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This study presents two mathematical models of concave beveloid gears ground by Mito-

Chung-Biau Tsav me’s grinding method and by the novel grinding method proposed by the authors. Based
Professor, Mem. ASME, on the developed mathematical models, the contact simulations are performed and the
Department of Mechanical Enginesring, characteristics of concave beveloid gear pairs are investigated. Simulation results indi-
National Chiao Tung University, cate that our novel grinding method ameliorates the drawback of Mitome’s grinding
Hsinchu, Taiwan 30010, R.0.C. method by eliminating the transmission error of the helical concave beveloid gear pairs.

In contrast to conventional beveloid gear pairs, the gears ground by the proposed novel
grinding method not only have larger contact ellipses, but also mesh conjugately with
non-parallel axes, although assembly errors exji§tOl: 10.1115/1.1517563

1 Introduction Figure Xa) illustrates the infeed grinding mechanism for straight
Beveloid gears, also known as conical involute gears, are inVpocave beveloid gears. A corresponding imaginary rack cutter
VHl,;IICh generates the conventional beveloid gear is presented here

lute gears with tapered tooth thicknesses, roots and outside d'%r’reference. The pitch plane of the corresponding imaginary rack

eters. Beveloid gears can transmit rotational motion between p lrétter is set to form a cone anghawith respect to the gear axis of

allel, intersected and crossed axes in any relative position, a;% olution. The pitch circle of the gear and the pitch plane of the

they are not sensitive to assembly errors under non-parallel ax LT ; - ; .
meshing. However, beveloid gears remain relatively little studie% responding imaginary rack cutier are in tangency at pitch point

with Mitome [1-7] having conducted most of the research in thig °’ andr denotes the pitch radius of the gear. During grinding,

; . - he grinding wheel feeds along the infeed direction, which is per-
field. Mitome[1,3] performed and analyzed taper hobbing meth endicular to the pitch plane of the corresponding imaginary rack

ods for beveloid gear generations. Mitorf@ studied theoreti utter, and does not travel along the lengthwise direction of the

cally and experimentally the tooth action of a beveloid gear paﬁ. ; ; A, )
Mitome[4] also proposed a design for crossed axes beveloid ge%?{sar tooth as in spur and helical gear grindings. Meanwhile, the

. . . ear rotates with angular velocity and the grinding wheel trans-
and established their engagement models. Theoretically, the b es in the tangential direction of the gear pitch circle with veloc-

ing contacts of beveloid gear pairs under non-parallel axes mexh-" = Notably, the grinding wheel can be regarded as the imagi-

ing are point contacts, and the contact ellipses are relatively small. . . R
The low-load capacity thus limits the application of gear pairs t%iry rack cutter when its pitch rading approaches infinitfi.e.,

Tw="2°).

o . . - "
power transmission. To improve the load capacity, Mitome et al' Figure ib) presents a view perpendicular to the pitch plane of

[5-7] proposed the idea of concave beveloid gears generated O . L
the infeed grinding method. Although the grinding method pr. Rg corresponding imaginary rack cutter, where the grinding wheel

posed by Mitome can enlarge the contact ellipses of beveloid géaASSigned a helix angjgto satisfy the grinding requirements for
pairs, it is impractical for helical concave beveloid gear pair§i€lical concave beveloid gears. Referring to the grinding method
since transmission errdTE) is induced even under ideal assemof the helical concave beveloid gear proposed by Mitome et al.
bly conditions. To overcome this problem, a novel grinding7], although the grinding wheel is set with a helix angleit still
method for the manufacture of helical concave beveloid gear tiéinslates with the same velocity as in the grinding of straight
proposed herein. concave beveloid gears. However, helical concave beveloid gear
Although the previous studies have significantly improved urpairs ground by this method may induce transmission errors even
derstanding of the characteristics of beveloid gears, they did ngider ideal assembly conditions. To overcome this predicament, a
establish a complgte matherrllaticallmodel and simulate the contagVel grinding method is proposed herein by translating the grind-
of concave beveloid gear pairs. This study develops mathematiggj wheel along its axial direction, which is perpendicular to the
models of concave beveloid gear pairs according to Mitomegoth trace direction, with velocityw cosp, as illustrated in Fig.
grinding method and the novel grlnd_lng method propos_ed _herel_ﬂb). Therefore, the proposed novel grinding method can be
Based on the developed mathematical models, investigations jfizneq as “grinder-axial-translating grinding method.” Notably,
volving tooth contact analysiSTCA) and contact ellipse simula- Mitome's grinding method and the novel grinding method are

tions are carried out. Results in this study not only verify th : o . -
superiority of the novel grinding method pro);/)osed byythe amhorﬁsjeml'qc.al fo_r tr&e grinding of straight concave beveloid gears for
but also reflect the contact nature of concave beveloid gear pa}'@'c '.3'6_0 €g. . . .
In this investigation, the beveloid gear pair used in the contact
. . simulation comprises the pinioB; and the gea®,, which are
2 _Mathemancal Models of Concave Beveloid Gear generated by grinding wheels- andS. , respectively. Since the
Pairs generation processes are identical, the subsdripts and 2 rep-
resent the pinior®; and gearX,, while j=F and G represent
eir corresponding grinding wheels: and3, s, in the following
ﬂ%rivation.

2.1 Generation Concept. According to Mitome’s research
[5-7], the concave beveloid gears described below are manuf
tured based on the infeed grinding mechanism shown in Fig.

2.2 Mathematical Model of Grinding Wheel %;. As illus-

Contributed by the Power Transmission and Gearing Committee for publication in . . . [IVIN) . .
the DURNAL OF MECHANICAL DESIGN. Manuscript received April 2001. Associate trated in Fig. 2a), the straight edgMO M3’ on the axial section

Editor: R. F. Handschah. of the grinding wheel can be represented in coordinate system

Journal of Mechanical Design Copyright © 2002 by ASME DECEMBER 2002, Vol. 124 | 753

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 04/27/2014 Terms of Use: http://asme.org/terms



(a) Infeed (@

direction Pitch circle of
—../ grinding wheel

Conical-shaped

grinding wheel
Imaginary
T Eiack cutter
: ey P )
V=ro Y{gl Pitch plane of -
T ~~_ imaginary rack
/’0) \_ \\ cutter e é
// ,/_\r y | ’ l
) B
\\ l /\ Gear pitch circle —///‘
\ . / ‘ \- Work piece
~._ ' (Gear)
(b)
(b)
B
Pitch plane of Tooth trace
Y imaginary rack cutter direction

(novel method)

Fig. 2 Formation of the grinding wheel surface 3, in coordi-
nate system SY(x9,yW z0)
Fig. 1 Infeed grinding mechanism for concave beveloid gears

S(XW Y z0y py nlevzv sinal c?s;rj
: . O_|nd|_| = j
x)=¢, cosall—a, Ny n(W)V . co(s_)an. , (3)
n. —sinay)’ sin;

yW=¢;sinall)—a; tanal’+b;, _ o _
_ 2.3 Gears Ground by Mitome’s Grinding Method. Figure
and z/=0, (1) 3displays the coordinate systems of the grinding whgeind the
_— ) . generated geak; during the generation process. According to
where¢;=|M{'M{| is a linear parameter;’ denotes the nor- Fig. 3a), the plane Y~z of coordinate system
mag presTure ar;}gle, arfel, anld pnhrepresr:ant the dllam(e;trial fp'tCh (XD y0) 70y which represents the pitch plane of the cor-
and circular pitch, respectively. The mathematical model o rinﬁ?—’ Lo s : P
ing wheel suefacé- cgn be e)s/tablished by considering the goor_espondln_g Imaginary rack cutter, is set to.form an inclination
dinate systems sh(J)wn in Fig(R. Let the above-mentioned axial S:;%:gi)‘?g;lri??ﬁgt égnt;‘grﬁ:l;ngg;: ig;;e%hggnngfﬁg tiotrrwlg
i ichi j) _v() . )
section, which s attached to plai) — Y}, rotate by an angle angle of the generated ge&y; r; represents the pitch radius and

; i i) () i - .
7j along a cnrcn(JjI)ar arc with raqhust, and center an¢’, with 4 denotes the rotation angle of the generated gear. Coordinate
respect to they; -axis, th.e profile of g)rlnc(ijl)ng \(/j\/)he%j sweeps system Sgl)(-xél) YD 0 is the reference coordinate system,
out the surface in coordinate systesf’(X{)),Y{’,z{}) as fol- while coordinate syster§ (X;,Y; ,Z;) is attached to the generated

lows: gear,; . Figure 3b) shows the position of the grinding wheg)|
() cost(€; cosal—a )+ (r—rl) cosr) on the pitch plane of the corresponding imaginary rack cutter,
il o I é ) . "ﬁj)+kv)" ] plane YW—z0 = during grinding. Coordinate  system
R = Yw | = pSinan = a; tana, = by S, Y Y, z0Y), which forms a helix anglg; with respect to

(1) —ginT.(f. () _ 4. (1) gin + . i . ..
Zw sinTj(€j cosay —a))+ry sin7 coordinate syster{), can be regarded as the initial position of

_ @ grinding wheel coordinate systeB{)’ when the generated gear
Herein,r&J,) represents the pitch radius of the grinding wheel. Furetation angle ¢;=0deg. According to Mitome's grinding
thermore, the unit normal of the grinding wheel surface can beethod, the origin of the grinding wheel coordinate system
obtained in coordinate systeg{)’ by S translates along the&W-axis during generation. Grinding
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(a) Furthermore, the velocities of the grinding wheel surfageand
the generated gear surfa¢ at their common contact point can
be expressed by{) andV{", respectively, as follows:

Pitch plane of 0
imaginary rack cutter vi=| —rio;|, (6)

Plane axode of the _ _ _
cylindrical gear and V{'=o} xR

) _cosByy +singiz) 1 ¢ _
Zy,Z; = wj| —coséx))+sin & sin Byl —sin s cospiz} —r; |.

Gear axode 0

)
( l _ 12) The equation of meshing can be obtained by applying the orthogo-
Y, ' (J=FG) nality of the relative velocity and surface common normal of the
grinding wheel surfac& ; and the generated gear surfate The
b following equation can thus be observed:
®) - Vgl =n. (Vi) = v =0. 8)
X”’ Xu(;) Substituting Eqs(4), (6) and(7) into Eq.(8) enables us to obtain
wi ’Om o’l=r¢ the equation of meshing for Mitome’s grinding method. Accord-
worwal T ing to Fig. 3, the locus of the grinding wheel represented in coor-
Ny —_— dinate systen®, can be obtained as follows:
»<iwo IO%O;)z:’E‘A'COS@

X; = (cos¢; coss;)x)) — (sin ¢; cosB;+ cosg; sin &, sin B,y

inZ;z —(sin¢; sin B, — cose; sin 8 cosB) ) + A,

yi=(sin ¢; coss;)x\)) + (cos¢; cosB; —sin ¢; sin &, sin By
+(cosd; sin B;+sin ¢; sin 8 cosB;) ) + B,

and z=—sin&x\)—coss; sinBy) +coss; cospz) +C; .

9
(i=12) ©)

Y;;’),mﬁ r (j=FG) where
A =r;¢; Sing;+r; COSP; , 10
Fig. 3 Coordinate relationship between the grinding wheel =hd St ¢ (10)
and the generated gear Bi= —r,¢; COS; +T; Sing; , (11)
and C;=0. (12)

wheel coordinate systent)) can thus be described byHence, the tooth surface of the generated daaground by Mi-

S xW  yQ) z0)y when gears; rotates through an anglé;, tome’s grinding method can be expressed by Egjsand(9). The

and |0}J00)|=r,¢; is the translational displacement of theunit normal vector of the generated tooth surface can be attained

grinding wheelX; . Based on the theory of gearing proposed by

Litvin [8,9], the generated gear surfagg can be obtained by B ) . . . (i)

simultaneously considering the locus of the grinding wheel sufxi=(COS®; COS&))Nyy,— (SN ¢; COSP; +COS¢; Sin G sinBi)nyy,

faceX;, represented in gear coordinate syst®mtogether with

the equation of meshing between the grinding wheel and the gen-

erated gear. —(sin b yn) 4 , _sind sins. sin g nt)
Let RY) andn{’ respectively denote the position vector and " (sin d; 0S4+ (cosi cOsf smé, sin i sinB)ny

unit normal of the grinding wheel surfadg and generated gear +(cos¢; sinB;+sing¢; sin §, cosﬁi)n(zjvz,,

surfaces; at their common contact point, represented in reference _ _ _

coordinate systers{) . According to the coordinate systems dis- and n;=—sin&ny,—coss; sinBinyl,+coss cospiny, .

played in Fig. 3 and Eq3), n{’ can be obtained by (13)

2.4 Gears Ground by the Novel Grinding Method. In the
0 () 4 o M novel grinding process proposed herein, the grinding wisgel
ny'= ~ COSBinyy T sinBing,, |- @) translates along the direction of its axis of revolution as presented
—sindiny,—cosd; sin Binf,+coss; cospny, in Fig. 1(b). Therefore, the origin of the grinding wheel coordinate
. . . () () _axis i () _axi
The angular velocity of the generated g&arcan be acquired in SYStemSy’ translates along th¥y;,-axis instead of ther’-axis
- i) during generation, as shown in Fig(b3 The position of the
coordinate syster’ by - : D
grinding wheel coordinate systerﬁ(vj can be represented by

—(sin ¢; sin B;— cos; sin 8, cosB;)nY),

cos8; gy —sin; sin B n,+ sin &; cosginy,

de, 0 S, Y, Z{}) when the generated gear rotates through
w{,‘EW: (5) an angleg;, and the translational distance of the grinding wheel
—o; is |0Yl00)| =r,¢; cosp;. Notably, the unit normal vector of the
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grinding wheeln{’ is the same as in E4), but the velocities of
the grinding wheel,; and the generated geay at their point of
contact now become

sin &; sin B; cosB;

V=10 —cog B , (14)
C0s4; sin B; cosp;
and
VY =0 xR
cospiyy +sinBiz)) —ri¢; cog B,
| (—cossxP+sin g, sin Byl —sin & cosB;zl))
i —ri¢; sin; sinB; cosB;—r;)
0
(15)

Substituting Eqs(4), (14) and(15) into Eq.(8) allows us to solve

the equation of meshing for proposed gears with this novel grind-
ing method. Similarly, the tooth surface and unit normal vector of
the geat2; ground by the novel grinding method can be expressed

by Egs.(8)—(13) with the modification of Eqs(10)—(12) as o) Y,
A, =r;d;(Sin ¢, COSB;+ CoSe; Sin d; sin B;)COSB;+ T, COSP; ,
=hidi(sing, A é ! Brcospitr, ¢(I16) Fig. 5 Assembly error simulation of the beveloid gear
Bi=r;¢;(—Cc0os¢; cosB;+ sin ¢; sin &; sin B;)cosB;+r; sin¢;,
17)
and C;=r,¢; coSs; sinB; cosp; . (18) of the pinion and gear, wheng, andr, denote their respective

pitch radii, andP; and P4 are the apexes of the imaginary cones.
3 Meshing Model and Tooth Contact Analysis The pitch circles of the piniol; and gear., are tangent to the
) . pitch plane at poin@, and the tangent lines of the two imaginary
Adopting the gear engagement concept proposed by M“Of}é nes with respect to the pitch plane of the imaginary engaging
[4], Fig. 4 illustrates the schematic meshing model of the beveloigqy P.Q andPg_Q form an anglel’ =B, + B,. To investigate
gear pair. _The Ipevelmd plnlof_i1 and gear2, can be cor_15|dered the meshing of a beveloid gear pair with assembly errors, auxil-
to be two imaginary cones with cone an_glélsand Sy, Iylng_ ON iary coordinate systemsS.(Xe,Ye,Zo), Sn(Xn,Yn.Zy) and
opposite sides of the pitch plane of the imaginary engaging raak,x vy, z,) have been set up as displayed in Fig. 5. Coordinate
while Si(X¢,Y¢,Z5) andSy(Xg,Yq,Zy) are the reference coordi- gystems, is set up and its orientation in respect to coordinate
nate systems for the pinion coordinate sys®;tX,,Y;,Z;) and  gygtem S, is maintained. The offset 0,0,=Ad
gear coordinate systeBy(X,,Y;,Z5), respectively. Furthermore, =(Axg,Ayq,Azy) indicates the mounting position deviation of
¢1 and ¢, denote the rotation angles of the pinion and gear dufhe gear with respect to its ideal assembly position. Moreover,
ing meshing. Point®¢ andO, are the centers of the pitch circlescoordinate systers, simulates the gear with a horizontal angular

Imaginary cone of
beveloid gear ¥,

Z.,Z,
Pitch circle of
beveloid gear 3,

&

Pitch circle of
beveloid pinion X,

Imaginary cone of
beveloid pinion X,

Pitch plane of
imaginary engaging rack

Fig. 4 Schematic relationship for the meshing of pinion, gear
and the pitch plane of the imaginary engaging rack
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misalignmentA vy, with respect to coordinate syste8y, while
coordinate systen$, simulates the gear with a vertical angular
misalignmentA vy, with respect to coordinate syste®y. Coordi-
nate systens, thus simulates the gear with assembly errdds
Ay, andAvy,.

Applying the coordinate transformation matrix equation, the
position vectors and unit normal vectors of the pinion and gear
surfaces can be represented in coordinate sySenThe mating
pinion and gear tooth surfaces must satisfy the following condi-
tions at their instantaneous contact pdig9]:

RIV=R?), (19)

and n{!'=+n{?, (20)
whereR{" andR{® are the position vectors while{*) and n{?
denote the unit normal vectors of pinidy and gearX,, repre-
sented in coordinate systers;, respectively. In a three-
dimensional space, Egdl9) and(20) form a system of five inde-
pendent nonlinear equations with six unknowms;, ¢¢, 7,

¢35, € and 75 . By choosing the pinion rotation angtg] as an
input variable, all other unknowns can be solved in terms pf

The instantaneous contact points on the pinion and gear surfaces
can be obtained by substituting the solved unknowns into the pin-
ion and gear tooth-surface equations. The deviation of the real
gear rotation angle,( ;) from its ideal rotation angle is defined
as the transmission err¢fE) which can be expressed as follows:
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TE=(¢p— 3 ®)— I—l(@f $;9), (21) (@) Intersected axes (b) Crossed axes

where ¢, and ¢4 represent the initial values @f; and ¢},
while T, andT, denote the tooth numbers of the pinion and ged
respectively.

4 Contact Ellipses

Theoretically, the bearing contact of a beveloid gear pair und
non-parallel axes meshing is a point contact. Owing to the elg
ticity of tooth surface, the contact is spread over an elliptical ar
centered at the instantaneous contact point, which can be de|
mined from the TCA result. Applying the methodologies devel
oped by Litvin[8,9], the principal directions and curvatures of the
pinion and gear tooth surfaces can be derived in terms of théiig. 6 Beveloid gear pairs with intersected and crossed axes
corresponding cutting tool surfaces. L€t andi{}’ (i=1,2) de-
note the principal directions of the pinion tooth surfaceand the
gear tooth surface,, at their instantaneous contact point exgear (i.e. 8;=8,=0deg) with cone angles5;=5,=30 deg,
pressed in coordinate syste§ . At any instantaneous contactmounted with an intersection angle of 60 deg. Various grinding
point, i) and i}’ (i=1,2) are located on the common tangenwheel pitch radiir()) are selected to investigate the bearing con-
plane of the mating pinion and gear tooth surfaces. The orientatitatts of the gear pair under ideal assembly conditions.
of the contact ellipse with respect tf can be determined by Case 1r{)=co (i.e. straight conventional beveloid ggar

angle 7, as follows[8,9]: Case 21 =50 mm.
g, Sin 20 Case 3r{)=45 mm.
tan 2= m’ (22) According to Fig. 2, the intersection of the grinding wheel with
- the X - Y plane (i.e. 7,=0) remains unchanged wher})’
where gi=«{"—«j (i=12. (23)  varies. Therefore, by choosing=0 in the mathematical model

) () i he fi - Iof tooth surfaces, the so-called line of coincidence can be acquired
Herein, < and «j ('. - 1’.2). are the first and second PNNCIPA', 1 the central region of the generated tooth surfaceThe tooth
curvatures of the mating pinion and gear toothzsurfaces at contgfitaces are identical only on the line of coincidence with the
point, ando- denotes the angle formed Ky’ andi(®. Meanwhile, - v 0 ¢ 0) aven wherr () =22, which makes the concave

the half length of the major and minor axes of the contact ellips : W . : :
a andb, can be expressed in terms of the elastic appraatly feveloid gear pair to the conventional beveloid gear pair. Table 2

summarizes the TCA results, and Fig. 7 illustrates the path of

A2 contact and the corresponding contact ellipses on the pinion tooth
a= Al (24)  surface. According to the simulation results of Case 1, the straight
conventional beveloid gear paii.e. r{)=«) meshes with TE
12 =0, and the path of contact is identical with the line of coinci-
and b= g (25)
where Table 1 Major design parameters of the beveloid pinion and
1 gear
A= — (1) _ (2) 2_2 c 25+ 2\1/2 26
4[KZ 15"~ (91720102 c0s 92)™"], (26) Pinion Z, Gear Z,
1 Number of teeth T, =30 T,=40
— (1) (2) 2 2\1/2
B=zlry — ks +(9172019, COS 27+03) ], (27) Normal pressure angle 2 = 20° 2@ = 20°
. ) ) =5 /teeth
and K§>:K§”+K§.‘) (i=1,2. (28) Normal module m, (mm/ teeth)

The elastic approach for the contact ellipse simulation is se- Table 2 TCA results of straight concave beveloid gear pair
lected herein as 0.00635 m(@.00025 in, identical to the thick-

ness of the coating paint used for contact pattern tests. CASE| ¢jeg) | Lp(nm) | Tpwad) | ¢ycdeg) | Lgomm) | Tg(rad) |TEGare-sec)
. . 9.0 8.007 | 0.000 | 182250 | 2.635 | 0.000 | 0.000
5 Numerical Illustrative Examples for Gear Contact . 60 | 6664 | 0000 1180000 | 3978 | 0.000 | 0.000
Simulations 2 [ 30 [ 5321 | 0000 | 177750 | 5321 | 0000 | 0.000
Figure 6 illustrates two typical types of gear mounting for cor| 3 0.0 | 3978 | 0000 | 175500 | 6664 | 0000 ; 0.000
cave beveloid gear pairs with intersected and crossed axes. Apj| 3.0 | 2635 | 0.000 | 173.250 | 8007 | 0.000 | 0.000
ing the computer simulation programs developed herein allow t 9.0 8269 | -0.040 | 182.340 | 2.640 | -0.042 | 0.000
TCA results to be obtained and contact ellipses to be plotted 6.0 6.926 | -0.040 | 180.090 | 3983 | -0.042 | 0.000
the tooth surfaces. Table 1 lists some major design parametery 4 3.0 5583 | -0.040 | 177.840 | 5326 | -0.042 | 0.000
the beveloid gear pairs employed in the following examples. N 0.0 4239 | 0040 | 175590 | 6.669 | -0.042 | 0.000
tably, the same grinding wheel with pitch radicd (j=F,G) 3.0 2.896 | -0.040 | 173340 | 8.012 | -0.042 | 0.000
performed the gear tooth grinding for both piniBra and geai. , 9.0 8.164 | 0019 | 182.372 | 2.663 | 0.023 | 0.000
in each case. 6.0 6.821 | 0019 | 180.122 | 4.006 | 0.023 | 0.000
Example 1: Straight Concave Beveloid Gear Pair Mounted > 3.0 SA478 | 0019 | 177872 | 5349 0.02 g'ggg
With Intersected Axes. As shown in Fig. 6a), the gear pair in 00 4135 | 0019 | 175622 6692 | 00 .
this example is composed of straight concave beveloid pinion a 30 2792 | 0019 | 173372 | 8036 | 0023 | 0.000
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Case 8 ( ’:Vu;:_ 100 mm)
Case 7 ( =200 mm)

Case 1 ()=o)

Case 2 ( r:,ﬁ= 50 mm)

Case 3 (%"= 45 mm) y
( Case 6 (1=00)

Enlargement 1:5
Enlargement 1:5

(I
0 1 (mm)

Lo
0 1 (mm)

Contact points trace
along the line of
coincidence

(Te=10) /————Line of coincidence

Path of contact

Fig. 7 Bearing contacts of the straight concave beveloid gear
pair ground by grinding wheels with different r(,/v) Fig. 9 Bearing contacts of helical concave beveloid gear pairs
ground by Mitome’s grinding method with different rd

dence(i.e. 7;=0). Since the tooth profile remains the same along Example 2: Helical Concave Beveloid Gear PaifGround

the line of coincidence when thg)) changes, it is reasonable topy Mitome’s Grinding Method ) Mounted With Crossed Axes

find that the straight concave beveloid gear pairs ground by gringr this example, the helical concave beveloid gear pair mounted

ing wheels with variousrf,&’ still mesh with TE=0, with their with crossed axes, as illustrated in Fighg is ground by Mito-

contact points tracing along the line of coincidence. Meanwhileje’s grinding method with §;=6,=20deg and B;=p,

because a smaller pitch raditf$) of the grinding wheel induces a =15 deg (right handedl Applying the algorithms proposed by

larger bulgy deviation on the tooth surface except the line of cdlitome [4], the shortest axial distance between two axes is

incidence, the contact ellipses enlarge significantly. 111.731 mm, while the crossed angle is calculated as 49.628 deg.
The gear pair ground by the grinding wheel with an appropria@e contact Slmu|atlon5 Of thIS he|I0a| Concave_beve|OId geal’ paII’S

pitch radius,r&PzSO mm, is then chosen to simulate the contad’f"th crossed axes under ideal assembly conditions are performed

of straight concave beveloid gear pairs with intersected axes undging different grinding wheel pitch radii) in the following

the following assembly conditions: cases.

Case 4:A y,=Avy,=0 deg andAx,=Ay,=Az,=0.3 mm. Case 61{))= (i.e. helical conventional beveloid gear
Case 5:Ay,=0.5deg, Ay,=—0.2deg andAx,=Ay,=Az; Case 7r{)=200 mm.

=0.3mm. Case 8r{)=100 mm.

According to Table 2 and Fig. 8, even meshing under assemblyriq e 9 illustrates the bearing contacts of the gear pair plotted
errors, the TEs of the gear pair remain zero and the path of contggtihe pinion tooth surface while Fig. 10 shows the TEs. Accord-
remains in the central region of the tooth surface. Therefore, tpg to the simulation results of Case 6, the helical conventional
straight concave beveloid gear pairs mounted with intersectggye|oid gear pair meshes conjugately and the TEs equal zero.
axes are insensitive to small assembly errors. However, the paths of contact are not identical with the line of

TE(arc-sec.)

————— Case 6: 1=

75 ;
————— Case7: ,"=200mm
50 - ——— Case8: r,”=100mm
25
0
=25 I | 1 | | i
»xx Case 2 (error free) 0 10 20 30
a6 Case 4
ooo Case 5 0 5 (mm) Pinion Rotation Angle ¢, (deg.)
Fig. 8 Bearing contacts of the straight concave beveloid pair Fig. 10 Transmission errors of helical concave beveloid gear
with assembly errors. pairs ground by Mitome’s grinding method
758 /| Vol. 124, DECEMBER 2002 Transactions of the ASME
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Table 3 TCA results of helical concave beveloid gear pairs
ground by novel grinding method

CASE]| ¢, (deg.) € (mm)| T (rad) | @) (deg.) £ ;(mm) | Ts(rad.) | TE(are-sec)

9.0 | 8.007 | 0000 | 182250 | 2.635 | 0.000 | 0.000
9 [ 60 | 6664 | 0.000 | 180.000 | 3.978 | 0.000 | 0000
10 [ 3.0 | 5321 | 0000 | 177750 | 5321 | 0.000 | 0000
11 [ 00 | 3978 | 0.000 | 175500 | 6.664 | 0.000 | 0000
30 | 2635 | 0000 | 173.250 | 8007 | 0000 | 0.000
90 | 8283 | -0.023 | 182.365 | 2.713 | -0.023 | 0.000
60 | 6939 | -0023 | 180.115 | 4057 | -0.023 | 0.000
12 {730 | 5596 | -0023 | 177865 | 5400 | -0023 | 0000
0.0 | 4253 | -0.023 | 175615 | 6.743 | -0.023 | 0.000
3.0 | 2910 | -0.023 | [73.365 | 8.086 | -0.023 | 0.000 sxx Case 10 (error free)
90 | 8.188 | 0013 | 182338 | 2690 | 0016 | 0.00 sas Case 12

50 | 6845 | 0.013 | 130.088 | 4.033 | 0016 | 0.000

13 [ 30 | 5502 | 0013 | 177838 | 5376 | 0016 | 0.000 ooo Case 13 0 5 (;mm)

0.0 4.159 0.013 | 175.588 | 6.719 0.016 0.000 . ) ) ) )
3.0 2816 | 0013 | 173338 | 8062 | 0016 | 0.000 Fig. 12 Bearing contacts of helical concave beveloid pairs
ground by novel grinding method with assembly errors

coincidence ¢;=0) on the tooth surface ground by Mitome'sCase 9r{D=oo (i.e. helical conventional beveloid gear
grinding method. When the grinding wheel's pitch radiyé de- Case 10r{)=60 mm.
creases frome to 100 mm(Case 6 to Case)8the bulgy deviation cgse 11;5‘1;):45 mm.

of the tooth surface, except for along the line of coincidence, according to the TCA results listed in Table 3 and the bearing
results in the enlargement of the contact ellipses. However, tBgntacts illustrated in Fig. 11, the helical concave beveloid gear
TEs increase and the characteristic ofT& originally belonging pair ground by the proposed novel grinding method can mesh with
to the helical conventional beveloid gear péile. r{)==) is TE=0 under the ideal assembly condition, and the path of contact
spoiled. Consequently, in the range of the considered design pidentical with the line of coincidencé.e. 7;=0). Meanwhile,
rameters, Mitome’s grinding method is impractical for manufaghe contact ellipses enlarge significantlyr4 decreases. Hence,
turing an efficient helical concave beveloid gear pair with crossgge novel grinding method ameliorates the defect of Mitome’s
axes. grinding method in the grinding of helical concave beveloid gear
pairs. The gear pair ground by the grinding wheel with an appro-

Example 3: Helical Concave Beveloid Gear PaifGround  Priate pitch radiusr{{)=60 mm, is then chosen to test the sensi-
by the Novel Grinding Method) Mounted With Crossed Axes tVity of th's gear pair to assembly errors as follows:
The gear pair mentioned in Example 2 is now ground using t/{e?S€ lz_AVh:AVvZO deg andAxy=Ayy=Az,=0.3 mm.
novel grinding method proposed in section 2.4. Cases 9 to £BS€ 13:Ay,=0.5deg, Ay, =—0.2deg andAx,=Ay =Az,
simulate the contact of the gear pair under ideal assembly condif-3 mm.

. L . = () - According to Table 3 and Fig. 12, even under assembly errors,
tions, with different pitch radir,,” of the grinding wheel. the TEs of the gear pair remain zero and the path of contact

remains in the central region of the tooth surface. These simula-
tion results indicate that the helical concave beveloid gear pairs
” ground by the novel grinding method are insensitive to small as-
Case 9 (7, '=0) sembly errors. The novel grinding method can also increase the
Case 10 (7= 60 mm) load capacity of crossed axes helical gear pairs, which can be
” considered to be helical beveloid gear pairs with zero cone angles.

Case 11 (=45 mm)

6 Conclusions

Simulation results in this study demonstrate that the novel
grinding method proposed herein eliminates the transmission er-
0 1 (mm) rors of helical beveloid gear pairs ground by Mitome’s grinding
method. Compared with conventional beveloid gear pairs, con-
cave beveloid gear pairs not only solve the problems associated
with low-load capacity by enlarging the contact ellipses, but also
. retain the special property of insensitivity to assembly errors un-
Contact po'mts trace der non-parallel axes meshing. The concave beveloid gear pairs
along the line of thus fit the requirements of high load and highly precise motion
coincidence transmission between non-parallel axes.

(TF= 0 )

Enlargement 1:5
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Nomenclature

a,:, aG =
a=
bF, bG =
b =
€|:, €G =
P, =
Pn =
rl, r2 =

r,rl® =

Tl! T2 =

o), af® =

Bi. B =

511 52 =
¢11 ¢2 =
$1. by =

5, 31 =

760 / Vol. 124,

design parameters of grinding whe&s and
36 (mm)

half-length of the major axis of the contact
ellipse (mm)

design parameters of grinding whe&s and
26 (mm)

half-length of the minor axis of the contact
ellipse (mm)

design parameters of grinding whe&s and
2 (mm)

gear diametral pitctil/mm)

gear circular pitchhimm)

pitch radii of the pinion%; and geaX, (mm)
pitch radii of the grinding wheel& and3. g
(mm)

tooth numbers of the pinioR; and gea,
normal pressure angles of grinding wheEls
andX; (degreep

helix angles on the pitch planes of the corre-
sponding imaginary rack cutters of the pinion

3, and geaX, (degreep

cone angles of pinioX, and gear3, (de-
grees

rotation angles of the pinioR; and gear.,
in generating processlegrees

rotation angles of the piniok; and gear.,
during meshingdegreep

initial values of ] and ¢, during meshing
(degreep

DECEMBER 2002

7e, 7¢ = design parameters of grinding wheé&lg and
3¢ (rad)
A = elastic approach for the contact ellipse simula-
tion (mm)
Ad = mounting position deviation of the gear with
respect to its ideal assembly positionm)
Ay, = horizontal angular misalignment of the gear
(degrees
Ay, = vertical angular misalignment of the geale-
grees
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