
Minimizing Weighted Earliness and Tardiness Penalties in
Single-Machine Scheduling with Idle Time Permitted

Jaw-Yeh Chen, Sheng-Fuu Lin

Department of Electrical and Control Engineering, National Chiao Tung University,
1001 Ta Hsueh Road, Hsinchu, Taiwan 30010, Republic of China

Received 17 July 2000; revised 21 December 2001; accepted 1 March 2002

Abstract: In this paper, a single-machine scheduling problem with weighted earliness and
tardiness penalties is considered. Idle time between two adjacent jobs is permitted and due dates
of jobs could be unequal. The dominance rules are utilized to develop a relationship matrix,
which allows a branch-and-bound algorithm to eliminate a high percentage of infeasible
solutions. After combining this matrix with a branching strategy, a procedure to solve the
problem is proposed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 760–780, 2002;
Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10039

Keywords: scheduling theory; branch-and-bound; earliness/tardiness; idle time; dominance
rule

1. INTRODUCTION

In recent times, the use of JIT, or just-in-time delivery, which aims to provide the customer
with an order at a precisely desired time, has become a much-valued consideration. In the
scheduling field, this is an earliness/tardiness (E/T) model [2, 9].

Many researchers have addressed either heuristic procedures [7] or branch-and-bound sche-
mas [1, 3, 9, 11], or in some cases both. Abdul-Razag and Potts [1] looked at problems of
job-independent weighted earliness and tardiness penalties without inserted idle time. The
solution they proposed is a branch-and-bound scheme for which they developed a special
relaxed dynamic programming procedure to obtain the lower bounds of the scheme.

For job-dependent weighted E/T penalty problems, Ow and Morton [7] described a family of
heuristic dispatch rules, but in doing so they considered only schedules without inserted idle
time. They also utilized dominance conditions for adjacent jobs to obtain optimal solutions for
two special cases. In the first, a WSPT (weighted shortest processing time) sequence results in
a schedule that has no early jobs; in the second, a WLPT (weighted longest processing time)
sequence results in a schedule that has no tardy jobs. Szwarc [9] proposed a single-machine n
job earliness-tardiness model with job-independent penalties. He arrived at results on orderings
for adjacent jobs that showed that dominance ordering in an optimal schedule varied according
to a critical value of start times. However, he considered only the case where idle time is not

Correspondence to: S.-F. Lin.

© 2002 Wiley Periodicals, Inc.

permitted. Many researchers [2, 5, 6, 8, 10] have pointed out that the assumption of no idle time
is inconsistent with the E/T model, since if idle time is permitted in a sequence, then it is always
better to insert it in the schedule than not to do so.

Also recently, the E/T model with idle time permitted has attracted much attention. Given a
job sequence, optimal insertion of idle time in the E/T model has been studied [4, 10]. In the case
where earliness and tardiness penalties are equal, Garey, Tarjan and Wilfong [4] proposed an
O(n log n) complexity procedure, where n is the number of jobs, for inserting idle time
optimally. Szwarc and Mukhopadhyay [10], using a cluster concept to develop the properties of
the E/T model, proposed an algorithm of complexity O(mn), where m is the number of clusters.
Idle time is easily inserted optimally if the job sequence is determined. Therefore, the most
important consideration is to find the best sequence. However, this two-stage procedure (that is,
of finding a good job sequence into which to insert idle time) may not produce an optimal
schedule. Consider, for example, a three-job problem where the processing time for each job is
3, 7, and 14, respectively, and the due date for each job is 10, 30, and 35, respectively. At the
same time, assume both the earliness and tardiness penalties to be 1. If no idle time is permitted,
the optimal sequence is jobs 1, 3, and 2, starting at time 7 with the cost being 12. But, if idle
time is permitted, the optimal sequence is jobs 1, 2, and 3, with starting times 7, 14, and 21,
respectively, then the cost is 9. In fact, there is more than one optimal schedule. For example,
the sequence of jobs 1, 2, and 3, with starting times 7, 23, and 30, respectively, is also an optimal
schedule, with the cost being 9. Going back to the sequence jobs 1, 3, and 2, which is the best
sequence when idle time is not permitted, then the optimal cost is 12 when idle time is permitted.
Hence, if the job sequence is scheduled without idle time in the first stage but inserted in the
second stage, then the schedule may not be optimal.

Davis and Kanet [3] proposed a TIMETABLER procedure for adjusting idle time, and used
this to establish a lower bound for branch-and-bound methods. Since this procedure involves
computing a TIMETABLER in each partial schedule, the computations are extensive.

To deal with lower bound computation, Hoogeveen and Van de Velde [11] presented a
fivefold approach after which they used branch-and-bound methods to solve the E/T model.
They changed the form of the problem from that of being an E/T model into one in which the
goal is to minimize the function that is dependent on completion time and total earliness.

A further problem arises with the E/T model. Koulamas [6] discussed the single-machine
earliness/tardiness problem with arbitrary time windows (STW), dividing it into two subprob-
lems. He first found a good job sequence, then optimally inserted idle time into the sequence.
The results were based on heuristics developed for other single-machine scheduling problems,
such as apparent urgency (AU), and adjacent pairwise interchange (API), with some modifica-
tions. As the above example shows, this two-stage procedure may not obtain the optimal job
schedule. A recent survey of the literature on single-machine earliness and tardiness problems
can be found in Baker and Scudder [2].

This study considers a single-machine scheduling problem with weighted earliness and
tardiness penalties, and with unequal due dates and idle time permitted. As pointed out by
Garey, Tarjan and Wilfong [4], as well as by Baker and Scudder [2], where the due dates are
treated as decision variables, the problem turns out to be relatively simple. However, if the due
dates are given and unequal, then the problem is NP-complete and only branch-and-bound
schemata or heuristic procedures are possible. We choose to amalgamate the two stages
simultaneously. First, dominance rules are utilized to develop a matrix that is referred to as the
relationship matrix [2, 9]. Then, this matrix is combined with a branching strategy. Computa-
tions have been greatly reduced, as shown in the simulation results.

761Chen and Lin: Single-Machine Scheduling with Idle Time

2. NOTATIONS

Let us consider a single-machine job-independent weighted earliness and tardiness penalties
scheduling problem in which idle time inserted between two adjacent jobs is permitted. That is,
given n jobs, J1, J2, . . . , Jn, each with a processing time pk and a due date dk, for a job
completed before its due date the penalty is � per unit time, while for a job completed after its
due date the penalty is � per unit time and, between any two adjacent jobs, idle time is permitted.
The objective of this problem is to find an optimal schedule such that the total weighted earliness
and tardiness penalties can be minimized. The following notations and symbols will be used
throughout this study.

Ji � job i,
pk � processing time of Jk,
dk � due date of Jk,
Ck � completion time of Jk,
sk � starting time of Jk,
� � earliness penalty per unit time,
� � tardiness penalty per unit time,

Ek � max(dk � Ck, 0) � earliness of Jk,
Tk � max(Ck � dk, 0) � tardiness of Jk,

P, Q, PJiJj � a subschedule,
S � PJiJjQ � a schedule,

C(P) � completion time of subschedule P,
S(Q) � starting time of subschedule Q,

f(S) � ¥k�1
n (�Ek � �Tk) � E/T objective function for schedule S,

JiJj � a subschedule in which Ji and Jj are adjacent jobs,
and idle time may exist between Ji and Jj,

Vk(i, j) � kth critical interval (see Section 3) of subschedule Ji,
Jj in which Ji must precede Jj (i.e., Ji 3 Jj) if C(P)
is within this interval, where k � 5 [that is, if C(P) �
Vk(i, j), then Ji must precede Jj and if C(P) � Vk(j,
i), then Jj must precede Ji].

The problem can then be stated as follows. Find schedule S that minimizes f(S), in which idle
time may be inserted between any two adjacent jobs.

3. THE RELATIONSHIP MATRIX

In this section, we discuss a method for determining the critical interval set of adjacent jobs,
Ji and Jj, {Vk(i, j)�k � 5}, so that the first will precede the other if the completion time of the
job that comes immediately before Ji and Jj, which we shall term the latest job, falls within an
interval. The element mij in the relationship matrix M � [mij]n�n represents the critical interval
set {Vk(i, j)}. When jobs Ji and Jj are scheduled as adjacent, some conditions must be met to
verify whether Ji must precede Jj, according to the latest job completion time, the starting time
of the subschedule next to Ji and Jj, their due dates, processing times, and weighted penalties.
These conditions are referred to as the dominance properties [5, 9] of two adjacent jobs. To
derive the relationship matrix for the E/T model, we must first discuss the dominance properties
of two adjacent jobs. Consider two adjacent jobs, Ji and Jj. Let PJiJjQ and PJjJiQ be the two

762 Naval Research Logistics, Vol. 49 (2002)

schedules. Also assume the completion time for subschedule P is C(P), and the starting time for
subschedule Q is S(Q). Define �ij � f(PJjJiQ) � f(PJiJjQ) as the change in cost due to
interchanging jobs Ji and Jj. A study of the properties of schedule PJiJjQ will allow us to
classify it into five schedule patterns, which can be used to describe how the starting times of
two adjacent jobs Ji and Jj are arranged:

(i) dj � pi � pj � di � pi � C(P): According to S(Q), there are three situations:

(ia) S(Q) � dj: Both Ji and Jj are arranged as on-time jobs; hence, si � di � pi and
sj � dj � pj.

(ib) dj � S(Q) � di � pj: Since S(Q) is less than dj, Jj cannot be scheduled on time;
hence, si � di � pi and sj � S(Q) � pj.

(ic) di � pj � S(Q) � C(P) � pi � pj: S(Q) is so small that not even Ji can be
scheduled on time; hence, si � S(Q) � pi � pj and sj � S(Q) � pj. Note that
S(Q) must be greater than C(P) � pi � pj, otherwise, Ji and Jj cannot be
scheduled between subschedules P and Q.

(ii) dj � pi � pj � C(P) � di � pi: According to S(Q), there are two situations:

(iia) S(Q) � dj: Since Ji cannot be completed on time, to get minimum tardiness, Ji

is released at time C(P). But Jj can be arranged as an on-time job. Then the
pattern is si � C(P) and sj � dj � pj.

(iib) dj � S(Q) � C(P) � pi � pj: Neither Ji and Jj can be scheduled on time; hence,
si � C(P) and sj � S(Q) � pj.

(iii) C(P) � max(di � pi, dj � pi � pj): Since Ji cannot be completed on time, to obtain
minimum tardiness, Ji is released at time C(P). In this case, Jj must be a tardy job.
Again, to obtain minimum tardiness, Jj must start its processing at time Ci. The pattern
is si � C(P) and sj � Ci. Note that S(Q) does not affect the pattern.

(iv) di � pi � C(P) � dj � pi � pj and � � �: In this case, it is impossible for both Ji

and Jj to be on-time jobs. Since � � �, to minimize the cost, Ji is completed early and
Jj tardy with si � C(P) and sj � Ci. Also S(Q) does not affect the pattern.

(v) di � pi � dj � pi � pj, di � pi � C(P) and � � �: According to S(Q), there are
three situations:

(va) S(Q) � di � pj: In this case, it is impossible for both Ji and Jj to be on-time jobs.
Since � � �, to minimize the cost, Ji is arranged as an on-time job, and Jj as a
tardy one with sj � di. Hence, the pattern is si � di � pi and sj � di.

(vb) di � pj � S(Q) � max(dj, C(P) � pi � pj): Both jobs must be shifted earlier
than (va) to satisfy the constraint of S(Q); hence, si � S(Q) � pi � pj and sj �
S(Q) � pj.

(vc) dj � S(Q) � C(P) � pi � pj: The cost is different from (vb), but the pattern
is the same; hence, si � S(Q) � pi � pj and sj � S(Q) � pj.

(vi) di � pi � dj � pi � pj � C(P) and � � �: According to S(Q), there are two
situations:

763Chen and Lin: Single-Machine Scheduling with Idle Time

(via) S(Q) � dj: In this case, it is impossible for both Ji and Jj to be on-time jobs. Since
� � �, to minimize the cost, Ji is completed early with si � dj � pi � pj and
Jj on time. Then, the pattern is si � dj � pi � pj and sj � dj � pj.

(vib) dj � S(Q) � C(P) � pi � pj: Both jobs must be shifted earlier than (via) to
satisfy the constraint of S(Q); hence, si � S(Q) � pi � pj and sj � S(Q) � pj.

Similarly, schedule PJjJiQ can also be classified into five schedule patterns:

(vii) di � pi � pj � dj � pj � C(P):

(viia) S(Q) � di: The pattern is sj � dj � pj and si � di � pi.
(viib) di � S(Q) � dj � pi: The pattern is sj � dj � pj and si � S(Q) � pi.
(viic) dj � pi � S(Q) � C(P) � pi � pj: The pattern is sj � S(Q) � pi � pj and

si � S(Q) � pi.

(viii) di � pi � pj � C(P) � dj � pj:

(viiia) S(Q) � di: The pattern is sj � C(P) and si � di � pi.
(viiib) di � S(Q) � C(P) � pi � pj: The pattern is sj � C(P) and si � S(Q) �

pi.

(ix) (C(P) � max(dj � pj, di � pi � pj)): The pattern is sj � C(P) and si � Cj.
(x) dj � pj � C(P) � di � pi � pj and � � �: In this case, the pattern is sj � C(P)

and si � Cj.
(xi) dj � pj � di � pi � pj, dj � pj � C(P) and � � �:

(xia) S(Q) � dj � pi: The pattern is sj � dj � pj and si � dj.
(xib) dj � pi � S(Q) � max(di, C(P) � pi � pj): The pattern is sj � S(Q) �

pi � pj and si � S(Q) � pi.
(xic) di � S(Q) � C(P) � pi � pj: The pattern is sj � S(Q) � pi � pj and si �

S(Q) � pi.

(xii) dj � pj � di � pi � pj � C(P) and � � �:

(xiia) S(Q) � di: The pattern is sj � di � pi � pj and si � di � pi.
(xiib) di � S(Q) � C(P) � pi � pj: The pattern is sj � S(Q) � pi � pj and si �

S(Q) � pi.

Let us consider a pair of adjacent jobs Ji and Jj. To obtain a better schedule, we must compare
the cost of PJiJjQ and PJjJiQ. A total of 36 combinations formed from the two sets of schedule
patterns must be checked. But some combinations can be ignored, for example, case (i) with
case (vii). Since dj � pi � pj � di � pi and di � pi � pj � dj � pj, it implies dj � pi �
pj � dj � pj, indicating that the intersection of the two considered domains is disjointed.
Finally, we have 20 possible combinations as shown in Table 1. For example, (1) is in column
(i) and row (x) which means that case (1) is a combination of patterns (i) and (x). In other words,
in case (1), when Ji must precede Jj, schedule pattern (i) should be adopted, and when Jj must
precede Ji, schedule pattern (x) should be adopted. The details are discussed in the following:

764 Naval Research Logistics, Vol. 49 (2002)

(1) For the combination of cases (i) and (x), the assumptions are dj � pi � pj � di � pi �

C(P) � di � pi � pj and � � �. According to S(Q), there are three situations:

(1a) S(Q) � dj: Since �ij � �(dj � C(P) � pj) � �(C(P) � pi � pj � di) �
0, Ji must precede Jj.

(1b) dj � S(Q) � di � pj: Since �ij � �(S(Q) � C(P) � pj) � �(C(P) � pi �
pj � di) � 0, Ji must precede Jj.

(1c) di � pj � S(Q) � C(P) � pi � pj: �ij � �(2S(Q) � C(P) � 2pj � di) �
�(C(P) � pi � pj � di).

(2) For the combination of cases (i) and (xi), the assumptions are dj � pi � pj � di � pi �

C(P) and � � �. According to S(Q), there are five situations:

(2a) S(Q) � dj � pi: Since �ij � �(dj � pi � di) � 0, Ji must precede Jj.
(2b) dj � pi � S(Q) � dj: Since �ij � �(S(Q) � di) � �(dj � pi � S(Q)) �

0, Ji must precede Jj.
(2c) dj � S(Q) � di � pj: Since �ij � �(S(Q) � di) � �pi � 0, Ji must precede

Jj.
(2d) di � pj � S(Q) � max(di, C(P) � pi � pj): �ij � �(S(Q) � di) � �(pi �

pj � di � S(Q)).
(2e) di � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

(3) For the combination of cases (i) and (xii), the assumptions are dj � pi � pj � di �
pi � di � pi � pj � C(P) and � � �. According to S(Q), there are four situations:

(3a) S(Q) � dj: Since �ij � �(dj � pi � di) � 0, Ji must precede Jj.
(3b) dj � S(Q) � di � pj: Since �ij � �(S(Q) � pi � di) � 0, Ji must precede

Jj.
(3c) di � pj � S(Q) � di: �ij � �(2S(Q) � pi � 2di � pj).
(3d) di � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

(4) For the combination of cases (ii) and (x), the assumptions are dj � pi � pj � C(P) �
di � pi and � � �. According to S(Q), there are two situations:

(4a) S(Q) � dj: Since �ij � �(dj � C(P) � pj) � �Pj � 0, Ji must precede Jj.
(4b) dj � S(Q) � C(P) � pi � pj: Since �ij � �(S(Q) � C(P) � pj) � �Pj �

0, Ji must precede Jj.

Table 1.

(i) (ii) (iii) (iv) (v) (vi)

(vii) (9) (14) (18)
(viii) (10) (15)
(ix) (6) (11) (16)
(x) (1) (4) (7) (12) (19)
(xi) (2) (5) (8) (17)
(xii) (3) (13) (20)

765Chen and Lin: Single-Machine Scheduling with Idle Time

(5) For the combination of cases (ii) and (xi), the assumptions are dj � pi � pj � C(P) �
di � pi and � � �. According to S(Q), there are three situations:

(5a) S(Q) � dj � pi: Since �ij � �(dj � C(P)) � 0, Ji must precede Jj.
(5b) dj � pi � S(Q) � dj: Since �ij � �(S(Q) � C(P) � pi) � �(dj � pi �

S(Q)) � 0, Ji must precede Jj.
(5c) dj � S(Q) � C(P) � pi � pj: Since �ij � �(S(Q) � C(P) � pi) � �pi �

0, Ji must precede Jj.

(6) For the combination of cases (iii) and (ix), the assumption is C(P) � max(di � pi, dj �
pj), which results in �ij � �(pj � pi).

(7) For the combination of cases (iii) and (x), the assumptions are dj � pj � C(P) �
max(di � pi, dj � pi � pj) and � � �, which results in �ij � �(dj � C(P) � pj) �
�(dj � C(P) � pi).

(8) For the combination of cases (iii) and (xi), the assumptions are dj � pj � C(P) �
max(di � pi, dj � pi � pj) and � � �. According to S(Q), there are two situations:

(8a) S(Q) � dj � pi: �ij � �(2dj � 2C(P) � pi � pj).
(8b) dj � pi � S(Q) � C(P) � pi � pj: �ij � �(S(Q) � dj � 2C(P) � 2pi �

pj) � �(dj � pi � S(Q)).

(9) For the combination of cases (iv) and (vii), the assumptions are di � pi � pj � dj �
pj � C(P) � dj � pi � pj and � � �. According to S(Q), there are three situations:

(9a) S(Q) � di: Since �ij � ��(di � C(P) � pi) � �(C(P) � pi � pj � dj) �
0, Jj must precede Ji.

(9b) di � S(Q) � dj � pi: Since �ij � ��(S(Q) � C(P) � pi) � �(C(P) � pi �
pj � dj) � 0, Jj must precede Ji.

(9c) dj � pi � S(Q) � C(P) � pi � pj: Since �ij � ��(2S(Q) � C(P) � 2pi �
dj) � �(C(P) � pi � pj � dj) � 0, Jj must precede Ji.

(10) For the combination of cases (iv) and (viii), the assumptions are di � pi � pj �
C(P) � dj � pj and � � �. According to S(Q), there are two situations:

(10a) S(Q) � di: Since �ij � ��(di � C(P) � pi) � �pi � 0, Jj must precede Ji.
(10b) di � S(Q) � C(P) � pi � pj: Since �ij � ��(S(Q) � C(P) � pi) � �pi �

0, Jj must precede Ji.

(11) For the combination of cases (iv) and (ix), the assumptions are di � pi � C(P) �
max(dj � pj, di � pi � pj) and � � �, which results in �ij � ��(di � C(P) � pi) �
�(C(P) � pj � di).

(12) For the combination of cases (iv) and (x), the assumptions are min(di � pi, dj � pj) �
C(P) � max(di � pi � pj, dj � pi � pj) and � � �, which results in �ij � �(dj �
di � pi � pj) � �(dj � di).

(13) For the combination of cases (iv) and (xii), the assumptions are dj � pj � di � pi �
pj � C(P) � dj � pi � pj and � � �. According to S(Q), there are two situations:

(13a) S(Q) � di: �ij � �(dj � 2di � 2pi � C(P)) � �(C(P) � pi � pj � dj).

766 Naval Research Logistics, Vol. 49 (2002)

(13b) di � S(Q) � C(P) � pi � pj: �ij � �(dj � 2S(Q) � 2pi � C(P)) �
�(C(P) � pi � pj � dj).

(14) For the combination of cases (v) and (vii), the assumptions are di � pi � pj � dj �
pj � C(P) and � � �. According to S(Q), there are five situations:

(14a) S(Q) � di � pj: Since �ij � ��(di � pj � dj) � 0, Jj must precede Ji.
(14b) di � pj � S(Q) � di: Since �ij � ��(S(Q) � dj) � �(di � pj � S(Q)) �

0, Jj must precede Ji.
(14c) di � S(Q) � dj � pi: Since �ij � ��(S(Q) � dj) � �pj � 0, Jj must precede

Ji.
(14d) dj � pi � S(Q) � max(dj, C(P) � pi � pj): �ij � �(dj � S(Q) � pi �

pj) � �(S(Q) � dj).
(14e) dj � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

(15) For the combination of cases (v) and (viii), the assumptions are di � pi � pj � C(P) �
dj � pj and � � �. According to S(Q), there are three situations:

(15a) S(Q) � di � pj: Since �ij � �(C(P) � di) � 0, Jj must precede Ji.
(15b) di � pj � S(Q) � di: Since �ij � �(C(P) � pj � S(Q)) � �(di � pj �

S(Q)) � 0, Jj must precede Ji.
(15c) di � S(Q) � C(P) � pi � pj: Since �ij � �(C(P) � pj � S(Q)) � �pj �

0, Jj must precede Ji.

(16) For the combination of cases (v) and (ix), the assumptions are di � pi � C(P) �
max(dj � pj, di � pi � pj) and � � �. According to S(Q), there are two situations:

(16a) S(Q) � di � pj: �ij � �(2C(P) � pi � pj � 2di).
(16b) di � pj � S(Q) � C(P) � pi � pj: �ij � �(2C(P) � pi � 2pj � di �

S(Q)) � �(di � pj � S(Q)).

(17) For the combination of cases (v) and (xi), the assumptions are min(di � pi, dj � pj) �
C(P), di � pi � dj � pi � pj, dj � pj � di � pi � pj and � � �. The situations
are as follows.

(17a) S(Q) � max(di � pj, dj � pi): �ij � �(2dj � 2di � pi � pj).

If di � pj � dj � pi then the following two terms are adopted:

(17b1) di � pj � S(Q) � dj � pi: �ij � �(2dj � pi � di � S(Q)) � �(di �
pj � S(Q)).

(17c1) dj � pi � S(Q) � max(di, dj, C(P) � pi � pj): �ij � �(dj � di) �
�(dj � di � pi � pj).

Else the following two terms are adopted:

(17b2) dj � pi � S(Q) � di � pj: �ij � �(S(Q) � 2di � pj � dj) � �(dj �
pi � S(Q)).

767Chen and Lin: Single-Machine Scheduling with Idle Time

(17c2) di � pj � S(Q) � max(di, dj, C(P) � pi � pj): �ij � �(dj � di) �
�(dj � di � pi � pj).

If C(P) � pi � pj � di and C(P) � pi � pj � dj; then the following four
branches vanish. If not, the branches appear:

Branch 1:
(17d1) di � S(Q) � dj � C(P) � pi � pj: �ij � ��(S(Q) � dj) � �(dj �

pi � pj � S(Q)).
(17e1) dj � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

Branch 2:
(17d2) di � S(Q) � C(P) � pi � pj � dj: �ij � ��(S(Q) � dj) � �(dj �

pi � pj � S(Q)).

Branch 3:
(17d3) dj � S(Q) � di � C(P) � pi � pj: �ij � �(S(Q) � di) � �(S(Q) �

pi � pj � di).
(17e3) di � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

Branch 4:
(17d4) dj � S(Q) � C(P) � pi � pj � di: �ij � �(S(Q) � di) � �(S(Q) �

pi � pj � di).

(18) For the combination of cases (vi) and (vii), the assumptions are di � pi � pj � dj �
pj � dj � pi � pj � C(P) and � � �. According to S(Q), there are four situations:

(18a) S(Q) � di: Since �ij � ��(di � dj � pj) � 0, Jj must precede Ji.
(18b) di � S(Q) � dj � pi: Since �ij � ��(pj � dj � S(Q)) � 0, Jj must precede

Ji.
(18c) dj � pi � S(Q) � dj: �ij � �(2dj � pi � pj � 2S(Q)).
(18d) dj � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

(19) For the combination of cases (vi) and (x), the assumptions are di � pi � dj � pi �
pj � C(P) � di � pi � pj and � � �. According to S(Q), there are two situations:

(19a) S(Q) � dj: �ij � �(2dj � di � 2pj � C(P)) � �(C(P) � pi � pj � di).
(19b) dj � S(Q) � C(P) � pi � pj: �ij � �(2S(Q) � C(P) � 2pj � di) �

�(C(P) � pi � pj � di).

(20) For the combination of cases (vi) and (xii), the assumptions are min(di � pi � pj, dj �
pi � pj) � C(P), di � pi � dj � pi � pj, dj � pj � di � pi � pj and � � �.
According to S(Q), there are three situations:

If di � dj then the three situations are:

(20a1) S(Q) � di: �ij � �(2dj � 2di � pi � pj).
(20b1) di � S(Q) � dj: �ij � �(2dj � pi � pj � 2S(Q)).

768 Naval Research Logistics, Vol. 49 (2002)

(20c1) dj � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

Else the three situations are:

(20a2) S(Q) � dj: �ij � �(2dj � 2di � pi � pj).
(20b2) dj � S(Q) � di: �ij � �(pi � 2di � pj � 2S(Q)).
(20c2) di � S(Q) � C(P) � pi � pj: �ij � �(pi � pj).

The fact that cases (1)–(20) cover all the situations can be easily verified. Note that once di,
dj, pi, and pj are given, only one of cases (1)–(20) can match. Although cases (1)–(20) describe
sufficiently the dominance properties of two adjacent jobs Ji and Jj, they cannot be used
conveniently. Hence some rearrangement of them is made. Now the jobs are numbered such that

p1 � p2 � · · · � pn,

and i is placed in front of j whenever pi � pj and di � dj. For cases (1)–(20), it can be seen
that C(P) always falls in an interval. The end points of the interval may be one of the following
four points: di � pi, dj � pj, di � pi � pj, and dj � pi � pj. The schedule pattern will vary
according to the magnitude sequence of these four points. Note that dj � pj � di � pi � di �
pi � pj � dj � pi � pj, di � pi � dj � pj � di � pi � pj � dj � pi � pj, and dj �
pj � di � pi � di � pi � pj � dj � pi � pj are all impossible cases. For example, if dj �
pj � di � pi � di � pi � pj � dj � pi � pj, then dj � pj � di � pi implies dj � di because
pi � pj; and if di � pi � pj � dj � pi � pj implies di � dj, then a contradiction occurs.
The other two conditions are similar. Then cases (1)–(20) are rearranged as follows:

CASE A: If di � pi � dj � pj � di � pi � pj � dj � pi � pj, there are two conditions:

A1. If � � �, then three possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (16)),
• dj � pj � C(P), (i.e., case (17)),

A2. If � � �, then five possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (11)),
• dj � pj � C(P) � di � pi � pj, (i.e., case (12)),
• di � pi � pj � C(P) � dj � pi � pj, (i.e., case (13)),
• dj � pi � pj � C(P), (i.e., case (20)).

CASE B: If di � pi � dj � pj � dj � pi � pj � di � pi � pj, there are two conditions:

B1. If � � �, then three possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (16)),

769Chen and Lin: Single-Machine Scheduling with Idle Time

• dj � pj � C(P), (i.e., case (17)),

B2. If � � �, then five possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (11)),
• dj � pj � C(P) � dj � pi � pj, (i.e., case (12)),
• dj � pi � pj � C(P) � di � pi � pj, (i.e., case (19)),
• di � pi � pj � C(P), (i.e., case (20)).

CASE C: If di � pi � di � pi � pj � dj � pj � dj � pi � pj, there are two conditions:

C1. If � � �, then four possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � di � pi � pj, (i.e., case (16)),
• di � pi � pj � C(P) � dj � pj, (i.e., case (15)),
• dj � pj � C(P), (i.e., case (14)),

C2. If � � �, then five possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � di � pi � pj, (i.e., case (11)),
• di � pi � pj � C(P) � dj � pj, (i.e., case (10)),
• dj � pj � C(P) � dj � pi � pj, (i.e., case (9)),
• dj � pi � pj � C(P), (i.e., case (18)).

CASE D: If dj � pj � di � pi � dj � pi � pj � di � pi � pj, there are two conditions:

D1. If � � �, then three possibilities occur:

• C(P) � dj � pj, (i.e., case (6)),
• dj � pj � C(P) � di � pi, (i.e., case (8)),
• di � pi � C(P), (i.e., case (17)),

D2. If � � �, then five possibilities occur:

• C(P) � dj � pj, (i.e., case (6)),
• dj � pj � C(P) � di � pi, (i.e., case (7)),
• di � pi � C(P) � dj � pi � pj, (i.e., case (12)),
• dj � pi � pj � C(P) � di � pi � pj, (i.e., case (19)),
• di � pi � pj � C(P), (i.e., case (20)).

CASE E: If dj � pj � dj � pi � pj � di � pi � di � pi � pj, there are two conditions:

E1. If � � �, then four possibilities occur:

• C(P) � dj � pj, (i.e., case (6)),

770 Naval Research Logistics, Vol. 49 (2002)

• dj � pj � C(P) � dj � pi � pj, (i.e., case (8)),
• dj � pi � pj � C(P) � di � pi, (i.e., case (5)),
• di � pi � C(P), (i.e., case (2)),

E2. If � � �, then five possibilities occur:

• C(P) � dj � pj, (i.e., case (6)),
• dj � pj � C(P) � dj � pi � pj, (i.e., case (7)),
• dj � pi � pj � C(P) � di � pi, (i.e., case (4)),
• di � pi � C(P) � di � pi � pj, (i.e., case (1)),
• di � pi � pj � C(P), (i.e., case (3)).

CASE F: If di � pi � dj � pj � di � pi � pj � dj � pi � pj, there are two conditions:

F1. If � � �, then three possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (16)),
• dj � pj � C(P), (i.e., case (17)),

F2. If � � �, then four possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (11)),
• dj � pj � C(P) � di � pi � pj, (i.e., case (12)),
• di � pi � pj � C(P), (i.e., case (20)).

CASE G: If di � pi � dj � pj � di � pi � pj � dj � pi � pj, there are two conditions:

G1. If � � �, then three possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � di � pi � pj, (i.e., case (16)),
• di � pi � pj � C(P), (i.e., case (14)),

G2. If � � �, then four possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pj, (i.e., case (11)),
• dj � pj � C(P) � dj � pi � pj, (i.e., case (9)),
• dj � pi � pj � C(P)., (i.e., case (18)).

CASE H: If di � pi � dj � pj � di � pi � pj � dj � pi � pj, there are two conditions:

H1. If � � �, then two possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P), (i.e., case (17)),

771Chen and Lin: Single-Machine Scheduling with Idle Time

H2. If � � �, then three possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � di � pi � pj, (i.e., case (12)),
• di � pi � pj � C(P), (i.e., case (20)).

CASE I: If di � pi � dj � pj � dj � pi � pj � di � pi � pj, there are two conditions:

I1. If � � �, then two possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P), (i.e., case (17)),

I2. If � � �, then four possibilities occur:

• C(P) � di � pi, (i.e., case (6)),
• di � pi � C(P) � dj � pi � pj, (i.e., case (12)),
• dj � pi � pj � C(P) � di � pi � pj, (i.e., case (19)),
• di � pi � pj � C(P), (i.e., case (20)).

CASE J: If dj � pj � di � pi � dj � pi � pj � di � pi � pj, there are two conditions:

J1. If � � �, then three possibilities occur:

• C(P) � dj � pj, (i.e., case (6)),
• dj � pj � C(P) � di � pi, (i.e., case (8)),
• di � pi � C(P), (i.e., case (2)),

J2. If � � �, then four possibilities occur:

• C(P) � dj � pj, (i.e., case (6)),
• dj � pj � C(P) � di � pi, (i.e., case (7)),
• di � pi � C(P) � di � pi � pj, (i.e., case (1)),
• di � pi � pj � C(P), (i.e., case (3)).

Note that once di, dj, pi and pj are given, only one of the 20 cases, A1, A2, . . . , J1, and J2
is true. For convenience, we denote Vk(i, j) (or Vk(j, i)) as the kth critical interval of
subschedule JiJj (or JjJi), where k � 5. Then the relationship matrix can be constructed easily
as shown in the following example.

EXAMPLE 1: Let us consider a weighted total earliness/tardiness cost problem with five jobs
having data as follows:

p1 � 2, p2 � 6, p3 � 8, p4 � 12, and p5 � 20;

d1 � 25, d2 � 12, d3 � 40, d4 � 30, and d5 � 23;

� � 1 and � � 1.

772 Naval Research Logistics, Vol. 49 (2002)

From cases A1, A2, . . . , J1, and J2, we can derive the critical interval set for each
subschedule JiJj, where i � j. Hence, the relationship matrix is shown in Figure 1, where M �
[mij]5�5, mij � {V1(i, j), V2(i, j), V3(i, j), V4(i, j), V5(i, j)}, A is an empty set, and x[a,
b]y

z indicates that if a � C(P) � b and z � S(Q) � y [if z � �, then this equation will become
z � S(Q) � y], then we use case (x) to schedule Ji and Jj; x[a, b]* indicates that if a �
C(P) � b and � � S(Q) � C(P) � pi � pj, then we use case (x) to schedule Ji and Jj. As
an illustration, let us examine pair m35 � {V1(3, 5), V2(3, 5), V3(3, 5), V4(3, 5), V5(3, 5)}
and m53 � {V1(5, 3), V2(5, 3), V3(5, 3), V4(5, 3), V5(5, 3)}, where i � 3 and j � 5. Since
p3 � 8, p5 � 20, d3 � 40, and d5 � 23, we have di � pi � 32 � di � pi � pj � 12 �
dj � pj � 3 � dj � pi � pj � �5 and � � �, and, therefore, case C2 is qualified. Then,
m35 and m53 have the following critical intervals, respectively:

● If C(P) � 32, then case (6) is adopted to schedule J3 and J5 when they are arranged
adjacently. From case (6), J3 should precede J5; hence, V1(3, 5) �6 [33, �)* and
V1(5, 3) �6 [A]*.

● Consider 32 � C(P) � 12, then case (11) is adopted to schedule J3 and J5 when
they are arranged adjacently. From case (11), it can be seen that �35 � �(d3 �

Figure 1. The relationship matrix.

773Chen and Lin: Single-Machine Scheduling with Idle Time

C(P) � p3) � (C(P) � p5 � d3) � 2C(P) � 52. Hence, if C(P) � 26, then
�35 � 0; if C(P) � 26, then �35 � 0. Therefore, when 32 � C(P) � 26, J3 should
precede J5, and when 26 � C(P) � 13, J5 should precede J3. Therefore, V2(3,
5) �11 [26, 32]* and V2(5, 3) �11 [13, 26]*.

● If 12 � C(P) � 3, then case (10) is adopted to schedule J3 and J5 when they are
arranged adjacently. From case (10), J5 should precede J3, hence, V3(3, 5) �10

[A]* and V3(5, 3) �10 [4, 12]*.
● Consider 3 � C(P) � �5, then case (9) is adopted to schedule J3 and J5 when

they are arranged adjacently. From case (9), when 3 � C(P) � �5, J5 should
precede J3. Since all jobs are assumed to be available for processing at time 0, then
V4(3, 5) �9 [A]* and V4(5, 3) �9 [0, 3]*.

● If �5 � C(P), then case (18) is adopted to schedule J3 and J5 when they are
arranged adjacently. Since all jobs are available for processing at time 0, C(P) must
be a nonnegative integer and it cannot be smaller than 0. Hence, V5(3, 5) �18 [A]*
and V5(5, 3) �18 [A]*.

Every pair of mij and mji can be obtained by similar processes. This example will be
continued in Example 2 to complete the schedule. �

4. BRANCHING SCHEME

In this section, a branching scheme based on the relationship matrix is discussed. In the
beginning, C(P) � 0, all possible initial jobs are determined using the following rule: Job Ji

is a possible initial job if there exists a Jj such that Ji could precede Jj. That is, there exists k
such that 0 � Vk(i, j). Define L0 � {all possible initial jobs}. A tree corresponding to the initial
job Ji can be constructed. Apply the relationship matrix to determine all the possible successors
of Ji, and collect them into a set Li. Select a job Jj from Li. Apply the relationship matrix to
determine all the possible successors of Jj, and collect them into a set Lij.

If Lij � A, then remove Jj from Li and move up one level. Select another job from Li if Li �
A, and repeat the same process. If Li � A after Jj has been removed, then remove Ji from L0

and move up one level. Then select another possible initial job from L0.
If Lij � A, select a job Jk from Lij. Apply the relationship matrix to determine all the possible

successors of Jk, collect them into a set Lijk, and repeat the same process.
Note that if a subschedule is not feasible, then it cannot reach the lowest level of the tree;

whereas if it is feasible, then it will reach the lowest level of the tree, in which case we should
move up one level and repeat the above-described process. Using these processes recursively,
we can find feasible schedules for the first initial job, and likewise for all possible initial jobs.
We then select the one with the smallest cost. In summary, the steps can be described as follows.

STEP 1: Check row Jl, l � 1, 2, . . . , n, in the relationship matrix.

If there is a critical interval such that it contains 0 then Jl is a possible initial job.
Let L0 � {all possible initial jobs}.

STEP 2: If L0 � A then exit.
Else select a job Ji from L0.

774 Naval Research Logistics, Vol. 49 (2002)

STEP 3: Let C(P) � 0.

Check row Ji in the matrix.
For j � 1, 2, . . . , n, j � i
{

If a critical interval Vl(i, j) (l � 1, 2, . . . , 5) contains C(P) � 0 then

i. check row Jj.
ii. If a critical interval contains C(P) � pi � pi in row Jj then add Jj to Li.

}
If there is no critical interval for all j then remove Ji from L0 and go to Step 2.

STEP 4: If Li � A then remove Ji from L0 and go to Step 2.

Else select a job Jj from Li.

STEP 5: Check element mij in the matrix and check to which critical interval it belongs.

Then, a schedule pattern can be determined and we can obtain si, Ci, sj and Cj.

STEP 6: let C(P) � Ci.

Check row Jj in the matrix.
For k � 1, 2, . . . , n, k � i, k � j
{

If a critical interval Vl(j, k) (l � 1, 2, . . . , 5) contains C(P) � Ci then
i. check row Jk.
ii. If a critical interval contains C(P) � pj in row Jk then add Jk to Lij.

}
If there is no critical interval for all k then remove Jj from Li and go to Step 4.

STEP 7: If Lij � A then remove Jj from Li and go to Step 4.

Else select a job Jk from Lij.

Note that Step 7 is similar to Step 4 and hence Step 8 will be similar to Step 5. Step 9 will
be similar to Step 6, and so on. Three steps are added when a level is added. If a schedule
reaches the lowest level of the tree, then we call it a feasible schedule and calculate its cost.
When all feasible schedules are found, then we select the one with the smallest cost.

EXAMPLE 2: Let us now consider the five-job problem illustrated in Example 1 again, but
this time using the branching rule to solve the problem. In this example, L0 � {1, 2, 3, 4, 5}
because V5(1, 3) �3 [0, 15]28

� , V5(2, 1) �18 [0, 4]*, V5(3, 1) �3 [0, 15]C(P)�10
28 , V5(4,

3) � [0, 10]18 and V4(5, 1) � [0, 1]18 all contain 0.

775Chen and Lin: Single-Machine Scheduling with Idle Time

Select J1 from L0 as the initial job. Then L1 � {3, 4} since V5(1, 3) �3 [0, 15]28
� contains

0 and J3 has a successor after time 2, V5(1, 4) �20 [0, 11]30
� contains 0 and J4 has a successor

after time 2. Select J3 from L1 to form subschedule J1J3 and adopt case (3). Next, check
situations (3a), (3b), and (3c), which should indicate that the schedule pattern is situations (ia),
(ib), and part of (ic). Next, consider situation (ia). When S(Q) � 40, then we have s1 � 23,
C1 � 25, s3 � 32, and C3 � 40. Now, C(P) � 25, and L13 � A, since no interval of m32,
m34, and m35 contains 25. Next, consider situation (ib). When 40 � S(Q) � 33, then we have
s1 � 23, C1 � 25, s3 � S(Q) � 8, and C3 � S(Q). Now, C(P) � 25, and L13 � A since
no interval of m32, m34, and m35 contains 25. Next, consider situation (ic). Observe V5(3, 1)
and the condition of (ic), S(Q) must satisfy 33 � S(Q) � 28 and the schedule is s1 � S(Q) �
10, C1 � S(Q) � 8, s3 � S(Q) � 8, and C3 � S(Q). Now C(P) � S(Q) � 8 and hence
25 � C(P) � 20 and L13 � A, since no interval of m32, m34, and m35 could contains C(P).
Remove J3 from L1, move up one level (then C(P) � 0 again), select another job J4 from L1

to form subschedule J1J4, and adopt situations (20a2), according to which the schedule pattern
should be case (va). Hence, we have s1 � 16, C1 � 18, s4 � 18, and C4 � 30. Then, C(P) �
18, and L14 � { J3} because V4(4, 3) �9 [11, 18]* contains 18 and J3 has a successor after
time C(P) � p4 � 30, V2(4, 5) � [14, 18]11 contain 18, but J5 has no successor after time
30, and no interval of m42 contains 18. Take J3 from L14 to form subschedule J1J4J3 and adopt
case (9). Check situations (9a), (9b), and (9c), the schedule pattern should be situations (via),
(vib), and (vic). Consider situation (via). When S(Q) � 40, then we have s4 � 18, C4 � 30,
s3 � 32, and C3 � 40. Now C(P) � 30 and L143 � A because no interval of m32 contains
30 and although V2(3, 5) contains 30, no interval of m52 contains time greater than 30 � p3 �
38. Consider situation (vib). When 40 � S(Q) � 38, then we have s4 � 18, C4 � 30, s3 �
S(Q) � 8, and C3 � S(Q). Now C(P) � 30 and L143 � A because no interval of m32 contains
30 and although V2(3, 5) contains 30, no interval of m52 contains time greater than 30 � p3 �
38. Now consider situation (vic). The S(Q) must satisfy 38 � S(Q) � C(P) � pi � pj �
18 � 8 � 12 � 38, and therefore situation (vic) must be discarded.

Remove J3 from L14; then L14 � A. Move up one level, remove J4 from L1; then L1 � A;
remove J1 from L0, move up one level, and select another job J2 from L0 as an initial job.

If J2 is the initial job, following the above processes, we find seven feasible schedules:

1. J2J1J4J3J5 with s2 � 6, C2 � 12, s1 � 16, C1 � 18, s4 � 18, C4 � 30, s3 �
30, C3 � 38, s5 � 38, and C5 � 58, at cost 44.

2. J2J3J1J4J5 with s2 � 6, C2 � 12, s3 � 14, C3 � 22, s1 � 22, C1 � 24, s4 �
24, C4 � 36, s5 � 36, and C5 � 56, at cost 58.

3. J2J3J1J4J5 with s2 � 6, C2 � 12, s3 � 15, C3 � 23, s1 � 23, C1 � 25, s4 �
25, C4 � 37, s5 � 37, and C5 � 57, at cost 58.

4. J2J4J1J3J5 with s2 � 6, C2 � 12, s4 � 12, C4 � 24, s1 � 24, C1 � 26, s3 �
26, C3 � 34, s5 � 34, and C5 � 54, at cost 44.

5. J2J4J1J5J3 with s2 � 5, C2 � 11, s4 � 11, C4 � 23, s1 � 23, C1 � 25, s5 �
25, C5 � 45, s3 � 45, and C3 � 53, at cost 43.

6. J2J4J1J3J5 with s2 � 5, C2 � 11, s4 � 11, C4 � 23, s3 � 23, C3 � 31, s1 �
31, C1 � 33, s5 � 33, and C5 � 53, at cost 55.

7. J2J5J1J4J3 with s2 � 0, C2 � 6, s5 � 6, C5 � 26, s1 � 26, C1 � 28, s4 �
28, C4 � 40, s3 � 40, and C3 � 48, at cost 30.

If J3 is the initial job, following the above processes, we find one feasible schedule
J3J1J2J4J5 with s3 � 15, C3 � 23, s1 � 23, C1 � 25, s2 � 25, C2 � 31, s4 � 31, C4 �
43, s5 � 43 and C5 � 63, at cost 89.

776 Naval Research Logistics, Vol. 49 (2002)

If J4 is the initial job, following the above processes, we find three feasible schedules:

1. J4J1J2J3J5 with s4 � 11, C4 � 23, s1 � 23, C1 � 25, s2 � 25, C2 � 31, s3 �
31, C3 � 39, s5 � 39, and C5 � 59, at cost 63.

2. J4J3J1J2J5 with s4 � 4, C4 � 16, s3 � 16, C3 � 24, s1 � 24, C1 � 26, s2 �
26, C2 � 32, s5 � 32, and C5 � 52, at cost 80.

3. J4J3J1J2J5 with s4 � 3, C4 � 15, s3 � 15, C3 � 23, s1 � 23, C1 � 25, s2 �
25, C2 � 31, s5 � 31, and C5 � 51, at cost 79.

If J5 is the initial job, following the above processes, we find five feasible schedules:

1. J5J1J2J3J4 with s5 � 3, C5 � 23, s1 � 23, C1 � 25, s2 � 25, C2 � 31, s3 �
31, C3 � 39, s4 � 39, and C4 � 51, at cost 41.

2. J5J1J2J3J4 with s5 � 2, C5 � 22, s1 � 22, C1 � 24, s2 � 24, C2 � 30, s3 �
30, C3 � 38, s4 � 38, and C4 � 50, at cost 42.

3. J5J1J2J4J3 with s5 � 2, C5 � 22, s1 � 22, C1 � 24, s2 � 24, C2 � 30, s4 �
30, C4 � 42, s3 � 42, and C3 � 50, at cost 42.

4. J5J3J1J2J4 with s5 � 3, C5 � 23, s3 � 23, C3 � 31, s1 � 31, C1 � 33, s2 �
33, C2 � 39, s4 � 39, and C4 � 51, at cost 65.

5. J5J3J1J2J4 with s5 � 0, C5 � 20, s3 � 20, C3 � 28, s1 � 28, C1 � 30, s2 �
30, C2 � 36, s4 � 36, and C4 � 48, at cost 62.

Finally, there are 16 feasible schedules, the optimal one of which is J2J5J1J4J3 with s2 � 0,
C2 � 6, s5 � 6, C5 � 26, s1 � 26, C1 � 28, s4 � 28, C4 � 40, s3 � 40, and C3 � 48,
having the minimum cost of 30. �

5. SIMULATION RESULTS

Let us consider a single-machine job-independent weighted earliness and tardiness penalties
scheduling problem in which idle time inserted between two adjacent jobs is permitted. We did
the following simulations with similar test data to Szwarc [9].

The integer processing times were drawn from a uniform distribution in the range [1, 100].
The integer earliness penalty � and tardiness penalty � were drawn from a uniform distribution
in the range [1, 10]. The due dates were generated from a uniform integer distribution in the
range [up, vp], where p � ¥k�1

n pk and 0.1 � u � v � 0.9.
The general impression is that more feasible schedules result where the due dates interval [up,

vp] is wider, which, in view of the discussion in Section 3, could be expected. A wider due dates
interval [up, vp] implies that considerable idle time is involved, whereas a narrower interval
[up, vp] implies more difficulty with job scheduling and that many adjacent jobs cannot have
idle time between them. A narrow interval induces a reduction in the schedule pattern of those
adjacent jobs, resulting in fewer feasible schedules.

To verify the above descriptions and see the effects of the due dates interval [up, vp], 20-job
problems were tested with 10 combinations of u and v, that is, (u, v) � (0.1, 0.9), (0.1, 0.7),
(0.1, 0.5), (0.1, 0.3), (0.3, 0.9), (0.3, 0.7), (0.3, 0.5), (0.5, 0.9), (0.5, 0.7), and (0.7, 0.9).
The results are as follows.

In the case u � 0.1 and v � 0.9 (the worst case in Szwarc [9]), 500 problems are scheduled
for which the experimental results are as follows:

777Chen and Lin: Single-Machine Scheduling with Idle Time

Feasible Schedules 0 	 9,999 104 	 99,999 105 	 399,999 4 � 105 	 999,999 106 	 108

Problems 80 109 103 85 123

with a maximum 83,197,565 and an average 4,727,375.
In the case u � 0.1 and v � 0.7, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 9,999 104 	 99,999 105 	 299,999 3 � 105 	 999,999 106 	 2 � 107

Problems 83 123 109 108 77

with a maximum 16,673,453 and an average 2,889,747.
In the case u � 0.1 and v � 0.5, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 99 100 	 999 103 	 4,999 5 � 103 	 199,999 2 � 105 	 2 � 106

Problems 62 85 89 130 134

with a maximum 1,445,789 and an average 124,224.
In the case u � 0.1 and v � 0.3, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 9 10 	 49 50 	 199 200 	 499 500 	 7 � 104

Problems 70 123 88 86 133

with a maximum 69,937 and an average 4023.
In the case u � 0.3 and v � 0.9, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 9,999 104 	 99,999 105 	 299,999 3 � 105 	 999,999 106 	 2 � 107

Problems 96 113 116 112 63

with a maximum 19,456,345 and an average 2,244,305.
In the case u � 0.3 and v � 0.7, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 99 100 	 999 103 	 4,999 5 � 103 	 199,999 2 � 105 	 3 � 106

Problems 27 43 72 211 147

with a maximum 3,114,317 and an average 199,308.
In the case u � 0.3 and v � 0.5, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 999 103 	 1,999 2 � 103 	 2,999 3 � 103 	 5,999 6 � 103 	 2 � 105

Problems 109 101 92 108 90

778 Naval Research Logistics, Vol. 49 (2002)

with a maximum 170,211 and an average 8328.
In the case u � 0.5 and v � 0.9, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 999 103 	 9,999 104 	 29,999 3 � 104 	 199,999 2 � 105 	 4 � 106

Problems 64 98 107 142 89

with a maximum 3,295,456 and an average 188,441.
In the case u � 0.5 and v � 0.7, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 499 500 	 999 103 	 1,999 2 � 103 	 4,999 5 � 103 	 2 � 105

Problems 93 97 98 122 90

with a maximum 125,927 and an average 5913.
In the case u � 0.7 and v � 0.9, 500 problems are scheduled for which the experimental

results are as follows:

Feasible Schedules 0 	 499 500 	 999 103 	 1,999 2 � 103 	 4,999 5 � 103 	 2 � 105

Problems 162 91 95 103 49

with a maximum 123,773 and an average 5,349.
As the above data shows, the branching scheme based on the relationship matrix can solve

idle-time-permitted E/T problems. Indeed, the number of feasible schedules increases as the due
dates interval [up, vp] widens. When the interval is narrow, i.e., [up, vp] � [0.1, 0.3], 73%
of the problems have less than 500 feasible schedules with a maximum 69,937 and an average
4023. In this case, there are fewer feasible schedules because the flexibility is small and many
of them are reduced to a no-idle-time situation. In contrast, a wide due dates interval (for
example, [up, vp] � [0.1, 0.9]) gives greater flexibility and an increase in the number of
feasible schedules, 75% of the problems having less than 106 feasible schedules with a
maximum 83,197,565 and an average 4,727,375. If v � u is fixed and u is set at several values,
e.g., [u, v] � [0.1, 0.3], [0.3, 0.5], [0.5, 0.7], or [0.7, 0.9], then the experiments produce
similar results. Hence, we can fix u and change only the value of v.

6. CONCLUSIONS

In this paper, a single-machine scheduling problem with unequal earliness and tardiness
penalties has been considered. Idle time between two adjacent jobs was permitted, and due dates
of jobs could be unequal. The dominance rules for two adjacent jobs were used to construct a
relationship matrix that was used for idle-time-weighted earliness/tardiness penalty problems,
especially where the due dates interval was small. The relationship matrix allowed us to produce
a branching scheme to solve the idle-time-permitted E/T model problems. Simulation results
showed that the procedure solved those problems and generated schedules that could not be
improved by adjacent job interchanges. In fact, where idle time was not permitted, the number
of schedule patterns decreased from 12 (i.e., pattern (i), (ii), . . . , (xii)) to 4 (i.e., pattern (iii),
(iv), (ix), and (x)). Hence, the number of feasible schedules also decreased. The same procedure
can be used to solve problems like the above.

779Chen and Lin: Single-Machine Scheduling with Idle Time

Problems in which earliness and tardiness weights were job-independent were considered.
The results we have gathered here may be extended to the more general case in which tardiness
and earliness weights are job-dependent. The extension from a single-machine to multiple-
machines is also noteworthy. It would be of further interest to ascertain whether our results
could be extended to the time window case.

ACKNOWLEDGMENTS

We wish to thank Professor W. Szwarc, Associate Editor, and anonymous referees for their
many suggestions, which have greatly helped to improve our paper. This study was supported,
in part, by the National Science Council, Republic of China, under contract number: NSC
90-2213-E-009-106.

REFERENCES

[1] T.S. Abdul-Razaq and C.N. Potts, Dynamic programming state-space relaxation for single machine
scheduling, J Oper Res Soc 39 (1988), 141–152.

[2] K.R. Baker and G.D. Scudder, Sequencing with earliness and tardiness penalties: A review, Oper Res
38 (1990), 22–36.

[3] J.S. Davis and J.J. Kanet, Single-machine scheduling with early and tardy completion costs, Nav Res
Logistics 40 (1993), 85–101.

[4] M.R. Garey, R.E. Tarjan, and G.T. Wilfong, One-processor scheduling with symmetric earliness and
tardiness penalties, Math Oper Res 13 (1988), 330–348.

[5] Y.C. Kim and C.A. Yano, Minimizing mean tardiness and earliness in single-machine scheduling
problems with unequal due dates, Nav Res Logistics 41 (1994), 913–933.

[6] C. Koulamas, Single-machine scheduling with time windows and earliness/tardiness penalties, Eur J
Oper Res 91 (1996), 190–202.

[7] P.S. Ow and T.E. Morton, The single machine early/tardy problems, Manage Sci 35 (1989), 177–191.
[8] M. Pinedo, Scheduling, theory, algorithm, and systems, Prentice Hall, Englewood Cliffs, NJ, 1996.
[9] W. Szwarc, Adjacent orderings in single-machine scheduling with earliness and tardiness penalties,

Nav Res Logistics 40 (1993), 229–243.
[10] W. Szwarc and S.K. Mukhopadhyay, Optimal timing schedules in earliness–tardiness single machine

sequencing, Nav Res Logistics 42 (1995), 1109–1114.
[11] J.A. Hoogeveen and S.L. Van de Velde, A branch-and-bound algorithm for single-machine earliness-

tardiness scheduling with idle time, INFORMS J Comput 8 (1996), 402–412.

780 Naval Research Logistics, Vol. 49 (2002)

