[(1+R)/(1−R)] and KS. We used the
transformation �n[(1+R)/(1−R)] instead 
of R to change the scale to a more
appropriate one for a linear regression
analysis (Box 2); actually, a similar
correlation (−0.54) is obtained between
R and KS. A stronger correlation than this
is not expected because KS is only a crude
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A total of 208 cDNA microarray experiment
data points were compiled for this study. The
dataset represents the gene expression under
various developmental and physiological
conditions in the yeast life history (Table I). 

For some processes, more than one yeast
strain or one time course were studied and 
we randomly selected only one of them for
each process. Log2-transformed ratios of 
gene expression in experimental populations
to reference populations were used in 
the analysis.
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Box 1. Yeast microarray data

Table I. Studied processes and number

of data points in each process

Process Data

points

Ref.

Sporulation   9 [a]
Cell cycle 17 [b]
Zinc regulation   9 [c]
YPD growth 10 [d]
Diamide treatment   8 [d]
Nitrogen deletion 10 [d]
DTT treatment   8 [d]
H2O2 treatment 10 [d]
Menadione treatment   9 [d]
Diauxic shift   7 [e]
Heat shock   7 [d]
Hyper-osmotic shock   7 [d]
Different carbon resources   6 [d]
Amino acid starvation   5 [d]
Other experiments in response 86 [d]
 to environmental changes



proxy of divergence time owing to the
considerable variation in synonymous
rate among genes [7,8]. As in [6], only a
weak correlation (−0.30, P = 4.57×10−9) 
is found between �n[(1+R)/(1−R)] and KA
(KA ≤ 0.70); the correlation is significant
because the dataset used is much larger
than that in [6]. The weak correlation is
not surprising because KA is not a good
proxy of divergence time, so that no
correlation between R and KA is expected
when KA becomes large. Indeed, Fig. 1c
shows no correlation (0.02, P = 0.77)
between �n[(1+R)/(1−R)] and KA for
KA > 0.30. However, a significant negative

correlation (−0.52) between the two
quantities is seen for KA ≤ 0.30 (Fig. 1b).
The range of KA ≤ 0.30 is somewhat
arbitrary, but the correlation coefficient
varies only from −0.49 for KA ≤ 0.25 to
–0.48 for KA ≤ 0.35. Thus, expression
divergence and KA are initially coupled 
to some extent. The same conclusions 
hold for Affymetrix microarray data, 
for which cross hybridization between
duplicate genes is a less serious 
problem (see Supplementary Figure at
http://download.bmn.com/supp/tig/
decemberAffymetrix.pdf); the dataset is
smaller than cDNA microarray data, 

so it was not used in the other analyses 
in this study.

In the above analysis, all experiments
were considered together; that is, R was
calculated over all data points. This
pooling of data might obscure the
relationship between expression
divergence and sequence divergence
because a pair of duplicate genes are not
necessarily involved in all of the
physiological processes tested. Note that 
if a gene pair is not involved in a process, 
it is unlikely to evolve expression
divergence in that process. For this reason
we now consider R separately for each of
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Open reading frames in the yeast genome (SGD, http://genome-
www.stanford.edu/Saccharomyces/) were grouped into different gene
families using a rigorous method [a]. Protein sequences of duplicate
genes were aligned using ClustalW [b] and the corresponding coding
regions were then aligned based on the protein alignment. The numbers
of substitutions per synonymous site (KS) and per nonsynonymous (KA)
site between duplicate genes were estimated using PAML [c] with
default parameters. We selected only gene pairs with KS ≤ 1.5 because
when KS becomes larger it is difficult to obtain a reliable estimate, owing
to repeated substitutions at the same site. Similarly, we restricted
KA to ≤ 0.70. The computer program CodonW (ftp://molbiol.ox.ac.uk/
cu/codonW.tar.Z) was used to calculate the effective number of codons
(ENC) for each gene studied.

Duplicate gene pairs were selected as follows: within each gene
family, starting from the pair with the smallest KS of greater than 0.01, 
we selected independent gene pairs; that is, pairs that share no genes in
common with other pairs. To avoid gene pairs with strong codon usage
bias, both genes in a selected pair must have an ENC > 35. Our study [a]
suggests that KS is substantially reduced by codon usage bias when
ENC < 32, but is only mildly affected when ENC > 35. In total,
400 duplicate gene pairs were selected.

Because all of the duplicate gene pairs encoding ribosomal 
proteins have strong codon usage bias, we consider the divergence 
in the flanking sequences instead of KS. For each gene pair, the 200 bp 
of both upstream and downstream flanking regions of both genes 
were extracted from gene annotation data. ClustalW was used to 
do the alignment, followed by minor manual adjustments. Genetic
distances were calculated using Tamura and Nei’s six-parameter
method [d]. The average of the genetic distances in upstream 
and downstream flanking regions is denoted as Dflank

(Supplementary Table 2 at http://download.bmn.com/supp/tig/
decemberTable2.pdf).

The Pearson correlation coefficient (R) of gene expression over all
data points in Table I in Box 1 was calculated for each selected gene pair
if the expression data were available for more than half of the
experiments studied for that pair (396 pairs were calculated,
Supplementary Table 3 at http://download.bmn.com/supp/tig/
decemberTable3.pdf). Linear regression analysis was used to investigate
the relationship between R and KS (KA). Because R is bounded by –1 and
1, the transformation �n((1+R)/(1−R)) was used and the normal linear
regression was then carried out between each pair of KS (KA) and the
transformed R. The statistical package of S+ was used.

Each of the first 9 processes listed in Table I of Box 1, each of 
which has eight or more data points, was also treated separately; 
for each process the Pearson correlation coefficient was calculated 
for each selected gene pair (Supplementary Table 3 at
http://download.bmn.com/supp/tig/decemberTable3.pdf).
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Box 2. Duplicate gene selection and linear regression analysis
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Fig. 1. Relationship between the correlation coefficient (R) of gene expression over all available data points and KS (KA) between duplicate genes. (a) A significant negative
correlation between �n[(1+R)/(1−R)] and KS for gene pairs with KS < 1.5. (b) A significant negative correlation between �n[(1+R)/(1−R)] and KA for gene pairs with KA ≤ 0.3. 
(c) No correlation between �n[(1+R)/(1−R)] and KA for gene pairs with KA > 0.3.



the first nine tests in Box 1, each of which
has eight or more time points.

To define ‘expression divergence’, 
we note that the correlation coefficient
between two duplicate genes is initially 1,
so we consider a value of 0.5 as sufficiently
low. Note that for R = 0.5, R2 is only 0.25,
so that knowing the pattern of expression
of one gene provides little information for
predicting the expression pattern of the
other gene. More importantly, we actually
define ‘expression divergence’by requiring
that the probability of observing the 
two smallest R values among the nine
processes is <0.05, given that the
population (true) correlation coefficient (ρ)
is 0.5; see Box 3 for the test method. This
definition is likely to underestimate the
true degree of divergence because it uses

only the information of two smallest
R values in the observed R values and
because it assumes that the gene pair is
involved in all of the nine processes
studied. Indeed, this definition is
stringent because, in effect, it requires at
least one or two negative R values among
the nine processes (Table 1). For example,
only 38% of the cases with one negative
R show ‘expression divergence’. Moreover,
none of the 54 pairs of duplicated
ribosomal protein genes in the yeast
genome is ‘divergent’under this criterion
(data not shown).

Table 2 shows that over 40% of the
non-ribosomal protein gene pairs studied
show divergent expression even when
KS ≤ 0.10 and the proportion becomes
>80% when KS becomes larger than 1.5.

The proportion of pairs with diverged
expression increases even more rapidly
with KA (Table 2). Clearly, expression
divergence has occurred quickly in many
of the gene pairs studied.

If we relax the definition of ‘divergent
expression’by setting ρ =0.6 instead of 0.5,
the proportion of pairs with divergent
expression increases with KS at an even
faster rate (Table 2). Indeed, more than
50% of the pairs studied show divergent
expression even when KS is ~0.10. The
synonymous rate is not known in yeast but
is probably higher than that in Drosophila,
which has been commonly taken as
15.6 × 10−9 nucleotide substitutions per
site per year [7]. Thus, KS = 0.1 would
correspond to less than 3.2 million years of
divergence time, implying a rapid rate of
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For each process under study, denote the n pairs of observations on the
expression levels of the two duplicate genes compared by Z = {zi: i = 1,
…, n, and zI = (xi,yi)

t}. From the sample, the correlation coefficient (R)
between x and y is calculated. We will assume that these n pairs 
of observations are independently, identically distributed as a 
bivariate normal distribution with a correlation coefficient (ρ) 
in the population. This assumption of normality has been checked 
by the Kolmogorov–Smirnov test on the Q–Q plot for
tanh–1(R) = {�n[(1+R)/(1-R)]}/2 in every process (Supplementary Table 4 
at http://download.bmn.com/supp/tig/decemberTable4.pdf).

With a large sample size n, the distribution of R can be approximated
as follows. We transform R and ρ to tanh–1(R) = {�n[(1+R)/(1-R)]}/2 and
tanh–1(ρ) = {�n[(1+ρ)/(1-ρ)]}/2. Then, the difference tanh–1(R) − tanh–1(ρ) is
approximately a normal variate with the following mean and variance
(Ref. [a] p. 433):

mean = ,

variance = 

Using this normal approximation, we can evaluate various probabilities.
For example, for –1 ≤ c ≤ 1, we can compute

P(c ρ,n} = P{R ≤ c ρ,n} = P{tanh–1(R) ≤ tanh–1(c) ρ,n}

=P{[tanh–1(R) – tanh–1(ρ) – u] / σ ≤ [tanh–1(c) – tanh–1(ρ) – u] / σ ρ,n}

≈P{Z ≤ [tanh–1(c) – tanh–1 (ρ) – u] / σ}

where Z has a standard normal distribution, which can be easily
evaluated.

For a small n, the parametric bootstrap can be used to find out the
distribution of R [b]. The mean and variance in the population are
estimated by the mean and variance in the sample, which are denoted as  

and . 
Given the population correlation coefficient ρ, a bootstrap sample,
Z* = {z*i: i = 1, …, n}, is obtained by simulating a bivariate normal

distribution with and . 
The correlation coefficient from the bootstrap sample Z* is computed
and denoted as R*. Repeating the resampling procedure B times, we
observe R*1, …, R*B. The empirical distribution of R*1, …, R*B is used to
approximate the distribution of R. In particular,

P(c ρ,n) = P(R ≤ c ρ,n) ,

where I{·} is a indicator function whose value is 1 when the event is true
and 0 otherwise. Because the data contain small sample sizes, we will
use this parametric bootstrap to estimate probabilities.

Now suppose that m processes are studied and there are nj pairs of
observations for each process, j = 1, …, m. From the above
approximation, we can evaluate the probability of Pj(c) = P(c ρ,nj}. Then,
we can find out the probability that there are κ R values observed among
the m processes that are ≤ c:

P{no R ≤ c ρ,m} = ,

P{only one R ≤ c ρ,m} =

,

P{at least two R values ≤ c ρ,m} = 1 – P{no R ≤ c ρ,m} – 

P{only one R ≤ c ρ,m} = Eqn [1]

and so forth.
Once we observe the sample correlation coefficients (R values) of

one gene pair in the m processes, we can use this parametric bootstrap
to evaluate the probability of observing the smallest R values given the
population correlation coefficient (ρ). For example, let the smallest two
R values be c1 and c2 with c1 ≥ c2 Then, we can replace c by c1 in Eqn [1].
Of course, by using the complete information of c1 and c2, we can obtain
a more precise probability:

P{at least one R ≤ c1 and one R ≤ c2 ρ,m}

=1 – P{no R ≤ c2  ρ,m} – P{only one R ≤ c2 and all other R values > c1 ρ,m} 

Eqn [2]

Note that Eqn [2] is always smaller than or equal to Eqn [1] with 
c = c1. All the probability computations in this paper were obtained 
using Eqn [2].
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expression divergence between duplicate
genes in yeast. A similar picture is seen 
for KA (Table 2).

There are two factors that tend to
underestimate the rate of expression
divergence. First, the nine processes
studied do not represent all the
physiological processes in yeast, and a
duplicate gene pair could have diverged in
one or more of the processes that have not
been studied, although it has not diverged
in any of the nine processes tested. This
factor is likely to have significantly
reduced our estimate of the rate of
expression divergence. Second, there is
the possibility of cross-hybridization of
cDNA probes when two duplicate genes
are highly similar in their cDNA
sequences. In view of the fact that many 
of the highly similar duplicate pairs
(KS <0.10) have shown one or more small
R values (data not shown), the extent of
cross-hybridization was probably not
serious. However, if it were not negligible,
the initial rate of expression divergence
would have been underestimated.

Alternatively, the noisiness of
microarray data tends to reduce the true

correlation (R) between the expression
levels of duplicate genes and thus tends 
to overestimate the rate of expression
divergence, especially in the early stage 
of divergence between duplicate genes.
Thus, although our definition of
expression divergence seems stringent for
the case of ρ = 0.5, the conclusion should be
taken with caution.

It is worth noting that a divergent
duplicate pair that has a large KS or KA
might already have gained expression
divergence when its KS or KA was still
small. Thus, a divergent pair with a large
KS or KA does not imply a slow rate of
expression divergence. It is also
interesting to note from Table 2 that 
the proportion of divergent duplicate 
gene pairs eventually becomes more 
than 80% as KS increases. As noted, 
we have considered only nine processes. 
If many more processes are considered,
the vast majority of duplicate genes 
will probably eventually become diverged
in expression.

There are, however, duplicate genes
that do not show divergent expression
even when KS is large; for example, genes
encoding proteasome components,
aminopeptidases, aldo/keto reductases
and ribosomal proteins. Ribosomal protein
genes have not been included in Fig. 1 and
Table 1, and have been treated separately
in Table 2, because they have strong codon
usage bias and their KS does not reflect 
the divergence time well. We therefore
consider instead the sequence divergence
(Dflank) in their flanking regions (Box 2).
Note that none of the ribosomal protein
gene pairs shows expression divergence
under the condition of ρ = 0.5 (Table 2).
Even under the condition of ρ = 0.6, their
rate of expression divergence is very slow,
compared with that for genes encoding
non-ribosomal proteins.

We have examined the functions of
quickly diverged gene pairs, that is, 
those pairs that have a KS < 0.3 but show
expression divergence (Supplementary

Table 1 at http://download.bmn.com/
supp/tig/decemberTable1.pdf). The
functions of many of these genes are still
unknown or have not been well studied.
However, we can see that these genes
include many membrane proteins such 
as substrate transporters, and many
enzymes such as aldehyde hydrogenase,
aldo/keto reductase, helicase and
phosphopyruvate hydratase.

In conclusion, because protein distance
(or KA) is not a good measure of divergence
time, it was not surprising that no
coupling of expression divergence and
protein distance was found previously.
However, an initial coupling of expression
divergence and KA does exist (Fig. 1b). 
KS is a better measure of divergence time
than KA, and the significant correlation of
expression divergence with KS suggests
that expression divergence increases with
divergence time. Most interestingly, many
duplicate genes in yeast have diverged
quickly in expression and the vast
majority of duplicate genes will eventually
become diverged in expression. However,
the rate of expression divergence varies
among duplicate genes. The majority of
duplicate genes such as many membrane
proteins and many enzymes have
diverged quickly in expression, whereas
ribosomal proteins, proteasome
components and some other proteins show
a slow rate of expression divergence.
Other duplicate genes show a moderate
rate of expression divergence. Clearly, a
proper analysis of microarray data can
shed much light on the rate and mode of
expression divergence of duplicate genes.
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Table 1. Numbers and proportions of gene pairs with expression divergence

(i.e. P < 0.05) for different numbers of negative R values in the nine processes studied.

Number of R Number of gene Gene pairs with P <<<< 0.05
a

% Gene pairs with P <<<< 0.05
a

values pairs ρρρρ = = = = 0.5 ρρρρ = = = = 0.6 ρρρρ = = = = 0.5 ρρρρ = = = = 0.6

0 43 0 0 0 0
1 66 25 49 38% 74%
2 70 61 70 87% 100%
≥3 217 217 217 100% 100%

aThe ρ value is the criterion for ‘expression divergence’.

Table 2. Proportion of gene pairs with

expression divergence
a
 in different K

S
 and

K
A
 intervals.

ρρρρ K
S
 Intervals

0.01–0.1 0.1–0.3 0.3–1.0 1.0–1.5 >1.5
0.5 0.43 0.55 0.50 0.77 0.81
0.6 0.52 0.55 0.70 0.86 0.89

K
A
 Intervals

0–0.05 0.05–0.1 0.1–0.25 0.25–0.5 >0.5
0.5 0.45 0.53 0.81 0.85 0.76
0.6 0.55 0.71 0.89 0.92 0.85

D
flank

 Intervals (Ribosomal protein

genes)

0–0.1 0.1–0.6 0.6–1.0 1.0–1.5 >1.5
0.5 NAb NA 0 0 NA
0.6 NA NA 0.02 0.25 NA

aThe criterion for expression divergence is that the
probability of observing the two smallest R values in
the nine tests studied is less than 0.05, given the
population correlation coefficient is ρ.
bNA = not applicable.
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Techniques & Applications

The detection of single nucleotide

polymorphisms by PCR is necessary for

many types of genetic analysis, from

mapping genomes to tracking specific

mutations. This technique is most

commonly used when polymorphisms

alter restriction endonuclease 

recognition sites. Here we describe a

web-based program, dCAPS Finder 2.0,

that facilitates the design of mismatched

PCR primers to create or remove a

restriction endonuclease recognition site

relative to the polymorphism being

analyzed.

Published online: 01 November 2002

Molecular genetic research relies heavily
on the ability to detect polymorphisms in
DNA. These molecular markers range
from large deletions and rearrangements
to single nucleotide polymorphisms
(SNPs) [1]. Before the advent of
polymerase chain reaction (PCR)
technology [2], restriction fragment
length polymorphism (RFLP) analysis
required Southern blots of restricted
genomic DNA [3]. PCR technology has led
to a more rapid, less expensive version of
RFLP analysis using cleaved amplified
polymorphic sequence (CAPS) markers [4].
However, both RFLP and CAPS analysis
require that the SNP creates or removes 
a restriction endonuclease recognition
site. Because this is not always the case, 
a variety of techniques have been
developed to genotype SNPs in an
enzyme-independent manner [1]. Many of
these techniques require specialized
detection equipment and/or labeled PCR
primers that cost more than standard

primers. Derived cleaved amplified
polymorphic sequence (dCAPS) analysis,
widely used in the plant molecular
genetics community, uses mismatches in
one of the two PCR primers flanking the
SNP to create or remove a restriction
endonuclease recognition site in one of 
the two haplotypes being assayed [5,6]
(Fig. 1). In this paper, we present a
web-based program, dCAPS Finder 2.0,
that facilitates the design of these 
dCAPS primers.

dCAPS Finder 2.0

The dCAPS marker technique was
originally developed as a method for

changing a SNP into an RFLP (see [5,6]
and references within) (Fig. 1). The
technique can also be used to modify an
existing RFLP such that a less expensive
restriction endonuclease can be used for
SNP analysis. Because dCAPS primers
use the same chemistry as regular PCR
primers, there is also a cost advantage of
this technique over more sophisticated,
enzyme-independent methods of SNP
analysis. The biggest difficulty for
designing dCAPS primers lies in
identifying restriction endonuclease
recognition sites and accompanying
primer mismatches. To facilitate this
technique, a Macintosh-based computer
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(a)

CRY1: 5′ CGTGAATCTTTTCCTGAAATCTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTTTAGATAACCAGAGTCCCTCATAA5′

cry1-102: 5′ CGTGAATCTTTTCCTGAAATTTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTTTAAATAACCAGAGTCCCTCATAA5′

EcoRI recognition site: 5′GAA   T   TC3′

3′CTT   A   AG5′

(b)

Mis-matched primer: 5′ CGTGAATCTTTTCCTGAA   T   T3′

CRY1 PCR product digested with EcoRI: 
5′ CGTGAATCTTTTCCTG    AA   T   TCTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTT   A   A   GATAACCAGAGTCCCTCATAA5′

cry1-102 PCR product digested with EcoRI: 
5′ CGTGAATCTTTTCCTGAA   T   TTTATTGGTCTCAGGGAGTATT3′

3′ GCACTTAGAAAAGGACTT   A   AAATAACCAGAGTCCCTCATAA5′

Fig. 1. Derived cleaved amplified polymorphic sequence (dCAPS) analysis uses a mismatched PCR primer to create 
a restriction fragment length polymorphism (RFLP) based on the single nucleotide polymorphism (SNP) being
analyzed. (a) The cry1-102 SNP (bold, italic letters) does not create an EcoRI-based RFLP because of one mismatch in
the EcoRI recognition site (bold, underlined letters). (b) A primer containing this mismatch (bold, underlined letter)
allows the amplification of PCR products that generate an EcoRI -based RFLP that is dependent on the cry1-102 SNP.
Red boxes show sequences that are not cleaved by EcoRI. Green boxes represent sequences that are cleaved by EcoRI.


