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Abstract—In this paper, a learnable cellular neural network
(CNN) with space-variant templates and ratio memory (RM)
called the RMCNN, is proposed and analyzed. By incorporating
both modified Hebbian learning rule and RM into CNN archi-
tecture, the RMCNN as the associative memory can generate
the absolute weights and then transform them into the ratioed
A-template weights as the ratio memories for recognition of noisy
input patterns. It is found from simulation results that due to the
feature enhancement effect of RM, the RMCNN under constant
leakage on template coefficients can store and recognize more
patterns than the CNN associative memories without RM, but
with the same learning rule and the same constant leakage on
space-variant template coefficients. For 9 9 (18 18) RMCNNs,
three (five) patterns can be learned, stored and recognized. Based
upon the RMCNN architecture, an experimental chip of CMOS
9 9 RMCNN is designed and fabricated by using 0.35 m
CMOS technology. The measurement results have successfully
verified the correct functions of RMCNN.

Index Terms—Cellular neural network (CNN), divider, multi-
plier, ratio memory (RM).

I. INTRODUCTION

DUE to the advantageous feature of local connectivity, the
cellular neural network (CNN) introduced by Chua and

Yang [1] is very suitable for very large-scale integration (VLSI)
implementation and thus enables many applications [2], [3].
So far, many research works on the applications of CNNs as
neural associative memories for pattern learning, recognition
and association have been explored [4]–[10]. Among them,
many innovative algorithms and software simulations of CNN
associated memories were reported [4]–[8]. As to the hard-
ware implementation, special learning algorithms and digital
hardware implementation for CNNs were proposed in [9] to
solve the sensitivity problems caused by the limited precision
of analog weights. Moreover, CMOS chip implementation of
CNN associative memory was also reported in [10].

In realizing CNN associative memories, the learning circuitry
can be integrated on-chip with CNNs. The major advantages of
on-chip learning are: 1) no host computer is needed to perform
the learning task off-line. This makes the interface of neural
system chips simple for many practical applications; 2) the
space-variant template coefficients can be on-chip learned
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without being loaded from outside to the CNN chips. Thus,
long loading time, complex cell global interconnection, and
analog coefficient storage elements to perform the loading op-
eration for large numbers of space-variant template coefficients
can be avoided; 3) the adaptability to the process variations of
CNN chips can be enhanced.

The ratio memory (RM) of Grossberg outstar structure
[11]–[13] has been used in both feedforward and feedback
neural network ICs for image processing [14]–[17]. It is found
that the RM in neural network ICs has the advantages of long
memory time and image feature enhancement under constant
leakage on stored weights [14]–[17].

In this paper, both RM and modified Hebbian learning
function [18] are implemented in the CNN structure with
space-variant templates and constant leakage on stored template
coefficients [19] for pattern learning, storing and recognition.
The proposed CNN with RM is called the RMCNN. It has the
advantages of on-chip learning as mentioned above. Since most
of the on-chip learning circuits can be shared with both RM
and CNN core circuits, the extra chip area required for on-chip
learning circuits is small. Moreover, the RMCNN can have
longer template-coefficient storage time or equivalently pattern
recognition time which is one of the advantages of RM. Due to
the feature enhancement effect of the RM which well separates
the learned weights and decreases the insignificant weights to
zero, more patterns can be stored and recognized in the RMCNN
as compared to the CNN associative memory without RM,
but with space-variant template coefficients, the same constant
leakage on template coefficients and the same learning rule.
As a demonstrative example, a 99 RMCNN is realized in
CMOS technology. Both simulation and experimental results
have verified the advantageous characteristics of the RMCNN.

In Section II, both model and architecture of the RMCNN
are described. In Section III, the detailed CMOS circuit design
is presented. In Section IV, both MATLAB and HSPICE sim-
ulation results are demonstrated to verify the correct functions
of the RMCNN. The measurement results are presented in Sec-
tion V. Finally, the conclusion is given.

II. M ODEL AND ARCHITECTURE

In a CNN, the cell state , its derivative and the
cell output for a regular cells can be expressed as [1]–[3]

(1)
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if
if
if

(2)

where is the cell output from the cell in the
-neighborhood system of the cell and is

the cell input from the cell of . In an
CNN cell array, the -neighborhood system of the cell

is defined as the set of all cells including and its
neighboring cells, which satisfy the following property:

(3)

where is an integer and called the radius or the number of
neighborhood layer. In (1), is the coefficient or weight
of template which correlates to , is the
coefficient or weight of template that correlates to
and is the bias or threshold of the cell . In many
applications of CNNs, the template coefficients of, and

templates are usually constants, being independent of time
and cell position. However, these template coefficients can be
time-variant or space-variant in general. In (2), the output func-
tion called the ramp function, is a nonlinear function
which limits the maximum absolute output to be 1.

To incorporate the learning capability into a CNN, its struc-
ture has to be modified to realize a learning rule and variable
templates. In this work, the Hebbian rule for unsupervised
learning [19] is adopted with the necessary modification to
accommodate the local connectivity of CNNs. Suppose there
are exemplar patterns to be learned in a learnable CNN.
The learned weight at in the learning period
can be determined according the modified Hebbian rule by the
summation of all products of two activations or outputs from
two correlated pixels or nodes. Thus, can be written as

(4)

where is the pixel activation or output of the cell at
th row and th column of the th pattern out of input patterns

with the normalized value between1 and 1, is the pixel
activation or output of the cell in the set of and

is the set of -neighboring cells without the
cell . The learned weight is then transformed into the
ratioed weight [14]–[17] as

(5)

where is a constant. With the ratioed weight in (5), the
RM[14]–[17] can be realized in a CNN. The resultant CNN
with modified Hebbian rule and RM is called the RMCNN. In
the RMCNN, the cell state is written as

(6)

where is the input of the patterns to the RMCNN for pro-
cessing and is a constant.

As compared with the original CNN cell state in (1),
the template coefficient can be expressed as

(7)

where is a constant. Note that the template is time
variant and space variant. For a RMCNN with and four
nearest neighboring cells, the learnedtemplate of the cell

at just after the learning is denoted as and
can be expressed as

(8)

(9)

(10)

where is the learning time for the RMCNN to learnth
pattern and the total learning time for the RMCNN to learn

patterns is .
On the other hand, the template can be written as

for (11)

where is a constant. As may be seen from (11), the
template is a static and space-invariant matrix. Similarly, the
threshold template is also a space-invariant and static tem-
plate. The boundary conditions of the boundary cells in the
RMCNN can be written as

(12)

where denote the boundary cells. The initial state
of the RMCNN is set as

(13)

The architecture of the RMCNN is shown in Fig. 1 where
the RM is used to realize the - template weights among
the cells and there are only four nearest neighboring cells.
The detailed block diagram of two neighboring CNN cells
and their RM in the RMCNN is shown in Fig. 2. In Fig. 2,
the block T1 is a V-I converter used to convert the voltage
of input patterns into current. The current of input patterns
is summed with the four weighted outputs from neighboring
cells during the recognition period and converted into voltage
through the resistor and the parasitic capacitor to
form the cell state . The block T2d is a V-I converter
with one-half absolute-value circuit and sign-detection circuit
to generate the absolute value of output current and detect the
signs of , respectively. The CNN cell is formed
by T1, T2d, , and as indicated in Fig. 2.
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Fig. 1. The architecture of the RMCNN.

Fig. 2. The detailed architecture of two neighboring cells and their RMs in the
RMCNN.

The block Mul/Div [20] in Fig. 2 is a combined four-quad-
rant multiplier and two-quadrant divider circuit. It is used to
perform the multiplication of (4) and realize the modified Heb-
bian learning rule during the learning period. It is also used to
realize both RM in (5) and multiplication of in
(6) during the recognition period. The resultant absolute weight

during the learning period is stored in the capacitor .
The block T2l transfers the absolute value of the voltage stored
in to and stores its sign in the latch circuit. The resistor
in parallel with represents the inevitable leakage associated
with . The block T3 is also a V-I converter to convert the
voltage of into current during the recognition period. The
output current of T3 is sent to the sum block to perform the
summing function with the currents from the other three neigh-
boring cells. The summed current is sent to the Mul/Div block
for the ratio-memory generation. The above circuits form the
RM among CNN cells.

During the learning period, with and , the
configuration of RMCNN is shown in Fig. 3. In Fig. 3, the
input patterns are read sequentially into the cell and the
input voltage of the th input pattern is sent to T1 to con-
vert into the current and then to T2d to extract its abso-
lute current value and sign. Then, the converted absolute

Fig. 3. Architecture the RMCNN during the learning period.

currents and of two neighboring cells are sent to
the four-quadrant multiplier in the Mul/Div block to generate
the signed product. The generated product in the current mode
charges the capacitor for the period to form the voltage
on . This operation is repeated for patterns to sum the
voltages on . Finally, the weight voltage stored
on at when the learning period ends can be written as

(14)
where is the current of the pixel atth row and th column
of the th pattern out of input patterns, is the current
of the input pattern to the cell of neighboring
cells, is a constant bias current, is the weight
voltage stored on at s and is the learning time
of each learned patterns. Comparing (14) and (4), it can be re-
alized that the learned weight of the modified Hebbian rule is
realized by (14). Through T2l, the absolute value of the weight

denoted as is stored on the capac-
itor , whereas the sign of is stored in the latch
circuit of T2l.

In the elapsed period, the leakage current associated
with gradually decreases of . Since the
leakage current is nearly constant, the change of
can be written as

(15)

In the recognition period with and , the
architecture of RM is shown in Fig. 4. In Fig. 4, the voltage

of the th pattern to be recognized is input to T1 and
converted into the current . The absolute weight voltage

stored on is converted into the current
through T3 and summed with the currents

from other neighboring cells. The summed current, the current
and the cell output current are sent

to the Mul/Div block to obtain the current corresponding to
in (6), which is then summed with the currents

from other neighboring cells, the input current and the
threshold current to form the cell state current .
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Fig. 4. The architecture of the RMCNN during the recognition period.

The current is converted into the voltage
through the resistor . Thus, can be expressed
as shown in (16), at the bottom of the page, where is
the empirical gain. Ideally . The ratioed weight

in (16) is gener-
ated by the two-quadrant divider in the block Mul/Div with its
sign equal to the sign of latched in T2l whereas the
multiplication of and the ratioed weight is generated by
the four-quadrant multiplier of Mul/Div by using the latched
sign of and the sign of in T2d. Comparing
(16) with (6), it can be seen that the function of (6) is realized
in the architecture of Fig. 4.

The generated is sent to T2d to generate the current
and as shown in (17)–(18), at the

bottom of the page, where the is the transconductance
of T2d. It can be seen from (2), (17) and (18) that the block T2d
realize by separating its magnitude and sign. The
sign is detected in the block T2d and its voltage
is .

Generally, the learned template matrix is asymmetrical.
According to the simulation result, the learned templateleads
to stable behavior. The above-mentioned stability will be for-
mally proved later.

III. CMOS CIRCUIT REALIZATION

A. V-I Converters and Sign Detectors

The CMOS circuits of T2d and T2l are shown in Fig. 5 where
Fig. 5(a) shows the circuits of V-I converter with the one-half
absolute-value circuit. The V-I converter which is also used in
the blocks T1 and T3 is a CMOS differential amplifier M1
M7 with the source resistance to increase the linear range. The
two source resisters are realized by M5 and M6 devices oper-
ated in the linear region with the gate bias voltage Vbvic1. The
output current Iovic is sent to the one-half absolute-value cir-
cuit formed by M8 M13 to generate the absolute-value cur-
rent Ioabs with the unified flow direction. In Fig. 5(a), Vbvic1,
Vbvic, Vbabsn, and Vbabsp are constant bias voltages.

The sign of is detected and latched by the CMOS
dynamic latch circuits of Fig. 5(b) in the block of T2l whereas
the sign of the input voltage is detected by the
four cascaded CMOS inverters in the block of T2d and its
output voltage is denoted as in Fig. 5(c). When
the input signal or is larger than the
inverter threshold voltage (1.5 V), the output of the latch
circuit in Fig. 5(b) or the detect circuit in Fig. 5(c) is high
(3 V). Otherwise. The circuit output becomes low (0 V) when
the input signal or is smaller than the
threshold voltage (1.5 V). To avoid the effect of the inverter
threshold-voltage variations, the input signal levels are kept
well separated from the threshold voltage.

In the learning period, is High (3 V) and is low (0 V)
in Fig. 5(b). The signs of the input voltages and are
detected by the circuit of Fig. 5(c) in T2d and used to determine
the sign of in (4) whereas the sign of the voltage
is detected by the circuit of Fig. 5(b). In the recognition period,
the sign of or equivalently the sign of denoted as

in Fig. 5(b) is further latched by setting low (0 V)
and high (3 V). The latched sign is used in generating the
first term in (16).

Fig. 6 is the HSPICE simulation result of the V-I converter
with the one-half absolute-value circuit, which is designed
by using 0.35 m single-poly quadruple-metal (SPQM)
N-well CMOS technology. It can be seen from Fig. 6 that

(16)

if
if
if

(17)

V if V
V if V

(18)
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(a) (b)

(c)

Fig. 5. (a) The circuit of V-I converter of the blocks T1 and T3 and the one-half absolute-value circuit used in the blocks T2l and T2d. (b) Latch circuit used in
the block T2l. (c) The sign detector circuit used in the block T2d.

Fig. 6. The HSPICE simulation result of the circuit in Fig. 5(a).

the voltage Vin of the cell state is converted into positive
current Ioabs. The maximum linearity error of Ioabs is 15% at
Vin Vref V. It is found that this error is acceptable
in the RMCNN.

B. Combined Analog Multiplier and Divider

The combined four-quadrant analog multiplier and two-quad-
rant divider in Fig. 2 can be realized in the current mode by the
CMOS circuit shown in Fig. 7 [20]. In Fig. 7, the currents
and for multiplication are input through the pMOS current
sources M14i/M14 and M15i/M15/M16, respectively, whereas
the current as the divider is input through M24i/M24. The
parasitic vertical PNP bipolar junction transistors (BJTs) Q1,
Q2, Q3, and Q4 are adopted to perform the functions of mul-

Fig. 7. CMOS circuit of the block Mul/Div.

tiplication and division by using the relation between emitter
current and base-emitter voltage as

or (19)

where is the emitter saturation current and is the thermal
voltage. The OP AMP Ao has a closed-loop feedback via the
nMOS device M21. Thus, the emitter voltage and are
virtually the same. With the buffered direct injection circuit [21],
the output current can be readout through the pMOS current
mirrors M19, M25 and M26, and the nMOS current mirror M29
and M30, to form the output current .
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Since , we have

(20)

Using the equation in (19), the relation among , , ,
and can be obtained from (20) as

(21)

Neglecting the base currents, the output currentcan be ex-
pressed in terms of , , and as

(22)

In (22), only the magnitudes of the input current signals are
used to form the magnitude of the output current signal. The sign
of should be determined to realize the complete function of
four-quadrant multiplier and two-quadrant divider. In Fig. 7, the
signal “selpn” is used to determine the sign of the output current

. The signal “selpn” is obtained from theXNOR gate with
the three different input signs. In the learning period,is high
and is low. The output “selpn” is determined by the sign
voltages and from the block T2d to realize the
sign of as in (14). In the recognition period, is low
and is high. “selpn” is determined by the voltage VSYand
VSW from the block T2d and T2l, respectively, to determine
the sign of in (16). If the signal “selpn” is high
(low), the sign is negative (positive) and the MOS device M28
(M27) is turned on to make Iomd .

The BJT devices used in Fig. 7 are the parasitical vertical BJT
in the 0.35- m N-well CMOS process. The current gainof
the parasitical BJTs is about 617. It is not large enough to
neglect the effect of the base currents of the BJTs Q3 and Q4 to
the emitter currents of the BJTs Q1 and Q2, respectively. Thus,
extra circuits are needed to further bypass the base currents from
entering the emitters of Q1 and Q2. In Fig. 7, the BJTs Q13
and Q24 have the same emitter currentsand as Q3 and
Q4, respectively. Thus, Q13 (Q24) has the same base current
as Q3 (Q4). The current mirror circuits M17/M18 (M22/M23)
are used to mirror the base current of Q13 (Q24) to Q3 (Q4).
Thus the base current of Q3 (Q4) is bypassed from Q1 (Q2) and
the relation and can be more accurately
maintained to realize (22).

In the learning period, the Mul/Div block functions as a
multiplier to implement the multiplication function .
The HSPICE simulation results of the multiplier function of the
Mul/Div circuit in Fig. 7 are shown in Fig. 8 where the device
parameters of 0.35m SPQM N-well CMOS technology are
used. It is found that in the actual operation range offrom
0.5 A to 6 A and from 1.2 A to 6 A with kept at
20 A, the multiplication error can be kept under 5.5%. In the
recognition period, since the gain in (8) is chosen as 4 in
IC design, most of the from the neighboring cell is kept
at the maximum absolute value as in (17). Thus, most of the
corresponding input current of the Mul/Div block becomes
a constant current and the Mul/Div block is functioned as a
divider. The HSPICE simulation results of the divider function
of the Mul/Div circuit in Fig. 7 are shown in Fig. 9. In the
actual operation range of from 1.2 to 6 A and from 0.3
to 6 A with kept at 6 A, the output current can be as high

Fig. 8. HSPICE simulation results of the Mul/Div circuit withI = 20 �A.

Fig. 9. HSPICE simulation results of the Mul/Div circuit withI = 6 �A.

Fig. 10. The CMOS readout circuit for the cell state signalXij.

as 60 A. Under the condition which is the actual
operation condition, the division error can be kept under 10%.

The above errors of the Mul/Div circuit are also dependent on
the variations of device parameters. However, it is found from
simulation results that these errors have insignificant effects on
the operation of RMCNN because of on-chip learning and RM
operation.

C. The Complete Circuit

By using the above CMOS circuits as building blocks, the
architecture of the RMCNN in Fig. 2 is implemented with the
array size of 9 9. In the implemented 9 9 CMOS RMCNN,
the capacitors and for absolute weight voltage
storage are realized by the nMOS gate capacitors. Because
of the current-mode output signals of the blocks in Fig. 2,
the summing and distribution block is realized by directly
connecting the output nodes of the related blocks to the input
of the master stage in a CMOS current mirror to perform the
summing function and the mirrored output current is distributed
out through the multiple slave stages.

A layer of the boundary cells is designed to surround the 99
regular cell array. In the boundary cells, both state
and input are zero. Thus, the output of the
boundary cell is also zero. Since the boundary cells have to send
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(a) (b)

(c)

Fig. 11. The correct patterns of Chinese characters (a) “One.” (b) “Two.”
(c) “Four.”

a zero signal voltage to the neighboring regular cells or other
boundary cells, it can be realized by setting the weights from
boundary cell to other cells to be zero. Thus, the associated RM
blocks can be removed.

To readout the neuron state signal , suitable readout cir-
cuit shown in Fig. 10 is designed in the 99 CMOS RMCNN.
In the readout circuit, the inputs of nMOS-input CMOS single-
stage OP AMPs used as unity-gain buffers are connected to the
node in Fig. 2. The buffer output is connected to the input
of the source-follower driver through the switch controlled by
the column select control signal . In the readout operation,

is raised to high column by column so that is sent
to the input of nMOS source follower M31 and M32 with M32
biased by as the current source. Through the source fol-
lower, the neuron state signal can be readout column by column
to the output pad and the large off-chip load.

IV. SIMULATION RESULTS

A. 9 9 RMCNN

The MATLAB software is used to simulate the behavior of
the RMCNN as an associative memory. In the MATLAB simu-
lation, 9 9 neurons are used to form the RMCNN with .
Thus, it can process patterns with 81 pixels. To consider the
leakage current effect, a constant leakage current of 0.8 fA is
applied to the capacitor of 2 pF so the voltage is
decreased as in (19). The 2-pF capacitor is implemented on
the chip. The value of 2 pF is chosen as a compromise between
weight storage time and capacitor chip area. The test patterns
applied for learning and recognition are the patterns of Chi-
nese characters “one,” “two,” and “four,” as shown in Fig. 11.
The learned templates in (8) are space-variant templates. In
Table I, one of the learned template of the cell C(4,4) at

s denoted as s , is listed with the corresponding
learned matrix s of the absolute weights. Due to the
leakage current, both absolute and ratioed weights are changed
with time as shown in Fig. 12(a) and 12(b), respectively. For the

TABLE I
THE LEARNED ABSOLUTE AND RATIOED WEIGHTS FOR THERMCNN

ratioed weights, the decreasing absolute weights lead to the ef-
fect of feature enhancement [14]–[17] which makes the smaller
(larger) ratioed weights approach 0 (1) at s as shown
in Fig. 12(b) and Table I. After the elapsed period of 850 s, the
absolute weights , and have been decreased
to 0. Note that the time for the ratioed weights to become 1 or
0 depends on the leakage current. The larger (smaller) leakage
current makes the time shorter (longer).

After the three patterns in Fig. 11 have been learned in the
learning period and elapsed in the elapsed period of 850 s in this
case, both correct patterns in Fig. 11 and 300 noisy patterns are
applied to the 9 9 RMCNN with for recognition and
recovery. The noisy test patterns are the learned patterns with
noise where the noise level is normally distributed with mean 0
and standard deviation 0.25. It is found that all of input correct or
noisy patterns can be recognized and recovered correctly by the
RMCNN after the three patterns have learned and elapsed for
850 s. After 2500 s, all the ratioed weights are decayed to 0 as
shown in Fig. 12(b). Thus, the RMCNN cannot recognize input
patterns. The total recognizable time in this case is 1650 s from
850 s to 2500 s. If only any two patterns in Fig. 11 are learned
by the 9 9 RMCNN with , both correct and noisy input
patterns can be recognized for 2500 s right after the two patterns
are learned.

When the noise standard deviation of the noisy test patterns
is increased to 0.3 (0.4), the average probability of accurate
recognition is decreased to 97% (60%). Thus, the degradation
of recognition rate is increased with the increase of noise stan-
dard deviation.

As compared to the 9 9 CNN without RM, but with the
same learning rule and constant leakage on the coefficient of
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(a)

(b)

Fig. 12. For the 9� 9 RMCNN, a) the simulated absolute weights of the cell
C(4,4) stored in the capacitorCzs versus time and b) the corresponding ratioed
weights of the cell C(4,4) versus time.

space-variant templates, only the two patterns “one” and “two”
in Fig. 11(a) and 11(b), respectively, can be learned and only
correct input patterns can be recognized from 0 to 1200 s. If
the pattern “four” in Fig. 11(c) is used, only one pattern can be
learned and recognized by the 99 CNN without RM.

From the above results, it is found that some ratioed weights
are not well separated after the three patterns are learned by the
9 9 RMCNN. Thus, the pattern recognition and recovery is not
successful. After 850 s, the feature-enhancement effect makes
the ratioed weights well separated and the insignificant weights
are decreased to zero. Thus, the pattern recognition and recovery
can be performed successfully even with three input noisy pat-
terns. If only two patterns are learned, the ratioed weights are
well separated right after learning. Thus, no elapsed time is re-
quired for pattern recognition and recovery. If the CNN has only
absolute weights without RM, there is no feature-enhancement
effect under constant leakage and the number of recognizable
patterns is reduced to one for complicated pattern and two for
simple patterns. Besides, the noisy input patterns cannot be re-
covered without the feature-enhancement effect of RM.

The above results on the storage capacity of 99 RMCNN
are obtained with the patterns in our test set. If different patterns
are used, the results might be different.

The HSPICE simulation of the complete CMOS 99
RMCNN circuit designed in Section III is performed by using
the device parameters of 0.35-m SPQM N-well CMOS tech-
nology. The control-timing diagram in the HSPICE simulation
is shown in Fig. 13. In the learning period, the signalis set
to high level (3 V) and to low level (0 V). Thus, the circuit

Fig. 13. The control-timing diagram in the HSPICE simulation of the 9� 9
RMCNN with r = 1.

Fig. 14. The noisy pattern of the Chinese character “four” corresponding to
the correct pattern in Fig. 12(c).

architecture of Fig. 3 can be formed. The control signals ni1,
ni2, and ni4 in Fig. 13 are sequentially set to a high level so
that the three patterns in Fig. 11 with the black (white) signal
level of 2.5 V (0.5 V), are input to the circuit for learning.
In the elapsed period, and are set to low (0 V). The
learned absolute weight is stored on the capacitor and
decayed with time under the inevitable leakage current. In
the recognition period, and and the circuit
architecture of Fig. 4 is formed. Both control signals ni4 and nin
in Fig. 13 are set to high level so that the noisy pattern shown
in Fig. 14 can be applied to the 99 RMCNN for recognition.
After enough elapsed time, the column select signals are
sequentially set to high level. Thus, the state for
to 9 can be read out column by column from to .
The HSPICE simulated output waveforms for the noisy pattern
are shown in Fig. 15 where the high (low) voltage of 1.2 V
(0 V) represents black (white) level. It can be seen from Fig. 15
that the recognized result is the recovered correct pattern in
Fig. 11(c). Thus, the above MATLAB simulation results have
been verified in those HSPICE simulations on the real circuits.

B. 18 18 RMCNN

The behavior simulation of the 1818 RMCNN with
is also performed. The patterns used for learning and recognition
are the patterns of five Chinese characters shown in Fig. 16. One
of the learned A templates s and s of the cells
C(4,4) and C(10,4) at s are listed in Table I with their cor-
responding absolute weights s and s , respec-
tively. Due to the leakage current, the smaller absolute weights
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Fig. 15. HSPICE simulation output waveforms of neuron stateXij in the
9� 9 RMCNN with the input noisy pattern “four” for recognition.

(a) (b)

(c) (d)

(e)

Fig. 16. Correct patterns of five Chinese characters: (a)“Up”; (b)“Soil”;
c)“Work”; (d)“Mountain”; (e)“Farm” which are learned and stored in the
18� 18 RMCNN.

are decayed to zero at 1500 s as shown in Fig. 17(a) and
Table I. But the feature-enhancement effect [14]–[17] makes
the coefficients of template converge to 1, 0.5 or 0 as shown in
Fig. 17(b) and Table I. In , two largest terms in are left
at 1500 s. Thus, the corresponding coefficients of s
are converged to 0.5 instead of 1 according to (16).

After the five patterns in Fig. 16 have been learned and
elapsed for the elapsed period of 1500 s, both correct patterns
and 500 noisy patterns with noise levels normally distributed
with mean 0 and standard deviation 0.25, are applied to the
18 18 RMCNN for recognition and recovery. The recogniz-
able time for the five correct patterns is from 1500 s after these
patterns have been learned to 2500 s. If only any four patterns
in Fig. 16 are learned, the recognizable time for correct patterns
is from 1250 s to 2500 s. For the recognition of noisy patterns,
98% accuracy on recognition and recovery can be achieved for
five patterns whereas 99% accuracy for four patterns. In the
case of five learned patterns, when the noise standard deviation
is 0.3, the average probability of accurate recognition is down
to 85%. The average probability of accurate recognition is only
50% when the noise standard deviation is increased to 0.35.

(a)

(b)

Fig. 17. For the 18� 18 RMCNN, (a) the absolute weightsZS (t) and
(b) the ratioed weightsA (t) of cell C(4,4) versus time.

From the simulated recognition rates of 99 and 18 18
RMCNNs, it is realized that the 18 18 RMCNN can learn
more patterns, but the tolerance to the noise standard deviation
is lower as compared to that of 99 RMCNN.

In the 18 18 CNN without RM, but with the same learning
rule and constant leakage on the coefficients of space-variant
templates, only two patterns can be learned and only the
correct patterns can be recognized at s. But after elapsed
time s, the correct patterns cannot be recognized.
Thus, 18 18 CNN without RM has less capability in pattern
learning, storing and recognizing. This is quite different from
the case of RMCNNs where increasing the size from 99
to 18 18, the number of noisy patterns for learning and
recognition is increased from three to five. The main reason
for this difference is that as the number of stored patterns is
increased with the array size of CNNs, the total number of
space-variant templates is increased. The CNN associative
memories without RM cannot keep all these templates well
separated. Thus exact pattern recognition and recovery cannot
be realized. But the feature-enhance effect of RMCNN retains
the simple feature of the space-variant template coefficients
and keeps them well separated. Thus, more patterns can be
learned, stored and recognized.

Due to the unique feature-enhancement effect, the RMCNN
can learn, store, recognize, and recover the same number of
black and white (B/W) patterns with less weight connections
among neurons as compared with the Hopfield neural network
with RM and constant leakage on template coefficients [17]. For
example, 18 18 RMCNN can process five B/W patterns as
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Fig. 18. Photograph of the fabricated CMOS 9� 9 RMCNN chip.

9 9 Hopfield neural network with RM. But 18 18 RMCNN
has 1296 weight connections while the 99 Hopfield network
with RM has 6480 weight connections. The circuit complexity
of RMCNN is about one fifth of the Hopfield network with RM.

As compared to other CNN associative memories without
RM and without leakage on the stored template coefficients
during the recognition operation [4], [5], [7], [8], the maximum
numbers of stored and recognizable patterns are 25 (12) for
9 9 CNN with 49 (25) synaptic connections per cell [4], [7],
[8] and two for 6 6 CNN with three synaptic connections per
cell [5]. It is found from this work that both the leakage on the
stored template coefficients and the noise of input patterns has
a strong effect on the maximum number of stored and recogniz-
able patterns.

V. EXPERIMENTAL RESULTS

To verify the function of RMCNN, the experimental chip
of 9 9 CMOS RMCNN circuit using the proposed architec-
ture is designed and fabricated by using 0.35m single-poly
quadruple-metal (SPQM) N-well CMOS technology. The pho-
tograph of the fabricated chip is shown in Fig. 18. It includes
9 9 regular cells, one surrounding layer of boundary cells,
144 RMs, and 9 rows of readout circuits. To compensate for
the inevitable process variation effects on circuit parameter and
guarantee the correct operation of the RMCNN chip, the gain

is set to 4 as realized by the current ratio of the current mir-
rors M19/M25 and M19/M26 in Fig. 7.

Firstly, the three correct patterns in Fig. 11 are learned and
the learned absolute weights are stored on the 2-pF capacitor

of the fabricated 9 9 RMCNN chip. As expected, the
fabricated 9 9 RMCNN chip cannot recognize the correct test
patterns just after it has learned the three patterns. After about
10 min, three noisy patterns, are input to the 99 RMCNN
chip for recognition. The measured output waveforms of the cell
state for the noisy pattern “four” are shown in Fig. 19 where the
minimum readout time of a cell state signal is 1s. In Fig. 19,
the first two signal waveforms are the column select signals CS1
and CS9, which select the responding first and ninth column
to readout circuits. Other signal waveforms are the measured
cell state outputs of each row. The high (low) signal level of

Fig. 19. Measured output waveforms for the input noisy pattern “four” in the
fabricated CMOS 9� 9 RMCNN chip.

TABLE II
SUMMARY ON THE CHARACTERISTICS OF THEFABRICATED CMOS 9� 9

RMCNN CHIP

1.2 V (0 V) represents black (white) level. As may be realized
from the waveforms of Fig. 19, the noisy pattern “four” has been
recovered to the correct pattern shown in Fig. 11(c). Similarly,
the noisy patterns corresponding to Figs. 11(a) and 11(b) can
be recognized and recovered correctly. If the input is the correct
pattern, it still can be recognized.

The characteristics of the fabricated CMOS 99 RMCNN
chip are summarized in Table II. The chip area of one single
pixel including one regular neuron cell and two RMs is

m m. The chip area of a single RM block
including the capacitors and is m m.
The chip area of 2-pF capacitor is m m. The
quiescent power dissipation is 120 mW whereas the dynamic
power dissipation is 120 mW 140 mW. The total readout
time of the CMOS 9 9 RMCNN is 9 s.
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VI. CONCLUSION

In this paper, RMCNN is proposed and analyzed. In the
RMCNN, the modified Hebbian learning rule is adopted to
generate the absolute weights from a set of exemplar patterns
and then transform them into ratioed weights to form the RM as
space-variant template coefficients. With RM and Hebbian
learning rule, the RMCNN can be used as the associative
memory for pattern learning, recognition and recovery. It is
found from the simulation result that the CMOS 99 RMCNN
can learn and recognize three patterns whereas the 1818
RMCNN can learn and recognize five patterns. Due to the
feature enhancement effect of the RM under constant leakage
on the absolute template coefficients, the RMCNN can learn
and recognize the same number of patterns with less weight
connections as compared to the Hopfield neural network with
the same RM and constant leakage on the template coefficients.
Moreover, the proposed RMCNN can learn and recognize
more patterns as compared to the CNN associative memories
without RM, but with the same learning rule and the same
constant leakage on the coefficients of space-variant templates.
Based upon the designed architecture and CMOS circuits of
the RMCNN, an experimental chip of CMOS 99 RMCNN
has been designed and fabricated by using 0.35m CMOS
technology. The experimental results has successfully verified
the correct function of 9 9 RMCNN. Since the proposed
RMCNN has the advantageous features in learning, storing, and
recognizing image patterns, it is suitable for many applications
of neural associative memory in real-time image processing.
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