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Gears
This study presents two mathematical models of concave beveloid gears ground by
me’s grinding method and by the novel grinding method proposed by the authors. B
on the developed mathematical models, the contact simulations are performed an
characteristics of concave beveloid gear pairs are investigated. Simulation results
cate that our novel grinding method ameliorates the drawback of Mitome’s grind
method by eliminating the transmission error of the helical concave beveloid gear p
In contrast to conventional beveloid gear pairs, the gears ground by the proposed
grinding method not only have larger contact ellipses, but also mesh conjugately
non-parallel axes, although assembly errors exist.@DOI: 10.1115/1.1517563#
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1 Introduction
Beveloid gears, also known as conical involute gears, are in

lute gears with tapered tooth thicknesses, roots and outside d
eters. Beveloid gears can transmit rotational motion between
allel, intersected and crossed axes in any relative position,
they are not sensitive to assembly errors under non-parallel
meshing. However, beveloid gears remain relatively little studi
with Mitome @1–7# having conducted most of the research in th
field. Mitome @1,3# performed and analyzed taper hobbing me
ods for beveloid gear generations. Mitome@2# studied theoreti-
cally and experimentally the tooth action of a beveloid gear p
Mitome @4# also proposed a design for crossed axes beveloid g
and established their engagement models. Theoretically, the b
ing contacts of beveloid gear pairs under non-parallel axes m
ing are point contacts, and the contact ellipses are relatively sm
The low-load capacity thus limits the application of gear pairs
power transmission. To improve the load capacity, Mitome et
@5–7# proposed the idea of concave beveloid gears generate
the infeed grinding method. Although the grinding method p
posed by Mitome can enlarge the contact ellipses of beveloid
pairs, it is impractical for helical concave beveloid gear pa
since transmission error~TE! is induced even under ideal assem
bly conditions. To overcome this problem, a novel grindi
method for the manufacture of helical concave beveloid gea
proposed herein.

Although the previous studies have significantly improved u
derstanding of the characteristics of beveloid gears, they did
establish a complete mathematical model and simulate the co
of concave beveloid gear pairs. This study develops mathema
models of concave beveloid gear pairs according to Mitom
grinding method and the novel grinding method proposed her
Based on the developed mathematical models, investigation
volving tooth contact analysis~TCA! and contact ellipse simula
tions are carried out. Results in this study not only verify t
superiority of the novel grinding method proposed by the auth
but also reflect the contact nature of concave beveloid gear p

2 Mathematical Models of Concave Beveloid Gear
Pairs

2.1 Generation Concept. According to Mitome’s research
@5–7#, the concave beveloid gears described below are manu
tured based on the infeed grinding mechanism shown in Fig
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Figure 1~a! illustrates the infeed grinding mechanism for straig
concave beveloid gears. A corresponding imaginary rack cu
which generates the conventional beveloid gear is presented
for reference. The pitch plane of the corresponding imaginary r
cutter is set to form a cone angled with respect to the gear axis o
revolution. The pitch circle of the gear and the pitch plane of
corresponding imaginary rack cutter are in tangency at pitch p
P0 , and r denotes the pitch radius of the gear. During grindin
the grinding wheel feeds along the infeed direction, which is p
pendicular to the pitch plane of the corresponding imaginary r
cutter, and does not travel along the lengthwise direction of
gear tooth as in spur and helical gear grindings. Meanwhile,
gear rotates with angular velocityv and the grinding wheel trans
lates in the tangential direction of the gear pitch circle with velo
ity rv. Notably, the grinding wheel can be regarded as the ima
nary rack cutter when its pitch radiusr w approaches infinity~i.e.,
r w5`).

Figure 1~b! presents a view perpendicular to the pitch plane
the corresponding imaginary rack cutter, where the grinding wh
is assigned a helix angleb to satisfy the grinding requirements fo
helical concave beveloid gears. Referring to the grinding met
of the helical concave beveloid gear proposed by Mitome et
@7#, although the grinding wheel is set with a helix angleb, it still
translates with the same velocityrv as in the grinding of straight
concave beveloid gears. However, helical concave beveloid
pairs ground by this method may induce transmission errors e
under ideal assembly conditions. To overcome this predicame
novel grinding method is proposed herein by translating the gri
ing wheel along its axial direction, which is perpendicular to t
tooth trace direction, with velocityrv cosb, as illustrated in Fig.
1~b!. Therefore, the proposed novel grinding method can
termed as ‘‘grinder-axial-translating grinding method.’’ Notab
Mitome’s grinding method and the novel grinding method a
identical for the grinding of straight concave beveloid gears
which is b50deg.

In this investigation, the beveloid gear pair used in the cont
simulation comprises the pinionS1 and the gearS2 , which are
generated by grinding wheelsSF andSG , respectively. Since the
generation processes are identical, the subscriptsi 51 and 2 rep-
resent the pinionS1 and gearS2 , while j 5F and G represent
their corresponding grinding wheelsSF andSG , in the following
derivation.

2.2 Mathematical Model of Grinding Wheel S j . As illus-

trated in Fig. 2~a!, the straight edgeM0
( j )M2

( j ) on the axial section
of the grinding wheel can be represented in coordinate system

n in
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Sn
( j )(Xn

( j ) ,Yn
( j ) ,Zn

( j )) by

xn
~ j !5, j cosan

~ j !2aj ,

yn
~ j !5, j sinan

~ j !2aj tanan
~ j !1bj ,

and zn
~ j !50, (1)

where, j5uM0
( j )M1

( j )u is a linear parameter,an
( j ) denotes the nor-

mal pressure angle, andPn and pn represent the diametral pitch
and circular pitch, respectively. The mathematical model of grin
ing wheel surfaceS j can be established by considering the coo
dinate systems shown in Fig. 2~b!. Let the above-mentioned axia
section, which is attached to planeXn

( j )2Yn
( j ) , rotate by an angle

t j along a circular arc with radiusr w
( j ) and center atOc

( j ) , with
respect to theYc

( j )-axis, the profile of grinding wheelS j sweeps
out the surface in coordinate systemSw

( j )(Xw
( j ) ,Yw

( j ) ,Zw
( j )) as fol-

lows:

Rw
~ j !5F xw

~ j !

yw
~ j !

zw
~ j !
G5F cost j~, j cosan

~ j !2aj !1~r w
~ j !2r w

~ j ! cost j !

, j sinan
~ j !2aj tanan

~ j !1bj

2sint j~, j cosan
~ j !2aj !1r w

~ j ! sint j

G .

(2)

Herein,r w
( j ) represents the pitch radius of the grinding wheel. F

thermore, the unit normal of the grinding wheel surface can
obtained in coordinate systemSw

( j ) by

Fig. 1 Infeed grinding mechanism for concave beveloid gears
754 Õ Vol. 124, DECEMBER 2002
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nw
~ j !5F nxw

~ j !

nyw
~ j !

nzw
~ j !
G5F sinan

~ j ! cost j

2cosan
~ j !

2sinan
~ j ! sint j

G . (3)

2.3 Gears Ground by Mitome’s Grinding Method. Figure
3 displays the coordinate systems of the grinding wheelS j and the
generated gearS i during the generation process. According
Fig. 3~a!, the plane Yr

( j )2Zr
( j ) of coordinate system

Sr
( j )(Xr

( j ) ,Yr
( j ) ,Zr

( j )), which represents the pitch plane of the co
responding imaginary rack cutter, is set to form an inclinati
angled i with respect to the planeYa

( j )2Za
( j ) , which represents the

plane axode of the cylindrical gear. Herein,d i denotes the cone
angle of the generated gearS i ; r i represents the pitch radius an
f i denotes the rotation angle of the generated gear. Coordi
systemSb

( j )(Xb
( j ) ,Yb

( j ) ,Zb
( j )) is the reference coordinate system

while coordinate systemSi(Xi ,Yi ,Zi) is attached to the generate
gearS i . Figure 3~b! shows the position of the grinding wheelS j
on the pitch plane of the corresponding imaginary rack cut
plane Yr

( j )2Zr
( j ) , during grinding. Coordinate system

Sw0
( j ) (Xw0

( j ) ,Yw0
( j ) ,Zw0

( j ) ), which forms a helix angleb i with respect to
coordinate systemSr

( j ) , can be regarded as the initial position
grinding wheel coordinate systemSw

( j ) when the generated gea
rotation angle f i50 deg. According to Mitome’s grinding
method, the origin of the grinding wheel coordinate syste
Sw

( j ) translates along theYr
( j )-axis during generation. Grinding

Fig. 2 Formation of the grinding wheel surface S j in coordi-
nate system Sw

„ j …
„Xw

„ j … ,Yw
„ j … ,Zw

„ j …
…
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wheel coordinate systemSw
( j ) can thus be described b

Sw1
( j ) (Xw1

( j ) ,Yw1
( j ) ,Zw1

( j ) ) when gearS i rotates through an anglef i ,
and uOw0

( j )Ow1
( j ) u5r if i is the translational displacement of th

grinding wheelS j . Based on the theory of gearing proposed
Litvin @8,9#, the generated gear surfaceS i can be obtained by
simultaneously considering the locus of the grinding wheel s
faceS j , represented in gear coordinate systemSi , together with
the equation of meshing between the grinding wheel and the g
erated gear.

Let Rb
( j ) and nb

( j ) respectively denote the position vector an
unit normal of the grinding wheel surfaceS j and generated gea
surfaceS i at their common contact point, represented in referen
coordinate systemSb

( j ) . According to the coordinate systems di
played in Fig. 3 and Eq.~3!, nb

( j ) can be obtained by

nb
~ j !5F cosd i nxw

~ j !2sind i sinb i nyw
~ j !1sind i cosb inzw

~ j !

cosb inyw
~ j !1sinb inzw

~ j !

2sind inxw
~ j !2cosd i sinb inyw

~ j !1cosd i cosb inzw
~ j !
G . (4)

The angular velocity of the generated gearS i can be acquired in
coordinate systemSb

( j ) by

vb
~ i !5

df i

dt
5F 0

0
2v i

G . (5)

Fig. 3 Coordinate relationship between the grinding wheel
and the generated gear
Journal of Mechanical Design
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Furthermore, the velocities of the grinding wheel surfaceS j and
the generated gear surfaceS i at their common contact point ca
be expressed byVb

( j ) andVb
( i ) , respectively, as follows:

Vb
~ j !5F 0

2r iv i

0
G , (6)

and Vb
~ i !5vb

~ i !3Rb
~ j !

5v iF cosb i yw
~ j !1sinb izw

~ j !2r if i

2cosd ixw
~ j !1sind i sinb i yw

~ j !2sind i cosb izw
~ j !2r i

0
G

(7)

The equation of meshing can be obtained by applying the ortho
nality of the relative velocity and surface common normal of t
grinding wheel surfaceS j and the generated gear surfaceS i . The
following equation can thus be observed:

nb
~ j !
•Vb

~ j i !5nb
~ j !
•~Vb

~ j !2Vb
~ i !!50. (8)

Substituting Eqs.~4!, ~6! and~7! into Eq. ~8! enables us to obtain
the equation of meshing for Mitome’s grinding method. Accor
ing to Fig. 3, the locus of the grinding wheel represented in co
dinate systemSi can be obtained as follows:

xi5~cosf i cosd i !xw
~ j !2~sinf i cosb i1cosf i sind i sinb i !yw

~ j !

2~sinf i sinb i2cosf i sind i cosb i !zw
~ j !1Ai ,

yi5~sinf i cosd i !xw
~ j !1~cosf i cosb i2sinf i sind i sinb i !yw

~ j !

1~cosf i sinb i1sinf i sind i cosb i !zw
~ j !1Bi ,

and zi52sind ixw
~ j !2cosd i sinb i yw

~ j !1cosd i cosb izw
~ j !1Ci .

(9)

where

Ai5r if i sinf i1r i cosf i , (10)

Bi52r if i cosf i1r i sinf i , (11)

and Ci50. (12)

Hence, the tooth surface of the generated gearS i ground by Mi-
tome’s grinding method can be expressed by Eqs.~8! and~9!. The
unit normal vector of the generated tooth surface can be atta
by

nxi5~cosf i cosd i !nxw
~ j !2~sinf i cosb i1cosf i sind i sinb i !nyw

~ j !

2~sinf i sinb i2cosf i sind i cosb i !nzw
~ j ! ,

nyi5~sinf i cosd i !nxw
~ j !1~cosf i cosb i2sinf i sind i sinb i !nyw

~ j !

1~cosf i sinb i1sinf i sind i cosb i !nzw
~ j ! ,

and nzi52sind inxw
~ j !2cosd i sinb inyw

~ j !1cosd i cosb inzw
~ j ! .

(13)

2.4 Gears Ground by the Novel Grinding Method. In the
novel grinding process proposed herein, the grinding wheelS j
translates along the direction of its axis of revolution as presen
in Fig. 1~b!. Therefore, the origin of the grinding wheel coordina
systemSw

( j ) translates along theYw0
( j ) -axis instead of theYr

( j )-axis
during generation, as shown in Fig. 3~b!. The position of the
grinding wheel coordinate systemSw

( j ) can be represented b
Sw2

( j ) (Xw2
( j ) ,Yw2

( j ) ,Zw2
( j ) ) when the generated gearS i rotates through

an anglef i , and the translational distance of the grinding whe
is uOw0

( j )Ow2
( j ) u5r if i cosbi . Notably, the unit normal vector of the
DECEMBER 2002, Vol. 124 Õ 755
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grinding wheelnb
( j ) is the same as in Eq.~4!, but the velocities of

the grinding wheelS j and the generated gearS i at their point of
contact now become

Vb
~ j !5r iv iF sind i sinb i cosb i

2cos2 b i

cosd i sinb i cosb i

G , (14)

and

Vb
~ i !5vb

~ i !3Rb
~ j !

5v iF cosb i yw
~ j !1sinb izw

~ j !2r if i cos2 b i

~2cosd ixw
~ j !1sind i sinb i yw

~ j !2sind i cosb izw
~ j !

2r if i sind i sinb i cosb i2r i)
0

G .

(15)

Substituting Eqs.~4!, ~14! and~15! into Eq.~8! allows us to solve
the equation of meshing for proposed gears with this novel gri
ing method. Similarly, the tooth surface and unit normal vector
the gearS i ground by the novel grinding method can be express
by Eqs.~8!–~13! with the modification of Eqs.~10!–~12! as

Ai5r if i~sinf i cosb i1cosf i sind i sinb i !cosb i1r i cosf i ,
(16)

Bi5r if i~2cosf i cosb i1sinf i sind i sinb i !cosb i1r i sinf i ,
(17)

and Ci5r if i cosd i sinb i cosb i . (18)

3 Meshing Model and Tooth Contact Analysis
Adopting the gear engagement concept proposed by Mito

@4#, Fig. 4 illustrates the schematic meshing model of the beve
gear pair. The beveloid pinionS1 and gearS2 can be considered
to be two imaginary cones with cone anglesd1 andd2 , lying on
opposite sides of the pitch plane of the imaginary engaging ra
while Sf(Xf ,Yf ,Zf) andSg(Xg ,Yg ,Zg) are the reference coordi
nate systems for the pinion coordinate systemS1(X1 ,Y1 ,Z1) and
gear coordinate systemS2(X2 ,Y2 ,Z2), respectively. Furthermore
f18 andf28 denote the rotation angles of the pinion and gear d
ing meshing. PointsOf andOg are the centers of the pitch circle

Fig. 4 Schematic relationship for the meshing of pinion, gear
and the pitch plane of the imaginary engaging rack
756 Õ Vol. 124, DECEMBER 2002
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of the pinion and gear, wherer 1 and r 2 denote their respective
pitch radii, andPf andPg are the apexes of the imaginary cone
The pitch circles of the pinionS1 and gearS2 are tangent to the
pitch plane at pointQ, and the tangent lines of the two imagina
cones with respect to the pitch plane of the imaginary engag
rack, PfQ and PgQ, form an angleG5b11b2 . To investigate
the meshing of a beveloid gear pair with assembly errors, au
iary coordinate systemsSe(Xe ,Ye ,Ze), Sh(Xh ,Yh ,Zh) and
Sv(Xv ,Yv ,Zv) have been set up as displayed in Fig. 5. Coordin
systemSe is set up and its orientation in respect to coordina
system Sg is maintained. The offset OgOe5Dd
5(Dxg ,Dyg ,Dzg) indicates the mounting position deviation o
the gear with respect to its ideal assembly position. Moreov
coordinate systemSh simulates the gear with a horizontal angul
misalignmentDgh with respect to coordinate systemSe , while
coordinate systemSv simulates the gear with a vertical angul
misalignmentDgv with respect to coordinate systemSh . Coordi-
nate systemSv thus simulates the gear with assembly errorsDd,
Dgh andDgv .

Applying the coordinate transformation matrix equation, t
position vectors and unit normal vectors of the pinion and g
surfaces can be represented in coordinate systemSf . The mating
pinion and gear tooth surfaces must satisfy the following con
tions at their instantaneous contact point@8,9#:

Rf
~1!5Rf

~2! , (19)

and nf
~1!56nf

~2! , (20)

whereRf
(1) and Rf

(2) are the position vectors whilenf
(1) and nf

(2)

denote the unit normal vectors of pinionS1 and gearS2 , repre-
sented in coordinate systemSf , respectively. In a three-
dimensional space, Eqs.~19! and~20! form a system of five inde-
pendent nonlinear equations with six unknowns:f18 , ,F , tF ,
f28 , ,G andtG . By choosing the pinion rotation anglef18 as an
input variable, all other unknowns can be solved in terms off18 .
The instantaneous contact points on the pinion and gear surf
can be obtained by substituting the solved unknowns into the
ion and gear tooth-surface equations. The deviation of the
gear rotation anglef28(f18) from its ideal rotation angle is define
as the transmission error~TE! which can be expressed as follow

Fig. 5 Assembly error simulation of the beveloid gear
Transactions of the ASME

14 Terms of Use: http://asme.org/terms



l

e

h

x

a

r

ng
n-

th

l
ired

he

e 2
of
oth

ight

i-

Downloaded F
TE5~f282f28
~0!!2

T1

T2
~f182f18

~0!!, (21)

wheref18
(0) andf28

(0) represent the initial values off18 andf28 ,
while T1 andT2 denote the tooth numbers of the pinion and ge
respectively.

4 Contact Ellipses
Theoretically, the bearing contact of a beveloid gear pair un

non-parallel axes meshing is a point contact. Owing to the e
ticity of tooth surface, the contact is spread over an elliptical a
centered at the instantaneous contact point, which can be d
mined from the TCA result. Applying the methodologies dev
oped by Litvin@8,9#, the principal directions and curvatures of th
pinion and gear tooth surfaces can be derived in terms of t
corresponding cutting tool surfaces. LetiI

( i ) and iII
( i ) ( i 51,2) de-

note the principal directions of the pinion tooth surfaceS1 and the
gear tooth surfaceS2 at their instantaneous contact point e
pressed in coordinate systemSf . At any instantaneous contac
point, iI

( i ) and iII
( i ) ( i 51,2) are located on the common tange

plane of the mating pinion and gear tooth surfaces. The orienta
of the contact ellipse with respect toiI

(1) can be determined by
angleh, as follows@8,9#:

tan 2h5
g2 sin 2s

g12g2 cos 2s
, (22)

where gi5k I
~ i !2k II

~ i ! ~ i 51,2!. (23)

Herein, k I
( i ) and k II

( i ) ( i 51,2) are the first and second princip
curvatures of the mating pinion and gear tooth surfaces at con
point, ands denotes the angle formed byiI

(1) andiI
(2) . Meanwhile,

the half length of the major and minor axes of the contact ellip
a andb, can be expressed in terms of the elastic approachD by

a5UDAU
1/2

, (24)

and b5UDBU
1/2

, (25)

where

A5
1

4
@kS

~1!2kS
~2!2~g1

222g1g2 cos 2s1g2
2!1/2#, (26)

B5
1

4
@kS

~1!2kS
~2!1~g1

222g1g2 cos 2s1g2
2!1/2#, (27)

and kS
~ i !5k I

~ i !1k II
~ i ! ~ i 51,2!. (28)

The elastic approachD for the contact ellipse simulation is se
lected herein as 0.00635 mm~0.00025 in!, identical to the thick-
ness of the coating paint used for contact pattern tests.

5 Numerical Illustrative Examples for Gear Contact
Simulations

Figure 6 illustrates two typical types of gear mounting for co
cave beveloid gear pairs with intersected and crossed axes. Ap
ing the computer simulation programs developed herein allow
TCA results to be obtained and contact ellipses to be plotted
the tooth surfaces. Table 1 lists some major design paramete
the beveloid gear pairs employed in the following examples. N
tably, the same grinding wheel with pitch radiusr w

( j ) ( j 5F,G)
performed the gear tooth grinding for both pinionS1 and gearS2
in each case.

Example 1: Straight Concave Beveloid Gear Pair Mounted
With Intersected Axes. As shown in Fig. 6~a!, the gear pair in
this example is composed of straight concave beveloid pinion
Journal of Mechanical Design
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gear ~i.e. b15b250 deg) with cone anglesd15d2530 deg,
mounted with an intersection angle of 60 deg. Various grindi
wheel pitch radiir w

( j ) are selected to investigate the bearing co
tacts of the gear pair under ideal assembly conditions.
Case 1:r w

( j )5` ~i.e. straight conventional beveloid gear!.

Case 2:r w
( j )550 mm.

Case 3:r w
( j )545 mm.

According to Fig. 2, the intersection of the grinding wheel wi
the Xw

( j )2Yw
( j ) plane ~i.e. t j50) remains unchanged whenr w

( j )

varies. Therefore, by choosingt j50 in the mathematical mode
of tooth surfaces, the so-called line of coincidence can be acqu
on the central region of the generated tooth surfaceS i . The tooth
surfaces are identical only on the line of coincidence with t
variation of r w

( j ) , even whenr w
( j )5`, which makes the concave

beveloid gear pair to the conventional beveloid gear pair. Tabl
summarizes the TCA results, and Fig. 7 illustrates the path
contact and the corresponding contact ellipses on the pinion to
surface. According to the simulation results of Case 1, the stra
conventional beveloid gear pair~i.e. r w

( j )5`) meshes with TE
50, and the path of contact is identical with the line of coinc

Fig. 6 Beveloid gear pairs with intersected and crossed axes

Table 1 Major design parameters of the beveloid pinion and
gear

Table 2 TCA results of straight concave beveloid gear pair
DECEMBER 2002, Vol. 124 Õ 757
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dence~i.e. t j50). Since the tooth profile remains the same alo
the line of coincidence when ther w

( j ) changes, it is reasonable t
find that the straight concave beveloid gear pairs ground by gr
ing wheels with variousr w

( j ) still mesh with TE50, with their
contact points tracing along the line of coincidence. Meanwh
because a smaller pitch radiusr w

( j ) of the grinding wheel induces a
larger bulgy deviation on the tooth surface except the line of
incidence, the contact ellipses enlarge significantly.

The gear pair ground by the grinding wheel with an appropri
pitch radius,r w

( j )550 mm, is then chosen to simulate the conta
of straight concave beveloid gear pairs with intersected axes u
the following assembly conditions:
Case 4:Dgh5Dgv50 deg andDxg5Dyg5Dzg50.3 mm.
Case 5: Dgh50.5 deg, Dgv520.2 deg andDxg5Dyg5Dzg
50.3 mm.

According to Table 2 and Fig. 8, even meshing under assem
errors, the TEs of the gear pair remain zero and the path of con
remains in the central region of the tooth surface. Therefore,
straight concave beveloid gear pairs mounted with interse
axes are insensitive to small assembly errors.

Fig. 7 Bearing contacts of the straight concave beveloid gear
pair ground by grinding wheels with different r w

„ j …

Fig. 8 Bearing contacts of the straight concave beveloid pair
with assembly errors.
758 Õ Vol. 124, DECEMBER 2002
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Example 2: Helical Concave Beveloid Gear Pair„Ground
by Mitome’s Grinding Method … Mounted With Crossed Axes
In this example, the helical concave beveloid gear pair moun
with crossed axes, as illustrated in Fig. 6~b!, is ground by Mito-
me’s grinding method with d15d2520 deg and b15b2
515 deg ~right handed!. Applying the algorithms proposed by
Mitome @4#, the shortest axial distance between two axes
111.731 mm, while the crossed angle is calculated as 49.628
The contact simulations of this helical concave beveloid gear p
with crossed axes under ideal assembly conditions are perfor
using different grinding wheel pitch radiir w

( j ) in the following
cases.
Case 6:r w

( j )5` ~i.e. helical conventional beveloid gear!.
Case 7:r w

( j )5200 mm.
Case 8:r w

( j )5100 mm.
Figure 9 illustrates the bearing contacts of the gear pair plot

on the pinion tooth surface while Fig. 10 shows the TEs. Acco
ing to the simulation results of Case 6, the helical conventio
beveloid gear pair meshes conjugately and the TEs equal z
However, the paths of contact are not identical with the line

Fig. 9 Bearing contacts of helical concave beveloid gear pairs
ground by Mitome’s grinding method with different r w

„ j …

Fig. 10 Transmission errors of helical concave beveloid gear
pairs ground by Mitome’s grinding method
Transactions of the ASME
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coincidence (t j50) on the tooth surface ground by Mitome
grinding method. When the grinding wheel’s pitch radiusr w

( j ) de-
creases from̀ to 100 mm~Case 6 to Case 8!, the bulgy deviation
of the tooth surface, except for along the line of coinciden
results in the enlargement of the contact ellipses. However,
TEs increase and the characteristic of TE50 originally belonging
to the helical conventional beveloid gear pair~i.e. r w

( j )5`) is
spoiled. Consequently, in the range of the considered design
rameters, Mitome’s grinding method is impractical for manufa
turing an efficient helical concave beveloid gear pair with cross
axes.

Example 3: Helical Concave Beveloid Gear Pair„Ground
by the Novel Grinding Method… Mounted With Crossed Axes
The gear pair mentioned in Example 2 is now ground using
novel grinding method proposed in section 2.4. Cases 9 to
simulate the contact of the gear pair under ideal assembly co
tions, with different pitch radiir w

( j ) of the grinding wheel.

Fig. 11 Bearing contacts of helical concave beveloid gear
pairs ground by novel grinding method with different r w

„ j …

Table 3 TCA results of helical concave beveloid gear pairs
ground by novel grinding method
Journal of Mechanical Design
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Case 9:r w
( j )5` ~i.e. helical conventional beveloid gear!.

Case 10:r w
( j )560 mm.

Case 11:r w
( j )545 mm.

According to the TCA results listed in Table 3 and the bear
contacts illustrated in Fig. 11, the helical concave beveloid g
pair ground by the proposed novel grinding method can mesh w
TE50 under the ideal assembly condition, and the path of con
is identical with the line of coincidence~i.e. t j50). Meanwhile,
the contact ellipses enlarge significantly asr w

( j ) decreases. Hence
the novel grinding method ameliorates the defect of Mitom
grinding method in the grinding of helical concave beveloid ge
pairs. The gear pair ground by the grinding wheel with an app
priate pitch radius,r w

( j )560 mm, is then chosen to test the sen
tivity of this gear pair to assembly errors as follows:
Case 12:Dgh5Dgv50 deg andDxg5Dyg5Dzg50.3 mm.
Case 13:Dgh50.5 deg, Dgv520.2 deg andDxg5Dyg5Dzg
50.3 mm.

According to Table 3 and Fig. 12, even under assembly err
the TEs of the gear pair remain zero and the path of con
remains in the central region of the tooth surface. These sim
tion results indicate that the helical concave beveloid gear p
ground by the novel grinding method are insensitive to small
sembly errors. The novel grinding method can also increase
load capacity of crossed axes helical gear pairs, which can
considered to be helical beveloid gear pairs with zero cone ang

6 Conclusions
Simulation results in this study demonstrate that the no

grinding method proposed herein eliminates the transmission
rors of helical beveloid gear pairs ground by Mitome’s grindi
method. Compared with conventional beveloid gear pairs, c
cave beveloid gear pairs not only solve the problems associ
with low-load capacity by enlarging the contact ellipses, but a
retain the special property of insensitivity to assembly errors
der non-parallel axes meshing. The concave beveloid gear p
thus fit the requirements of high load and highly precise mot
transmission between non-parallel axes.
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Fig. 12 Bearing contacts of helical concave beveloid pairs
ground by novel grinding method with assembly errors
DECEMBER 2002, Vol. 124 Õ 759

14 Terms of Use: http://asme.org/terms



-

y-
,’’

of

r

E

rat-

el-

-

Downloaded F
Nomenclature

aF , aG 5 design parameters of grinding wheelsSF and
SG ~mm!

a 5 half-length of the major axis of the contact
ellipse ~mm!

bF , bG 5 design parameters of grinding wheelsSF and
SG ~mm!

b 5 half-length of the minor axis of the contact
ellipse ~mm!

,F , ,G 5 design parameters of grinding wheelsSF and
SG ~mm!

Pn 5 gear diametral pitch~1/mm!
pn 5 gear circular pitch~mm!

r 1 , r 2 5 pitch radii of the pinionS1 and gearS2 ~mm!
r w

(F) , r w
(G) 5 pitch radii of the grinding wheelsSF andSG

~mm!
T1 , T2 5 tooth numbers of the pinionS1 and gearS2

an
(F) , an

(G) 5 normal pressure angles of grinding wheelsSF
andSG ~degrees!

b1 , b2 5 helix angles on the pitch planes of the corre-
sponding imaginary rack cutters of the pinion
S1 and gearS2 ~degrees!

d1 , d2 5 cone angles of pinionS1 and gearS2 ~de-
grees!

f1 , f2 5 rotation angles of the pinionS1 and gearS2
in generating process~degrees!

f18 , f28 5 rotation angles of the pinionS1 and gearS2
during meshing~degrees!

f18
(0) , f28

(0)
5 initial values off18 andf28 during meshing

~degrees!
760 Õ Vol. 124, DECEMBER 2002
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tF , tG 5 design parameters of grinding wheelsSF and
SG ~rad.!

D 5 elastic approach for the contact ellipse simula
tion ~mm!

Dd 5 mounting position deviation of the gear with
respect to its ideal assembly position~mm!

Dgh 5 horizontal angular misalignment of the gear
~degrees!

Dgv 5 vertical angular misalignment of the gear~de-
grees!
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