IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002 1713

A Learnable Cellular Neural Network Structure With
Ratio Memory for Image Processing

Chung-Yu Wy Fellow, IEEE,and Chiu-Hung Chendstudent Member, IEEE

Abstract—in this paper, a leamnable cellular neural network — without being loaded from outside to the CNN chips. Thus,
(CNN) with space-variant templates and ratio memory (RM) |ong loading time, complex cell global interconnection, and
called the RMCNN, is proposed and analyzed. By incorporating  5na|0q coefficient storage elements to perform the loading op-

both modified Hebbian learning rule and RM into CNN archi- . . L
tecture, the RMCNN as the associative memory can generate eration for large numbers of space-variant template coefficients

the absolute weights and then transform them into the ratioed Can be avoided; 3) the adaptability to the process variations of
A-template weights as the ratio memories for recognition of noisy CNN chips can be enhanced.

input patterns. It is found from simulation results that due to the The ratio memory (RM) of Grossberg outstar structure
feature enhancement effect of RM, the RMCNN under constant [11]-[13] has been used in both feedforward and feedback
leakage on template coefficients can store and recognize more . . .

patterns than the CNN associative memories without RM, but neural netwqu ICs for image processing [14]-[17]. Itis found
with the same learning rule and the same constant leakage on that the RM in neural network ICs has the advantages of long
space-variant template coefficients. For 3« 9 (18 x 18) RMCNNs, memory time and image feature enhancement under constant
three (five) patterns can be learned, stored and recognized. Based|eakage on stored weights [14]-[17].

upon the RMCNN architecture, an experimental chip of CMOS 1 1his paper, both RM and modified Hebbian learning
9x 9 RMCNN s designed and fabricated by using 0.3%m function [18] are implemented in the CNN structure with

CMOS technology. The measurement results have successfully -
verified the correct functions of RMCNN. space-variant templates and constant leakage on stored template

Index Terms—Cellular neural network (CNN), divider, multi- coefficients [19] for pa_lttern Ie_arning, storing and recognition.
plier, ratio memory (RM). The proposed CNN with RM is called the RMCNN. It has the
advantages of on-chip learning as mentioned above. Since most
of the on-chip learning circuits can be shared with both RM
and CNN core circuits, the extra chip area required for on-chip

UE to the advantageous feature of local connectivity, tHearning circuits is small. Moreover, the RMCNN can have

cellular neural network (CNN) introduced by Chua antbnger template-coefficient storage time or equivalently pattern
Yang [1] is very suitable for very large-scale integration (VLSIjecognition time which is one of the advantages of RM. Due to
implementation and thus enables many applications [2], [3he feature enhancement effect of the RM which well separates
So far, many research works on the applications of CNNs #w learned weights and decreases the insignificant weights to
neural associative memories for pattern learning, recognitiaaro, more patterns can be stored and recognized in the RMCNN
and association have been explored [4]-[10]. Among thems compared to the CNN associative memory without RM,
many innovative algorithms and software simulations of CNRut with space-variant template coefficients, the same constant
associated memories were reported [4]-[8]. As to the hargakage on template coefficients and the same learning rule.
ware implementation, special learning algorithms and digitAls a demonstrative example, ax® RMCNN is realized in
hardware implementation for CNNs were proposed in [9] t6MOS technology. Both simulation and experimental results
solve the sensitivity problems caused by the limited precisidvave verified the advantageous characteristics of the RMCNN.
of analog weights. Moreover, CMOS chip implementation of In Section I, both model and architecture of the RMCNN
CNN associative memory was also reported in [10]. are described. In Section Ill, the detailed CMOS circuit design

In realizing CNN associative memories, the learning circuitig presented. In Section IV, both MATLAB and HSPICE sim-
can be integrated on-chip with CNNs. The major advantagesuétion results are demonstrated to verify the correct functions
on-chip learning are: 1) no host computer is needed to perfoafithe RMCNN. The measurement results are presented in Sec-
the learning task off-line. This makes the interface of neurtibn V. Finally, the conclusion is given.
system chips simple for many practical applications; 2) the
space-variant template coefficients can be on-chip learned Il. M ODEL AND ARCHITECTURE

. INTRODUCTION
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Yi(t) =f [Xi;(1)]
Xij(t), if —1< XLj(f) < +1
=<1, if X”(t) > +1 (2)
-1, if Xij(t) < -1

where Yy, (t) is the cell output from the cel'(k,!) in the
r-neighborhood systenVr(i, j) of the cellC(i,j) anduy; is
the cell input from the celC'(k,l) of Nr(i,j). InanM x N
CNN cell array, the-neighborhood systedVr (s, j) of the cell
C(3,7) is defined as the set of all cells includidyi, j) and its
neighboring cells, which satisfy the following property:

Nr(i, j) ={C(k D1 < k< M1 < TSN
=il + ) =gl <r} ®)

wherer is an integer and called the radius or the number
neighborhood layer. In (1}, (¢) is the coefficient or weight
of A template which correlatés,; (¢) to X;;(¢), bi;xi(t) is the
coefficient or weight oB template that correlates,; to X ;(¢)
and Z;; is the bias or threshold of the call(z, j). In many
applications of CNNs, the template coefficients &f B and

Z templates are usually constants, being independent of time

and cell position. However, these template coefficients can

time-variant or space-variant in general. In (2), the output fun

tion f[X;;(t)] called the ramp function, is a nonlinear functio
which limits the maximum absolute output to be 1.
To incorporate the learning capability into a CNN, its stru

ture has to be modified to realize a learning rule and variable
templates. In this work, the Hebbian rule for unsupervised

learning [19] is adopted with the necessary modification

accommodate the local connectivity of CNNs. Suppose there
are m exemplar patterns to be learned in a learnable CNN

The learned weighti;;;;(0) at¢ = 0 in the learning period

can be determined according the modified Hebbian rule by t

summation of all products of two activations or outputs fro
two correlated pixels or nodes. Thus,;;(0) can be written as

zigga(0) = > ulf, C(k1) € NY(i,5)  (4)
p=1

wherew]; is the pixel activation or output of the cell(s, j) at
1th row andjth column of thepth pattern out ofn input patterns
with the normalized value betweerl and—1, u}, is the pixel
activation or output of the cetl'(k, ) in the set ofN?(i, 5) and
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whereu; is the input of the patterns to the RMCNN for pro-
cessing and<’ is a constant.

As compared with the original CNN cell sta®,;(¢) in (1),
the template coefficient;;x;(t) can be expressed as

Ziijkl(t)

|2k ()]
C(k,1)ENL(i,5)

aijri(t) = wijri(t) = Ka

()

whereK 4, = K is a constant. Note that the template is time
variant and space variant. For a RMCNN with= 1 and four
nearest neighboring cells, the learnAdtemplate of the cell
C(3,7) att = 0 just after the learning is denotedA%(O) and
can be expressed as

0 @ij(i-1)j 0
1 1
Aij(o) =K} Qiji(j—1) Qiji(5+1) (8)
of 0 Wij(i+1)] 0
Zl fTP “fj“ildt
p:
ijkt = suml
suml :Z Z/ u,{-)juildt (10)
be Kl |p=17Tp

r%(/:v'hereTp is the learning time for the RMCNN to leansth
pattern and the total learning time for the RMCNN to learn

Jn patterns isTy, =370, Tp.
On the other hand, thB template can be written as
0 0 0
to Bj;(t)=Kp |0 1 0 forr=1 (11)
0 0 0

where K} is a constant. As may be seen from (11), Be

eé'nplate is a static and space-invariant matrix. Similarly, the
reshold templat;; is also a space-invariant and static tem-

plate. The boundary conditions of the boundary cells in the

RMCNN can be written as

wherei*;* denote the boundary cells. The initial stéfe;(0)
of the RMCNN is set as

Xij(0)=0, 1<i<M1<j<N. (13)

The architecture of the RMCNN is shown in Fig. 1 where

N(i, ) is the set ofr-neighboring cellsV.(i, j) without the the RM is used to realize thd- template weights among
cell C(i,j). The learned weight is then transformed into thgye cells and there are only four nearest neighboring cells.

ratioed weightw; ;1 (0) [14]-[17] as

ZL”M(O)

|2ijx1(0)]
C(k,1)ENQ(i,5)

=K

w;j1(0) %)

where K is a constant. With the ratioed weight in (5), th
RM[14]-[17] can be realized in a CNN. The resultant CN
with modified Hebbian rule and RM is called the RMCNN. |
the RMCNN, the cell stat&;;(¢) is written as

Xij(t) = = Xi()+ Wikt ()Y (t) + K'ufj+Zij
C(k,1)ENI(i,5)
(6)

The detailed block diagram of two neighboring CNN cells
and their RM in the RMCNN is shown in Fig. 2. In Fig. 2,

the block T1 is a V-l converter used to convert the voltage
of input patterns into current. The current of input patterns
és summed with the four weighted outputs from neighboring

lﬁells during the recognition period and converted into voltage

through the resistor?;; and the parasitic capacitar;; to

"form the cell stateX;;(¢). The block T2d is a V-I converter

with one-half absolute-value circuit and sign-detection circuit
to generate the absolute value of output current and detect the
signs of X;;(t), respectively. The CNN cell’(¢, j) is formed
by T1, T2d, R;;, and C;; as indicated in Fig. 2.
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cell l el . cell : . ® o c Cell C(y) i : Ratio Memory E : Cell C(k,D)
] ] ] o x| B
'

t 1 1

cell RM cell RM cell o o 0

¢ ]
1 1 1

cell [*ZIRM* ] cell fTrM* cell [* o o @
* T 4 1 ‘ T Fig. 3. Architecture the RMCNN during the learning period.
. . . )
. . . . currents|/uf;| and|Iuy,| of two neighboring cells are sent to
° . . ¢ the four-quadrant multiplier in the Mul/Div block to generate
the signed product. The generated product in the current mode
Fig. 1. The architecture of the RMCNN. charges the capacit6tzi for the periodl’p to form the voltage
on Czi. This operation is repeated fat patterns to sum the
L. celidk]) . voltages onC'zi. Finally, the weight voltagé’ zi, ;x;(0) stored
- ' onCzi att = 0 when the learning period ends can be written as
7

x/ ; 1 & - Tul TuP
{12 ' — %] kl / O/: -
1& : Vzii51(0) T Z (/TP — dz‘) C(k,l) e N, (i,7)

e R Tl s

wherelw; is the current of the pixel ath row andjth column
of the pth pattern out ofn input patterns/u}, is the current
of the input pattern to the cell'(k, ) of N?(i, j) neighboring
cells, Ib is a constant bias current;zi;;:(0) is the weight
Fig. 2. The detailed architecture of two neighboring cells and their RMsintﬁ{eoItage stored oz att = 0's an_dTP Is the leaml.ng time
RMCNN. of each learned patterns. Comparing (14) and (4), it can be re-
alized that the learned weight of the modified Hebbian rule is
The block Mul/Div [20] in Fig. 2 is a combined four-quad-'S128d by (14). Through T2l, the absolute value of the weight
rant multiplier and two-quadrant divider circuit. It is used td %t (0) denoted a&b‘.g[vz“j"’.l(m] is stored on the capac-
perform the multiplication of (4) and realize the modified Heb™O" C'zs, whereas the sign df zi;;::(0) is stored in the latch
bian learning rule during the learning period. It is also used ﬁl)rCUIt of T2l. . .

In the elapsed period, the leakage curtbgj... associated

l hRMi Itiplicati ikt (0)* Yia(t) i . .
realize bot in (5) and multiplication @b (#)" Yi(t) in \pﬂth Czs gradually decrease$s[V zi;;xi(0)] of Czs. Since the

(6) during the recognition period. The resultant absolute wei .
zi;jr during the learning period is stored in the capaottas. gleikzgevsrlijt;fnngz nearly constant, the chang@ iz (t)]

The block T2l transfers the absolute value of the voltage stored
in C'zi to C'zs and stores its sign in the latch circuit. The resistor Tieakage
in parallel withC'zs represents the inevitable leakage associated  @bs [V zsijri(t)] = abs [V zs;1(0)] — ngt (15)
with Czs. The block T3 is also a V-I converter to convert the
voltage ofC'zs into current during the recognition period. The In the recognition period withp; = 0 and¢, = 1, the
output current of T3 is sent to the sum block to perform tharchitecture of RM is shown in Fig. 4. In Fig. 4, the voltage
summing function with the currents from the other three neigﬂ\luz‘f of the pth pattern to be recognized is input to T1 and
boring cells. The summed current is sent to the Mul/Div blockonverted into the currer]tu}‘j.’. The absolute weight voltage
for the ratio-memory generation. The above circuits form theébs[V zs;;1:(t)] stored onCzs is converted into the current
RM among CNN cells. abs[lzs;;11(t)] through T3 and summed with the currents
During the learning period, witih; = 1 and¢, = 0, the from other neighboring cells. The summed current, the current
configuration of RMCNN is shown in Fig. 3. In Fig. 3, the  abs[Izs;;1.(¢)] and the cell output curreniYy,(t) are sent
input patterns are read sequentially into the €&ll, j) and the to the Mul/Div block to obtain the current corresponding to
input voItageVu,’L?j of thepth input pattern is sent to T1 to con-w; iz (t)Yx:(¢) in (6), which is then summed with the currents
vert into the currenfuf; and then to T2d to extract its absofrom other neighboring cells, the input currehi;} and the
lute current valuel«};| and sign. Then, the converted absolutéhreshold current’z;; to form the cell state currentz;;(t).
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Cell CG Ratio Memory Cell ClD lIl. CMOS CIRCUIT REALIZATION

A. V-l Converters and Sign Detectors

The CMOS circuits of T2d and T2l are shown in Fig. 5 where
Fig. 5(a) shows the circuits of V-I converter with the one-half
absolute-value circuit. The V-I converter which is also used in
4 the blocks T1 and T3 is a CMOS differential amplifier M1
M7 with the source resistance to increase the linear range. The

D — T two source resisters are realized by M5 and M6 devices oper-
: : e - ated in the linear region with the gate bias voltage Vbvicl. The
; e : output current lovic is sent to the one-half absolute-value cir-
3 cuit formed by M8~ M13 to generate the absolute-value cur-

rent loabs with the unified flow direction. In Fig. 5(a), Vbvic1l,
Vhbvic, Vbabsn, and Vbabsp are constant bias voltages.
Fig. 4. The architecture of the RMCNN during the recognition period. The sign OfVZiijkz is detected and latched by the CMOS
dynamic latch circuits of Fig. 5(b) in the block of T2 whereas
The currentlz;;(t) is converted into the voltagd’z;;(t) the sign of the input voltagd’x;(Vy;) is detected by the
through the resistor;;. Thus, Va;;(t) can be expressed four cascaded CMOS inverters in the block of T2d and its
o . output voltage is denoted 34x;;(Vsy,;) in Fig. 5(c). When
o : o : . the input signalVzi;;i, or Vx,;(Vy4;) is larger than the
the empirical gain. IdeallyK; = 1. The ratioed weight . J J J
Lzsigia(t)/ (o neno i g) absllzsigu () in (16) is gener- Icr:\rlfurfte Entrl]:rieShSC)(lg) \c/)?lttarl:‘?aed(elt;aScth)i'rctl:]i(ta ir?uii?m SO(i:)ﬂi];a k:iatf\h
ated by the two-quadrant divider in the block Mul/Div with its3" " = 9. e Cireuit outbut b ‘9'" o ﬁ
sign equal to the sign afzs;;x;(t) latched in T2l whereas the( )- erwise. The circuit output becomes low (0 V) when

multiplication of Y;;(t) and the ratioed weight is generated b(%he input signalV zi;jr or Vx;;(Vyi;) is smaller than the

as shown in (16), at the bottom of the page, whéfé is

- . . hreshold voltage (1.5 V). To avoid the effect of the inverter
the four-quadrant muIt|pI|er_ of Mul/Div _by using the Iat_che hreshold-voltage variations, the input signal levels are kept
sign of Izs;jri(t) and the sign ofYy,(t) in T2d. Comparing

. . . . 2 well separated from the threshold voltage.
(16) with (6), it can be seen that the function of (6) is reallze\g In the learning periods, is High (3 V) andgs is low (0 V)

in the architecture of Fig. 4. in Fig. 5(b). The signs of the input voltage$; and v, are

The generated'z;;(?) is sent to T2d to generate the currenfjgiected by the circuit of Fig. 5(c) in T2d and used to determine
abs[IY;(t)] and sign[IY;;(t)] as shown in (17)~(18), at thethe sign ofzi; ;, in (4) whereas the sign of the voltageri,
bottom of the page, where th@m2d is the transconductancejs detected by the circuit of Fig. 5(b). In the recognition period,
of T2d. It can be seen from (2), (17) and (18) that the block T3gle sign ofzi;;;, or equivalently the sign ofv; ;x; denoted as
realize f[Vz;;(t)] by separating its magnitude and sign. Theyg.,. ... in Fig. 5(b) is further latched by settingy low (0 V)
sign sign[IY;;(t)] is detected in the block T2d and its voltageand ¢, high (3 V). The latched sign is used in generating the
is Vsyij- first term in (16).

Generally, the learned template matrix is asymmetrical.  Fig. 6 is the HSPICE simulation result of the V-l converter
According to the simulation result, the learned templateads with the one-half absolute-value circuit, which is designed
to stable behavior. The above-mentioned stability will be foby using 0.35 um single-poly quadruple-metal (SPQM)

mally proved later. N-well CMOS technology. It can be seen from Fig. 6 that
Iy, ()] zs;i11(t N
Vo) =Ry | Y Kh——eE sy 4o
C(k,l)EJ\TE (‘J) C(k,l)e]\rg(i,j) '
Gm2d abs [V, (t)], if —Vi <Va(t) <+Vy
abs [Iyq.]. (t)] =< Gm2d VU, if V:Eij(t) > VU (17)
—Gm2d Vp, if V:Eij(t) < =V

ov, if Vai;(t) <15V

sign Iy, (t)] = { 3V, if Vay(t) > 1.5V 4o
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Fig. 5. (a) The circuit of V-I converter of the blocks T1 and T3 and the one-half absolute-value circuit used in the blocks T2l and T2d. (b) Latckedircuit u
the block T2lI. (c) The sign detector circuit used in the block T2d.
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the voltage Vin of the cell stat&;; is converted into positive _VL
current loabs. The maximum linearity error of loabs is 15% at Vs
Vin — Vref = £0.8 V. Itis found that this error is acceptablerig. 7. cMOS circuit of the block Mul/Div.

in the RMCNN.

selpn

Output Current I . (Amp)

Fig. 6. The HSPICE simulation result of the circuit in Fig. 5(a).

tiplication and division by using the relation between emitter
current/g and base-emitter voltagésg as

Vi 1
_ o Igp = Isexp <—BE) orVegg = Vrln <—E> (19)
The combined four-quadrant analog multiplier and two-quad- Vr Is

rant divider in Fig. 2 can be realized in the current mode by theherels is the emitter saturation current ab@ is the thermal
CMOS circuit shown in Fig. 7 [20]. In Fig. 7, the currents voltage. The OP AMP Ao has a closed-loop feedback via the
and I3 for multiplication are input through the pMOS currenhiMOS device M21. Thus, the emitter voltalfgs and Vg4 are
sources M14i/M14 and M15i/M15/M16, respectively, whereadrtually the same. With the buffered direct injection circuit [21],
the currentl, as the divider is input through M24i/M24. Thethe output current, can be readout through the pMOS current
parasitic vertical PNP bipolar junction transistors (BJTs) Qinirrors M19, M25 and M26, and the nMOS current mirror M29
Q2, Q3, and Q4 are adopted to perform the functions of mwnd M30, to form the output curreti,, 4.

B. Combined Analog Multiplier and Divider



1718 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 12, DECEMBER 2002

SinceVgs = Via, we have 5@ 0]
VBE1 + VBE3 = VBE2 + VBEA. (20) E-O'SH ]
. .. . Z-1.0
Using the equation in (19), the relation amohg, Iz, I3, g :
andIg4 can be obtained from (20) as s
Teql & e ———— e
Ipg = EE2 (21) 8 1n 2 3 ap 5u 61
Ips Input current I, (Amp)

Neglecting the base currents, the output curdgntan be ex-

pressed in terms df;, I», andI; as Fig. 8. HSPICE simulation results of the Mul/Div circuit with = 20 pA.

~ Il 2 o
= L (22) 5;

In (22), only the magnitudes of the input current signals are £ 20,
used to form the magnitude of the output current signal. The sign T;

of I, should be determined to realize the complete function of 3 .40y
four-quadrant multiplier and two-quadrant divider. In Fig. 7, the 2“
o

signal “selpn” is used to determine the sign of the output current A
Ioma- The signal “selpn” is obtained from theior gate with g ”Input wﬂtm 1, Am:) * ¥
the three different input signs. In the learning perigdjs high

and ¢- is low. The output “selpn” is determined by the sigrFig. 9. HSPICE simulation results of the Mul/Div circuit wifh = 6 pA.
voltagesVSXy; and VSX;; from the block T2d to realize the

sign of [uf; T, as in (14). In the recognition period; is low Vo

ande, is high. “selpn” is determined by the voltage VZ¥and

VSW,;: from the block T2d and T2l, respectively, to determine —r——[ M3l

the sign of Yy Izsiji in (16). If the signal “selpn” is high oy oSy oSy

(low), the sign is negative (positive) and the MOS device M28 Unity-gain oo To Quiput

(M27) is turned on to make lomg —T,(+14). 5 % < —o
The BJT devices used in Fig. 7 are the parasitical vertical BJT Lo "

in the 0.35um N-well CMOS process. The current gainof sz°—||:1M32

the parasitical BJTs is about~617. It is not large enough to 1

neglect the effect of the base currents of the BJTs Q3 and Q4 to -Vss

the emitter currents of the BJTs Q1 and Q2, respectively. Thus, o o
extra circuits are needed to further bypass the base currents ffdfnl0-  The CMOS readout circuit for the cell state sighial.
entering the emitters of Q1 and Q2. In Fig. 7, the BJTs Q13
and Q24 have the same emitter currehtsand I, as Q3 and s 60uA. Under the condition/s < I which is the actual
Q4, respectively. Thus, Q13 (Q24) has the same base curr@pgration condition, the division error can be kept under 10%.
as Q3 (Q4). The current mirror circuits M17/M18 (M22/M23) The above errors of the Mul/Div circuit are also dependent on
are used to mirror the base current of Q13 (Q24) to Q3 (Q4§1_e variations of device parameters. However, it is found from
Thus the base current of Q3 (Q4) is bypassed from Q1 (Q2) afigulation results that these errors have insignificant effects on
the relationIz, = I; and I, = I, can be more accuratelythe opgration of RMCNN because of on-chip learning and RM
maintained to realize (22). operation.

In the learning period, the Mul/Div block functions as a o
multiplier to implement the multiplication functiofus; Tuy. - The Complete Circuit
The HSPICE simulation results of the multiplier function of the By using the above CMOS circuits as building blocks, the
Mul/Div circuit in Fig. 7 are shown in Fig. 8 where the devicarchitecture of the RMCNN in Fig. 2 is implemented with the
parameters of 0.3am SPQM N-well CMOS technology are array size of 3 9. In the implemented @ 9 CMOS RMCNN,
used. It is found that in the actual operation rangd,ofrom the capacitorsCz: and Czs for absolute weight voltage
0.5 1A to 6 A and I3 from 1.2 uA to 6 A with I, kept at  storage are realized by the nMOS gate capacitors. Because
20 1A, the multiplication error can be kept under 5.5%. In thef the current-mode output signals of the blocks in Fig. 2,
recognition period, since the gaii!, in (8) is chosen as 4 in the summing and distribution block is realized by directly
IC design, most of th&’;;(¢) from the neighboring cell is kept connecting the output nodes of the related blocks to the input
at the maximum absolute value as in (17). Thus, most of tbéthe master stage in a CMOS current mirror to perform the
corresponding input currer of the Mul/Div block becomes summing function and the mirrored output current is distributed
a constant current and the Mul/Div block is functioned as @ut through the multiple slave stages.
divider. The HSPICE simulation results of the divider function A layer ofthe boundary cells is designed to surround tke®
of the Mul/Div circuit in Fig. 7 are shown in Fig. 9. In theregular cell array. In the boundary cells, both statg ;- (t)
actual operation range @f from 1.2 to 6pA and I, from 0.3 and inputu;- ;- (t) are zero. Thus, the outpit- ;- (¢) of the
to 6 uA with I; kept at 6pA, the output current can be as highboundary cell is also zero. Since the boundary cells have to send
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TABLE |
THE LEARNED ABSOLUTE AND RATIOED WEIGHTS FOR THERMCNN

RMCNN The learned A template The corresponding absolute weights
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Fig. 11. The correct patterns of Chinese characters (a) “One.” (b) “Two. 1818 o L
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(c) “Four.”
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U\lm = u-|—

o L o
12
. . . A 05| > 1 zily, (05)=
a zero signal voltage to the neighboring regular cells or othe 104 12 4 "
boundary cells, it can be realized by setting the weights fror 0
boundary cell to other cells to be zero. Thus, the associated R
blocks can be removed. ‘
To readout the neuron state sigdél;, suitable readout cir- Aoy (1500 9=
cuit shown in Fig. 10 is designed in thex® CMOS RMCNN.
In the readout circuit, the inputs of nMOS-input CMOS single-

stage OP AMPs used as unity-gain buffers are connected to fifoed weights, the decreasing absolute weights lead to the ef-
nodeX'j in Fig. 2. The buffer output is connected to the inpUfect of feature enhancement [14]-[17] which makes the smaller
of the source-follower driver through the switch controlled bMarger) ratioed weights approach 0 (1)tat 850 s as shown
the column select control signélS;. In the readout operation, i, Fig. 12(b) and Table I. After the elapsed period of 850 s, the
C'Sj is raised to high column by column so th&t; is sent absolute weightsisssa, zisas andzisuus have been decreased
to the input of nMOS source follower M31 and M32 with M3Z0 0. Note that the time for the ratioed weights to become 1 or
biased byVsur as the current source. Through the source foy depends on the leakage current. The larger (smaller) leakage
lower, the neuron state signal can be readout column by colugurrent makes the time shorter (longer).
to the output pad and the large off-chip load. After the three patterns in Fig. 11 have been learned in the
learning period and elapsed in the elapsed period of 850 s in this
case, both correct patterns in Fig. 11 and 300 noisy patterns are
IV. SIMULATION RESULTS applied to the % 9 RMCNN with » = 1 for recognition and
A 9% 9 RMCNN recovery. The noisy test patterns are tht_—? Ie_arned patterns with
noise where the noise level is normally distributed with mean 0
The MATLAB software is used to simulate the behavior odnd standard deviation 0.25. Itis found that all of input correct or
the RMCNN as an associative memory. In the MATLAB simunoisy patterns can be recognized and recovered correctly by the
lation, 9x 9 neurons are used to form the RMCNN witk= 1. RMCNN after the three patterns have learned and elapsed for
Thus, it can process patterns with 81 pixels. To consider tBB0 s. After 2500 s, all the ratioed weights are decayed to 0 as
leakage current effect, a constant leakage current of 0.8 fAsisown in Fig. 12(b). Thus, the RMCNN cannot recognize input
applied to the capacitar'zs of 2 pF so the voltag® zs;;i; is  patterns. The total recognizable time in this case is 1650 s from
decreased as in (19). The 2-pF capadites is implemented on 850 s to 2500 s. If only any two patterns in Fig. 11 are learned
the chip. The value of 2 pF is chosen as a compromise betwésnthe 9x 9 RMCNN withr = 1, both correct and noisy input
weight storage time and capacitor chip area. The test pattepasterns can be recognized for 2500 s right after the two patterns
applied for learning and recognition are the patterns of Clare learned.
nese characters “one,” “two,” and “four,” as shown in Fig. 11. When the noise standard deviation of the noisy test patterns
The learnedA templates in (8) are space-variant templates. Ia increased to 0.3 (0.4), the average probability of accurate
Table I, one of the learned template of the cell C(4,4) at recognition is decreased to 97% (60%). Thus, the degradation
t = 0 s denoted adAl,(0 s), is listed with the corresponding of recognition rate is increased with the increase of noise stan-
learned matrixzij,(0 s) of the absolute weights. Due to thedard deviation.
leakage current, both absolute and ratioed weights are changefls compared to the @ 9 CNN without RM, but with the
with time as shown in Fig. 12(a) and 12(b), respectively. For tlame learning rule and constant leakage on the coefficient of

0
1

zily, (1500 5)=| 5
0
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Fig. 12. For the % 9 RMCNN, a) the simulated absolute weights of the ceg:.

C(4,4) stored in the capacitétzs versus time and b) the corresponding ratioe r:g‘Clol:;ec-trhzt?e?,ﬁ)i/np;nerlnzc()é)the Chingse character “four” coresponding to
weights of the cell C(4,4) versus time. P 9- :

space-variant templates, only the two patterns “one” and “tw@fchitecture of Fig. 3 can be formed. The control signals nil,
in Fig. 11(a) and 11(b), respectively, can be learned and ofliZ: @nd ni4 in Fig. 13 are sequentially set to a high level so
correct input patterns can be recognized from 0 to 1200 s tf¥at the three patterns in Fig. 11 with the black (white) signal
the pattern “four” in Fig. 11(c) is used, only one pattern can Bgvel of 2.5V (0.5 V), are input to the circuit for learning.
learned and recognized by thec<® CNN without RM. In the elapsed periodj; and ¢, are set to low (0 V). The
From the above resullts, it is found that some ratioed weigHg&rned absolute weight is stored on the capadites and
are not well separated after the three patterns are learned bydggayed with time under the inevitable leakage current. In
9 x 9RMCNN. Thus, the pattern recognition and recovery is nt€ recognition periodg, = 1 and¢, = 0 and the circuit
successful. After 850 s, the feature-enhancement effect magégmtecture of Fig. 4 is formed. Both control s!gnals ni4 and nin
the ratioed weights well separated and the insignificant weighsFig- 13 are set to high level so that the noisy pattern shown
are decreased to zero. Thus, the pattern recognition and recoVfy9- 14 can be applied to the>x09 RMCNN for recognition.
can be performed successfully even with three input noisy pAdter enough elapsed time, the column select signay are
terns. If only two patterns are learned, the ratioed weights afgquentially set to high level. Thus, the state;j fori = 1
well separated right after learning. Thus, no elapsed time is #8-9 can be read out column by column frgm= 1toj = 9.

quired for pattern recognition and recovery. If the CNN has onl"® HSPICE simulated output waveforms for the noisy pattern

absolute weights without RM, there is no feature-enhancem@i® Shown in Fig. 15 where the high (low) voltage of 1.2 V
effect under constant leakage and the number of recognizaffle/) represents black (white) level. It can be seen from Fig. 15
patterns is reduced to one for complicated pattern and two hat the recognized result is the recovered correct pattern in

simple patterns. Besides, the noisy input patterns cannot beffig 11(c). Thus, the above MATLAB simulation results have
covered without the feature-enhancement effect of RM. been verified in those HSPICE simulations on the real circuits.

The above results on the storage capacity &f®RMCNN
are obtained with the patterns in our test set. If different patterﬁs 18x 18 RMCNN
are used, the results might be different. The behavior simulation of the 2818 RMCNN withr = 1

The HSPICE simulation of the complete CMOSx® isalsoperformed. The patterns used for learning and recognition
RMCNN circuit designed in Section Il is performed by usingre the patterns of five Chinese characters shownin Fig. 16. One
the device parameters of 0.38n SPQM N-well CMOS tech- of the learned A templateAl, (0 s) andAl,,(0 s) of the cells
nology. The control-timing diagram in the HSPICE simulatioi©(4,4) and C(10,4) dt= 0 s are listed in Table | with their cor-
is shown in Fig. 13. In the learning period, the signalis set responding absolute weights’, (0 s) and zij,,(0 s), respec-
to high level (3 V) andp, to low level (0 V). Thus, the circuit tively. Due to the leakage current, the smaller absolute weights
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Fig. 15. HSPICE simulation output waveforms of neuron stdtg in the
9 x 9 RMCNN with the input noisy pattern “four” for recognition.
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Fig. 17. For the 1& 18 RMCNN, (a) the absolute weighS},(¢) and
(b) the ratioed weightd }, (¢) of cell C(4,4) versus time.
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Template Coefficients

From the simulated recognition rates ofx® and 18x 18
RMCNNSs, it is realized that the 1818 RMCNN can learn
more patterns, but the tolerance to the noise standard deviation
(e) is lower as compared to that 0$99 RMCNN.
Fig. 16. Correct patterns of five Chinese characters: (a)‘Up”; (b)“Soil”; In the 18x 18 CNN without RM, but Wl,th the same 'eam'”g
c)*Work”; (d)*Mountain”; (e)*Farm” which are learned and stored in thefule and constant leakage on the coefficients of space-variant
18x 18 RMCNN. templates, only two patterns can be learned and only the
correct patterns can be recognized at 0 s. But after elapsed
are decayed to zero at= 1500 s as shown in Fig. 17(a) andime Tg;, = 2 s, the correct patterns cannot be recognized.
Table I. But the feature-enhancement effect [14]-[17] mak&@#$us, 18x 18 CNN without RM has less capability in pattern
the coefficients of template converge to 1, 0.5 or 0 as shownl@arning, storing and recognizing. This is quite different from
Fig. 17(b) and Table I. I\},, two largest terms iai3, are left the case of RMCNNs where increasing the size from ®
att = 1500 s. Thus, the corresponding coefficientadf,(0s) to 18x 18, the number of noisy patterns for learning and
are converged to 0.5 instead of 1 according to (16). recognition is increased from three to five. The main reason
After the five patterns in Fig. 16 have been learned arfdr this difference is that as the number of stored patterns is
elapsed for the elapsed period of 1500 s, both correct patteimseased with the array size of CNNs, the total number of
and 500 noisy patterns with noise levels normally distributespace-variant templates is increased. The CNN associative
with mean 0 and standard deviation 0.25, are applied to theemories without RM cannot keep all these templates well
18 x 18 RMCNN for recognition and recovery. The recognizseparated. Thus exact pattern recognition and recovery cannot
able time for the five correct patterns is from 1500 s after thebe realized. But the feature-enhance effect of RMCNN retains
patterns have been learned to 2500 s. If only any four pattethe simple feature of the space-variant template coefficients
in Fig. 16 are learned, the recognizable time for correct patterasd keeps them well separated. Thus, more patterns can be
is from 1250 s to 2500 s. For the recognition of noisy patterngarned, stored and recognized.
98% accuracy on recognition and recovery can be achieved foDue to the unique feature-enhancement effect, the RMCNN
five patterns whereas 99% accuracy for four patterns. In than learn, store, recognize, and recover the same number of
case of five learned patterns, when the noise standard deviatiteck and white (B/W) patterns with less weight connections
is 0.3, the average probability of accurate recognition is dovamong neurons as compared with the Hopfield neural network
to 85%. The average probability of accurate recognition is onlyith RM and constant leakage on template coefficients [17]. For
50% when the noise standard deviation is increased to 0.8%ample, 18 18 RMCNN can process five B/W patterns as
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Fig. 18. Photograph of the fabricated CMOS ® RMCNN chip. g:; 14} T - "
9 x 9 Hopfield neural network with RM. But 18 18 RMCNN ROWS b i o
has 1296 weight connections while thec® Hopfield network ROW6E it & e
with RM has 6480 weight connections. The circuit complexity Rrow? M—-» } P
of RMCNN is about one fifth of the Hopfield network with RM. Rowg"”f""; T - C
As compared to other CNN associative memories without O S
RM and without leakage on the stored template coefficients R°W9 o L T
during the recognition operation [4], [5], [7], [8], the maximum S oo
numbers of stored and recognizable patterns are 25 (12) for WWW“?“
9 x 9 CNN with 49 (25) synaptic connections per cell [4], [7], RN 200V 1.00ks ood:sa
[8] and two for 6x 6 CNN with three synaptic connections per Coll 2 3 45 6 7 8 9

cell [5]. It is found from this work that both the leakage on the
Measured output waveforms for the input noisy pattern “four” in the
stored template coefficients and the noise of input patterns Ifégsncate 4 CMOS & 9 RMCNN chip,
a strong effect on the maximum number of stored and recogniz-
able patterns.

TABLE I
V. EXPERIMENTAL RESULTS SUMMARY ON THE CHARACTERISTICS OF THEFABRICATED CMOS 9% 9
RMCNN CHIP
To verify the function of RMCNN, the experimental chip :
. . . . 0.35um Single Poly Quadrant Metal
of 9 x 9 CMOS RMCNN circuit using the proposed architec- Technology N-well CMOS
ture is designed and fabricated by using 0,36 single-poly Is{:glleu;::;llarea g;oir:ei'smum
guadruple-metal (SPQM) N-well CMOS technology. The pho-can aray size (include pads) 3800pm x 3900pm
tograph of the fabricated chip is shown in Fig. 18. It 'ndUde‘Pz:;f;i?ffcleympower Fosipaion o
9 x 9 regular cells, one surrounding layer of boundary cells 120mW ~ 140mW (Depending on image
Dynamic power dissipation of the array input)
144 RMs, and 9 rows of readout circuits. To compensate fci 0o Ths

the inevitable process variation effects on circuit parameter and

guarantee the correct operation of the RMCNN chip, the gain

K, is setto 4 as realized by the current ratio of the current mit:2 V (0 V) represents black (white) level. As may be realized

rors M19/M25 and M19/M26 in Fig. 7. from the waveforms of Fig. 19, the noisy pattern “four” has been
Firstly, the three correct patterns in Fig. 11 are learned anetovered to the correct pattern shown in Fig. 11(c). Similarly,

the learned absolute weights are stored on the 2-pF capaciter noisy patterns corresponding to Figs. 11(a) and 11(b) can

Czs of the fabricated % 9 RMCNN chip. As expected, the be recognized and recovered correctly. If the input is the correct

fabricated 9x 9 RMCNN chip cannot recognize the correct tegpattern, it still can be recognized.

patterns just after it has learned the three patterns. After abouThe characteristics of the fabricated CMO& 9 RMCNN

10 min, three noisy patterns, are input to the 9 RMCNN chip are summarized in Table Il. The chip area of one single

chip for recognition. The measured output waveforms of the celixel including one regular neuron cell and two RMs is

state for the noisy pattern “four” are shown in Fig. 19 where ti850 zm x 350 pm. The chip area of a single RM block

minimum readout time of a cell state signal ig4. In Fig. 19, including the capacitor§'zi and Czs is 220 pm x 130 pum.

the first two signal waveforms are the column select signals CShe chip area of 2-pE'zs capacitor is50 pm x 25 um. The

and CS9, which select the responding first and ninth colunguiescent power dissipation is 120 mW whereas the dynamic

to readout circuits. Other signal waveforms are the measumgaolver dissipation is 120 mW- 140 mW. The total readout

cell state outputs of each row. The high (low) signal level dfme of the CMOS % 9 RMCNN is 9us.
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VI. CONCLUSION [11]

In this paper, RMCNN is proposed and analyzed. In the
RMCNN, the modified Hebbian learning rule is adopted to[12]
generate the absolute weights from a set of exemplar patterps;
and then transform them into ratioed weights to form the RM as
space-varianA template coefficients. With RM and Hebbian [14]
learning rule, the RMCNN can be used as the associative
memory for pattern learning, recognition and recovery. It is[15]
found from the simulation result that the CMOS® RMCNN
can learn and recognize three patterns whereas thelB8 [
RMCNN can learn and recognize five patterns. Due to the
feature enhancement effect of the RM under constant leaka %]
on the absolute template coefficients, the RMCNN can lear
and recognize the same number of patterns with less weight
connections as compared to the Hopfield neural network witht8
the same RM and constant leakage on the template coefficients.
Moreover, the proposed RMCNN can learn and recognizélf]
more patterns as compared to the CNN associative memories
without RM, but with the same learning rule and the same
constant leakage on the coefficients of space-variant template&9l
Based upon the designed architecture and CMOS circuits of
the RMCNN, an experimental chip of CMOSx3® RMCNN  [21]
has been designed and fabricated by using @.86CMOS
technology. The experimental results has successfully verified
the correct function of %€ 9 RMCNN. Since the proposed
RMCNN has the advantageous features in learning, storing, and
recognizing image patterns, it is suitable for many applicatior~
of neural associative memory in real-time image processing.
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