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A SPICE-Compatible Model for Nanoscale MOSFET
Capacitor Simulation Under the Inversion Condition

Ting-wei Tang Fellow, IEEE,and Yiming Li, Member, IEEE

Abstract—A  SPICE-compatible charge model for
nanoscale MOSFETs is proposed. Based on the solution of

Schrédinger—Poisson (S-P) equations, the developed compact Hi
charge model is optimized with respect to: 1) the position of Lo HP 4284
the charge concentration peak; 2) the maximum of the charge o CI'V
concentration; 3) the total inversion charge sheet density; and Loyt
4) the average inversion charge depth, respectively. This model

can predict inversion layer electron density for various oxide
thicknesses and applied voltages. Compared to the S-P results, -
our model prediction is within 5% of accuracy. Application of this -

charge quantization model to the C-V measurement produces Fig. 1. Cross-section view of the nanoscale MOSFET &réV curves
an excellent agreement. This compact model has continuous measurement configuration.

derivatives and is therefore amenable to a device simulator. It can

also be easily incor i ircuit si i ; ;
ultrathin oxidey MOsgg;atggvlrétﬁagr;:lrtiszggIator for modeling potential methoq [5], [6.] QISO _Suf'fer from the same (jlsadvan-
tage—computationally it is still excessive and physically the
Index Terms—C-V curve, compact charge model, device method is not very transparent.
gﬁﬂro&'{f”'t PS'.m“'at'O”' MOSFETs, quantum correction, In this paper, we have successfully developed a SPICE-com-
ger=roisson. patible model feasible for nanoscale MOSFET capacitor sim-
ulation. The model is a generalization of an analytical model
|. INTRODUCTION proposed by Hanscét al. many years ago [7]. The solution of

S THE feature size of MOS devices shrinks for highe‘?'P equations is utilized to construct the model, where four op-
density and performance, the thickness of silicon oxi gnization constraintss 1) the position of the charge qoncentra—
also scales down. In aggressively scaled MOSFETSs, the thi jen peak; 2) the maximum of the charge concentration; 3) the

ness of oxide in a MOS capacitor can be as thin as 0.8 nm %al inversion charge sheet density; and 4) the average inver-

prevented only by the leakage tunneling current. For the oxi 1on charge depth are used as criteria for the model parameter
extraction. The model parameters are expressed as a function of

thickness ) of 1 ~ 3 nm and the applied gate voltage() g‘ox andVy for the purpose of simulating nanoscale MOSFET

of 0.5 ~ 1.5V, the displacement of the inversion carrier densit i For oth licati th be al d
away from the Si-Si@interface due to the quantization effec apacrtances. -or other applicalions, tn€y can be aiso expresse
in terms of the surface electric field and the oxide thickness.

cannot be neglected [2]. Thus, any accurate calculation of the i
version-layer capacitance must take this quantization effect into
consideration.

The most accurate way of incorporating the quantum effect inFirst, a poly-oxide-silicon system as shown in Fig. 1 is
the inversion layer is to solve the coupled Schrédinger—Poisssimulated using the drift-diffusion (D-D) approximation [8],
(S-P) equations subject to an appropriate boundary conditiof2t The D-D equations are solved self-consistently with the
the Si-SiQ interface [3]. This can be done without difficultiesS-P equations. The S-P equations are assumed to have no wave
in solving the S-P equations in one dimension, but the S-P gienetration at the Si—-SiOnterface [10]. The S-P equations
proach is not amenable to a realistic device simulator suchae discretized by the finite difference method (the so-called
a simple compact model used in the SPICE. Other approaches method). After the discretization, the corresponding matrix
such as the density gradient method [3], [4] and the effectieggenvalue problem and the system of nonlinear algebraic equa-
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for variousT,, and differentV.
After optimization, these parameters are empirically fitted as

. . . a function ofV; andT,, as follows:
wherency, is the classical electron density solved from the @

Poisson equation an,, = (h/2m*kpT)'/? is the thermal ag =2.82 — 0.555 exp(— V) 3)
wavelength. Using a generic algorlt_hn_L the four mo_del pa- a1 =2.22 — 1.79exp(~Ver) — 0217,y 4)
rametersay, ay, ag, and az are optimized to best fit the V2
self-consistent S-P solution for dll,,'s andV's. The fitting a3z = — 0.00467 4 1.048 1G23 (5)
accuracy of these parameters is based on the optimization with Tos

respect to the aforementioned four constraints. The avera@fereV is in volts andl’. is in nanometers. The model param-
inversion charge depth is defined as eters given in (3)—(5) are based on a p-type substrateMith-

. 10'” cm=3. For other substrate dopingg; should be adjusted
fo zn(z)dx @) by an amount equal to a shift in the threshold voltage due to the
I n(z)dz change inN 4. However, this adjustment is usually very small

(< 0.13 V). The accuracy of the model inversion-layer charge

The results of these parameters fittings are shown in Figs. 2dénsity given by (1), (3) — (5) compared to the S-P solution is
As seenin Fig. 2, the plots af)’s versus/; are almost indepen- very good. In terms of the four criteria mentioned above, the ac-
dent ofT,. Fig. 3 shows that the dependencepk onV; for curacy is within 5%.
different T,y is similar; all have a decreasing slope. Note that Shown in Figs. 5-8 are, respectively, errors between the fitted
ay increases a%,, is decreased. Not shown are plotsagfs a’s formula and the S-P solution againgt for each optimiza-
which are for all practical purpose nearly zero. Shown in Fig.tibn criterion. In Figs. 5 and 6, it is shown that the error of the
are plots of13’s versusi, all having an increasing slope oppo-osition of the charge concentration peak is less than 3.5% and
site to the shape af;'s. Also noticed is that alt3’s converge to the error of the maximum of the charge concentration is less than
zero at a very low, implying thatas is only associated with 3%, respectively. Fig. 7 shows that the error of the total inversion
a higher-order quantum correction. charge sheet density between our model and the S-P equation is

(z) =
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proposed SPICE-compatible model and the S-P model.

less than 3%. Fig. 8 shows that the error of the average invelr” A PPLICATION TO PREDICTION OF C—V CHARACTERISTICS
sion charge depth is within 2%—-5%. For the doping concentra-

tion V.4 varying from 10¢ cm—3 to 10'® cm~3, the four errors ~ As anapplication, we have applied our compact quantum cor-
versusVy are also estimated with the same fitigd formula. rection model for the inversion charge to the calculatio@-e¥/

We have found that the variation of errors are all within 6% arfedrves. A 20x 20 um* N-MOSFET withT,,x = 1.6 nm is fabri-

this maximum error of the average inversion charge depth ¢@ted and is measured for t8e-Vcurve. The developed model
curred atN 4 = 10 cm=3, 7). = 3.0 nm, andVg = 0.5 V. is used to analyze the—Vdata of the MOSFET sample at a fre-
For a MOSFET with the Gaussian and low—high doping préiuency of 100 kHz as shownin Fig. 1. The total capacitance con-
files, we have also found that the error trend is similar to that &fsts of three components in series connection, the poly-gate ca-
uniform doping and that the largest error fluctuation (6.7% fdtacitanceCpoly ), the gate-oxide capacitan@@dx = €ox/Tox,
Gaussian doping profile) occurs under low doping levél (= wheree,, is oxide dielectric constant), and the surface capaci-
10'® cm=3), thicker oxide thicknessI{, = 3.0 nm), and low tance (s.). The total capacitana@ is thus given by [11], [12]

gate bias V¢ = 0.5 V) conditions. 1 1 1 \7!
C = < + + > . 9)
Cpoly Cox Csurf

Finally, for other applications such as a two-dimensional
(2-D) simulation, it is more conventient to express the coeffi-
cients:ao, a1, andas in terms of the surface electric field, The surface capacitan€&,,.s = 0Qsurt/9ps, Whereg, is the
and the oxide thicknesE,« surface potential, is computed by the Poisson equation. The sur-
face charg€)s..: consists of the inversion and depletion charge,
and the computeflgy from (1) is integrated over the entire in-

ap =211+ 1.3 x 107E2/3 4 0.085T, (6)

-3 1/3 . . . . .
a1 =~ 096+ 4.2 x 10°E,/ (") version layer to obtain the inversion charge sheet density. For the
a3 =2.13 x 10~% (Esl/2 _ 6500)2 @) Sample_ wiFh 1.6-nm oxide _thickne_ss, the doping profile_ of the
device is simulated and calibrated in @&#V curve calculation.

where ther,, is in nm and thel, in kV/cm is self-consistently The experimentally measured data is shown together with the
computed with the D-D model. classical and S-P results in Fig. 9. Our result almost coincides
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with that of the S-P model as should be. The agreement witf11] F. Stern, “Quantum properties of surface space-charge layeRC
the experimental data is excellent except¥ar > 1.0 V. This Crit. Rev. |, Solid State Scipp. 499-514, 1974. _
. d h d tration of the a\;:éZ_] K. Chen, G. Zhang, J. Duster, C. Hu, J. Huang, Z. Liu, and P. K. Ko,
IS expeqe as We_ av_e assume Zerq pene I - W “MOSFET inversion layer capacitance model based on Fermi-Dirac sta-
function into the oxide in our S-P equation solver. The deviation tistics for wide temperature rangesblid-State Electropvol. 41, p. 507,
of the calculated result from the measured data indicates that_ 1997. . . . .
h . bstantial tunnelina throuah the oxide taking place 3] T.N.Nguyen, Small-geometry mos transistor: Phy_slcs anq modeling of
there Is a subs g g gp surface- and buried-channel MOSFET's,” Ph.D. dissertation, Stanford
Vg > 1.0 V. Univ., Stanford, CA, 1984.
[14] J. C. S. Woo, K. W. Terrill, and P. K. Vasudev, “Two-dimensional an-
V. C alytical modeling of very thin SOl MOSFET'sJEEE Trans. Electron
- LONCLUSION Devices vol. 37, pp. 1999-2006, Sept. 1990.
Based on the S-P solutions, we have developed a compact
model for correcting the classical inversion-layer charge distri-
bution which agrees with the S-P solution within 5%. By in-
putting the classical charge density from the series expansF ;
solution of Poisson’s equation [13], [14] or the D-D-based sin
ulator, together with the device oxide thickness and gate voltas
the proposed inversion-layer charge correction model calcula
nanoscale MOSFET inversion charge explicitly, taking into col
sideration of the quantum effect. The application of this SPIC,
compatible model tc_J th@—Vmeasurement produces an exce and Computer Engineering Department, University
lent agreement. This inversion-layer charge correction mod of Massachusetts, Amherst, as an Associate Pro-
has continuous derivatives and therefore is amenable to a devéseor and was promoted to Professor in 1974. He was a Visiting Professor at
: o : : i+ «im@Xford University, Oxford, U.K., in 1975 and a Visiting Samsung Professor
simulator. It C?'n also be, eas!Iy mcorporated Into Clrcu,lt _Slngf Electronics Engineering at Seoul National University, Seoul, Korea, in the
lator for modeling ultrathin oxide MOSFET—Vcharacteristics fall of 1990. During 1999-2000, he was a Research Chair at the National
without impact on the computational time and data storage. \Wenter for High-Performance Computing, Hsinchu, Taiwan, R.O.C. His current

: ; ; :research interest is in semiconductor device physics and numerical modeling of
are Curremly eXtendmg this model to include Ieakage tunne“é iconductor devices. He teaches a graduate-level course in which students
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