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Modeling of Quantum Effects for Ultrathin Oxide
MOS Structures With an Effective Potential

Yiming Li , Member, IEEE, Ting-wei Tang, Fellow, IEEE, and Xinlin Wang

Abstract—In this paper, the effectiveness of the effective
potential (EP) method for modeling quantum effects in ultra-
thin oxide MOS structures is investigated. The inversion-layer
charge density and MOS capacitance in one-dimensional MOS
structures are simulated with various substrate doping profiles
and gate bias voltages. The effective mass is used as an adjusting
parameter to compare results of the EP model with that of the
Schrödinger–Poisson solution. The variation of this optimum
parameter for various doping profiles at different gate voltages
is investigated. The overestimated average inverse charge depth
by the EP method is quantified and its reason explained. The EP
model is a good practical simulation tool for modeling quantum
effects but more work needs to be done to improve its accuracy
near the interface.

Index Terms—Effective potential, modeling and simulation,
MOS devices, quantum effect, Schrödinger–Poisson.

I. INTRODUCTION

A S MOSFET devices are further scaled into the deep sub-
micrometer regime, it has become necessary to include

quantum mechanical effects when modeling device behavior.
There have been two approaches to the modeling of these
quantum effects: 1) employing full quantum mechanical trans-
port model such as nonequilibrium Green’s function [1] and
2) adding quantum corrections to the classical drift-diffusion
(D-D) or hydrodynamic equation, such as the density gradient
method [2].

Recently, a new effective potential (EP) approach has been
advanced [3]–[6] which has the advantages of easy numerical
implementation and almost guaranteed convergence. However,
the accuracy of the EP model has never been systemati-
cally quantified against a more rigorous but time-consuming
Schrödinger–Poisson (S-P) solution under various doping con-
ditions. For this purpose, in this paper we have applied the EP
method to the simulation of inversion-layer charge density (and
therefore MOS capacitance as well) in one-dimensional (1-D)
MOS structures with various substrate doping profiles and
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Fig. 1. A schematic band profile for the MOS structure.

gate bias voltages. The effective mass is used as an adjusting
parameter to compare results of the EP model with that of the
S-P solution and the variation of this optimum parameter is
investigated. The paper is organized as follows. Simulation
procedures for the effective potential models are described
in Section II. Section III presents the simulation results and
discussion. Finally, Section IV draws conclusion.

II. SIMULATION PROCEDURES

A polycrystalline-oxide-silicon MOS structure with a p-type
silicon substrate as shown in Fig. 1 is simulated. An ideal oxide
with a dielectric constant of 3.9 and a silicon substrate with a
dielectric constant of 11.7 are assumed. Calculations are carried
out at a temperature of 300 K using the D-D approximation and
the Fermi–Dirac statistics. The oxide–silicon interface is chosen
to be at . The oxide thickness is fixed at 1.6 nm. The sil-
icon layer lies in the region and the doping concentration
of poly-silicon gate is 5 10 cm . Three different substrate
doping profiles are considered, namely: 1) uniform doping of

10 cm ; 2) low–high (retrograde) doping with
10 cm near the interface and abruptly rising to
10 cm at nm; and 3) a Gaussian profile,

with 10 cm , 10 cm , and
nm [7], [8].

First, we solve the S-P equations using 16 subbands approx-
imation [7], [8]. A zero wave function boundary condition is
forced at quantum system boundaries, i.e., at the bottom of the
substrate and at the oxide interface. Therefore, penetration of the
wave function into the oxide is neglected. This solution is used
for comparison with the solution obtained by the EP model. The
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Fig. 2. Electron density with the S-P and two EP models, where the applied
voltage is 1.5 V.

comparison criterion is based on the average inversion charge
depth defined as

(1)

The EP model is based on the following integral transforma-
tion from the classical potential (CP) to the EP [6]
as

(2)

where . The CP is initially calculated from
the D-D equation coupled with Poisson’s equation. After the EP
is obtained, the electron concentration is calculated using
the Fermi–Dirac statistics. Poisson’s equation is then solved
again until a consistency is reached.

III. SIMULATION RESULTS AND DISCUSSION

We present the calculated electron density with the EP
and S-P models using(or equivalently the effective mass )
as an adjusting parameter to produce the in both results.
Two models for are considered. Model 1 uses the electric
potential obtained from Poisson’s equation and it is a contin-
uous function of position at the oxide–silicon interface. Model
2 uses which has a discontinuity at the
oxide–silicon interface. The latter seems to be a reasonable way
of extending to an infinite space rather than limiting it to
the semi-infinite space on the silicon side only. Fig. 2 shows
the comparison between results of the EP and S-P models to-
gether with the classical result. It is clearly seen that both EP
models produce a peak electron density that is approximately
twice as large as that of the S-P model, and the position of the
peak density is further setback (1.0–1.2 nm) from the interface
than that of the S-P model (0.8–1.0 nm). This has also been ob-
served earlier by Watlinget al. [9]. Fig. 3 presents a zoom-in
plot of the electron density near for these three models.
Fig. 4 shows the corresponding effective potential calculated by
the EP method and the classical potential by the S-P method,
respectively.

Fig. 3. Zoom-in plot of the electron density in log scale.

Fig. 4. Potentials for the S-P and EP models.

Fig. 5. Ratio of thehxi for the S-P and the EP model 1.

Fig. 5 shows the ratio of to with respect to
the applied voltages for different doping profiles while keeping
the same integrated inversion charge sheet densityby ad-
justing the parameter. The percentage derivation of is
large at low applied voltages ( 5 ) and becomes smaller at
high voltages ( 2 ). Also shown in Fig. 5 (open squares)
is the same ratio for the uniform doping if the parameter
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Fig. 6. Integration of the inversion layer charges and thea value for EP model
1.

Fig. 7. Optimalm for the different doping profiles.

10 m optimized at V is used for all other
gate voltages. In this case, the range of the ratio is from 0.93 to
1.04.

Fig. 6 shows the optimum parameterrequired to produce
the same for both the EP and S-P models in Fig. 5. Also
shown in Fig. 6 are these calculated ’s for different doping
profiles. The optimum parameterto produce the same ’s
approximately varies from 7.510 m to 5.5 10 m for
different ’s. The open circles represent for the uniform
doping if 10 m optimized at V is used
for all other gate voltages. In this case, the percentage errors in

can be as large as 12% at V.
Fig. 7 presents the adjusted effective mass required to

produce the same as that of the S-P solution for various
doping profiles. Note that, when the parameteris optimized to
produce the same as that of the S-P solution, it automatically
results in the same for both models. Using V as
a reference, the adjusted varies as much as40 at

V to 25 at V.
In Fig. 8, aC–Vcurve measured at a frequency of 100 kHz of a

20 20 m N-MOS capacitor with nm is presented.
Comparing the measuredC–Vdata with the EP model, we have
found that, through the calibration ofor , the EP model can
reproduce the experimental data fairly well. The maximum error

Fig. 8. Comparison of the measuredC–Vdata with the S-P model and the EP
model for all optimizeda’s and for using a fixed valuea.

Fig. 9. Plot of the threshold voltage shift between the S-P solution and the
classical result versus doping levels.

of the result predicted by the EP model is only about 4.5% com-
pared to the experimental data. Characteristically, the EP model
underestimates the capacitance at high gate voltages. The main
reason for this is that the total inversion charge sheet density
predicted by the S-P and the EP models is about the same [10],
although the average inversion charge depth is different. On the
other hand, when the optimum parameter 10 m
optimized at V is used throughout, the maximumC–V
error is about 10%.

We have also compared the difference in the threshold voltage
using the classical, S-P, and EP models. The results are shown
in Fig. 9 for a nm n-MOS structure which is sim-
ilar to the result of Watlinget al. [9]. The lines represent the
threshold voltage shift and the
symbols represent . Since the pa-
rameter in the EP model is optimized to have the same inte-
grated charge density as that of the S-P solution, the two models
produce the same result and the symbols are on the top of the
lines. However, if a fixed 10 m optimized for

10 cm is used for all other uniform doping con-
centrations, the voltage shift calculated by the EP model is then
represented by open circles rather than by filled circles. As ex-
pected, the threshold voltage predicted by the quantum model
is always higher than that of the classical model because of the
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Fig. 10. Plot of the electron concentration of the S-P equations in the boundary
layer, whereT = 1:6 nm andV = 1:5 V.

quantization effect. Also shown in Fig. 9 is the optimized param-
eter used in the EP model. The optimum parameterto pro-
duce the same ’s approximately varies from 6.310 m
to 5.2 10 m for different doping profiles and levels.

The idea of proposing the EP model for nanoscale device
simulation originates in part from the consideration of the fi-
nite-size effect of charge carriers [11], [12]. When the electric
potential produced by a point charge (represented by a delta
function) is replaced by a finite-size wave packet (represented
by a Gaussian function), the CP is smoothed out and it results
in an EP as given by (2). The integral form of as given in
(2) suggests that is a convolution of with a Gaussian
function in an infinite space. In the original paper by Feynman
and Kleinert [13], the EP was used to study bounded carriers in
a symmetric anharmonic oscillator and a double-well potential.
Since the relationship between and in (2) is linear,
both potentials are supposed to satisfy the same boundary con-
ditions. However, the quantum boundary conditions imposed on

may be different from the classical boundary conditions
imposed on . For example, along the longitudinal channel
direction in a MOSFET, both and satisfy the same clas-
sical boundary conditions at the source and drain ends. In this
case, the EP model smoothes out and lowers the potential bar-
rier at the source–channel junction resulting in a slight increase
in the drain current [3]. However, in the transverse direction un-
derneath the MOS capacitor under the strong inversion condi-
tion, the discontinuity in at the interface is abrupt and
quite large ( 3.1 eV) which causes the confinement of charge
carriers. In this case, the tunneling or penetration of the elec-
tron wavefunction at the interface may require more than simple
smoothing of by the Gaussian transformation. In addi-
tion, because the Gaussian transformation in (2) considers pri-
marily the electron finite-size effect in an infinite space, when
it is applied to a semi-infinite space problem, such as one at the
oxide–silicon interface, it may not be the most appropriate form
to describe the effect of the finite extent of the wave packet.

In our earlier study [7], [8], we have found that, for a non-
tunneling boundary condition at the oxide–silicon interface, a
plot of versus shows a clear linear slope of 2 (see
Fig. 10). This implies that as for an infi-

nite high oxide barrier. In the EP model, whether it is Model 1
or Model 2, the plot of versus is almost linear (see
Fig. 3). This means that is an exponential function of po-
sition because is almost a linear function of near the
neighborhood of as seen in Fig. 4. The electron den-
sity near the interface is reduced in the EP model because
is lower than the classical potential near the surface. This is
a result of either the semi-infinite space integration of in
Model 1, or using to include the disconti-
nuity at the interface in Model 2. In essence, the Gaussian distri-
bution may be a good recipe for bounded carriers in a symmetric
potential well but it may not be the most appropriate form for
bounded carriers in a semi-infinite triangular well.

IV. CONCLUSION

In this paper, we have investigated the quantum effects oc-
curring at the oxide–silicon interface under the inversion condi-
tion with the EP method for the ultrathin oxide MOS structure.
The range of the optimum parameteris determined for var-
ious doping profiles at different gate voltages. Usingas an ad-
justing parameter, the EP model can produce a correct amount
of the charge sheet density but its prediction of the average in-
version charge depth is always overestimated. This introduces a
small error in theC–Vmeasurement curves. The optimum pa-
rameter is also somewhat sensitive to the doping concentra-
tions and doping profiles. Nevertheless, the EP method is a con-
venient, if not the most accurate, way of producing a first-order
result for the quantization effects in semiconductors.
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