
Journal of Global Optimization 24: 463–472, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

463

Sortability of Multi-partitions

F.K. HWANG1, Y.M. WANG1 and J.S. LEE2

1Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30050, Taiwan,
ROC; 2Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802,
Taiwan, ROC

Abstract. Recently, the theory of sortability of partition property has been shown to be an effective
tool to prove the existence of an optimal partition with that property. In this paper, we extend the
theory to multi-partition where the partition is on t types of components. We apply our results to
settle an optimal assignment problem whose proof was incomplete as given in the literature.

1. Introduction

Let N = (θ1 � θ2 � · · · � θn) denote a set of real numbers, and let π =
(π1, π2, . . . , πp) denote a partition of N into p nonempty parts πi . For a given
family F of partitions and a given objective function f (π), the problem of finding
a partition π ∈ F to minimize f (π) is known as a single-partition problem, or
just a partition problem, and has been intensively studied in the literature since
[1] and [7]. We now extend the study to the case that there are t disjoint lists
Nu = (θu1 � θu2 � · · · � θunu) for u = 1, . . . , t and part πi consists of t types
πi(1), . . . , πi(t) of sub-parts. The problem is then called a multi-partition problem,
or a t-partition problem if t is specified. This problem arises in the study of optimal
assembly of components into a system (see Section 4).

F is called a shape family if |πi(u)| = nui is fixed for all i and u, a size family if
p is fixed and an open family if no restriction is imposed, the numbers of partitions
in these families are usually exponentially many [8]. A standard approach is to
identify some polynomial classes of partition and to prove the existence of an
optimal partition in such a class. The method of proving this existence is to show
that given an optimal partition not in this class, we can step-by-step change it into
a partition in the class while the optimality is preserved in each step. The theory of
sortability was developed to assure that step-by-step changes will end at a partition
in the class.

Such a class is typically identified by a partition property. For example, a single-
type partition is called consecutive if for every two parts, θ � θ ′ for all θ in one part
and all θ ′ in the other part. A multi-partition is consecutive if the partition of each
type is consecutive. Then the consecutive class consists of all consecutive parti-
tions. The notions of consistency and sortability are introduced in [10]. A property
Q is called k-consistent if a necessary and sufficient condition for a partition to
satisfy Q is that all subpartitions of k parts satisfy Q. k-sortability is introduced to

464 F.K. HWANG ET AL.

facilitate a step-by-step change from a partition not satisfying Q to one which does
through sorting a set of K parts at each step while such a sorting guarantees the
nonincreasingness of the objective function and the decreasingness of a function
s(π) for some s(π). Usually we discuss sortability with respect to a family F .

To avoid dependence of the definition of sortability on the objective function,
which varies from problem to problem, we give more specific description on the
range of Q-sorting for which s(π) is decreased. A Q-sorting is a sorting of some
given parts to satisfy Q. Q is called strong-k-sortable if for every set of k parts not
satisfying Q among themselves, every possible Q-sorting of these k parts decreases
s(π). In this case, the objective function needs to be nonincreasing only for specific
set of k parts not satisfying Q, and a specific Q-sorting. There are other levels of
k-sortability:

Part-specific. There exists a specific set of k-parts not satisfying Q for which all
Q-sorting decreases s(π).

Sort-specific. There exists a specific pattern of Q-sorting such that for all k-parts
not satisfying Q, such a sorting decreases s(π).

Weak. There exists a specific set of k-parts not satisfying Q, and a specific pattern
of Q-sorting such that s(π) is decreased.

Correspondingly, the objective function needs to be nonincreasing for all sets of
k-parts, all choices of Q-sorting, and both for the above three types of sortab-
ility, respectively. Let l denote a level. Then the sortability of a property Q has
parameters (l, k, F) where F is the underlying family of partitions.

2. Some multi-partition properties

We introduced consecutive multi-partition in the previous section. Note that a con-
secutive partition of a type induces a linear order of the parts. It is natural and
customary to assume that all parts are nonempty. However, in a multi-partition,
a nonempty part πi can have empty sub-parts πi(u) for some u. Thus we need
to refine the definition of consecutiveness. Let πi(u) > πj(u) denote the fact that
either θ � θ ′ for all θ ∈ πi(u) and all θ ′ ∈ πj(u), or at least one of πi(u) and πj(u)
is empty (in the latter case, πi(u) < πj(u) is also correct). We also write πi > πj
if πi(u) > πj(u) for all u. Then a multi-partition is consecutive(C) if for every
pair of parts πi and πj , either πi > πj or πi < πj . A consecutive multi-partition
is called monotone (M) if the ordering of all pairs of parts are transitive, namely,
there exists a linear ordering of the p parts consistent with the pairwise ordering.
A monotone multi-partition is called index-monotone (I) if i > j implies πi > πj .
For example, suppose N1 = (θ11 � θ12 � θ13 � θ14) and N2 = (θ21 � θ22 � θ23).

Then π1 = (θ11, θ12, θ23), π2 = (θ13, θ14, θ21, θ22) is consecutive,
π1 = (θ13, θ14, θ23), π2 = (θ11, θ12, θ21, θ22) is monotone,

π1 = (θ11, θ12, θ21), π2 = (θ13, θ14, θ22, θ23) is index-monotone.

SORTABILITY OF MULTI-PARTITIONS 465

Clearly, I ⇒ M ⇒ C.
The indices themselves may be assigned according to some parameter of the

problem. For examples, the parameter can be the importance of a part, the cost of
a part, or the size of a part. In these cases, we may also use the terms importance-
monotone, cost-monotone or size-monotone. But for our problem, the indices are
considered fixed.

Let �Q({nu)i}), �Q(p, t) and �Q(t) denote the number of shape-t-partitions, size-
t-partitions and open-t-partitions, respectively for the class Q.

THEOREM 1.

�I ({nui}) = 1,

�I (p, t) =
p−1∑
j=0

(−1)j
(
p

j

) t∏
u=1

(
nu + p − 1 − j

p − 1 − j

)
,

�I (t) =
max{nu}∑
p=1

�I (t, p),

�M � (p!)�I , �C � (p!)t�I for any of the three arguments {nui}, {p, t}, or {t}.
Proof. �I ({nui}) = 1 is obvious since there is only one way of assigning the

smallest nu1 elements of type u to part 1, the next smallest nu2 elements of type u to
part 2, and so on for u = 1, . . . , t . To count �I (p, t), we note that any consecutive
1-partition can be represented by inserting p− 1 bars into the elements. Thus type
u has (nu + p − 1/p − 1) varieties by permuting p − 1 bars with the nu ordered
elements, while the set of elements immediately before the ith bar is πi(u). Since
for any part i, necessarily nui > 0 for at least one u, we use inclusion-exclusion
formula to discount the cases where a part is empty. Here p − 1 − j is the actual
number of bars used to obtain p − j nonempty πi(u).

Note that p must be fixed for I or we wouldn’t know which part has what index.
Therefore we do not discuss open partition for I . �I (t) in Theorem 1 merely sums
up �I (p, t) over all p.

�M � (p!)�I since any permutation of the p parts can serve as an index. �C �
(p!)t�I since any permutation of the p parts in a type in an I -partition results
in a C-partition. The inequalities are due to the fact that different permutations
can contain the same partition when empty πi(u) exist. For example the partition
π1(1) = 1, π2(1) = π1(2) = ∅, π2(2) = 2 is counted in both permutations (1,2)
and (2,1). �

Next we study the consistency issue. The smallest k for which Q is k-consistent
is called the minimum consistency index of Q. If Q is not k-consistent for all k,
we set its minimum consistency index to ∞.

THEOREM 2. The minimum consistency index is 2 for consecutiveness and index-
monotonicity, but ∞ for monotonicity.

466 F.K. HWANG ET AL.

Proof. Suppose π is not consecutive. Then there exist two sub-parts πi(u), πj(u)
and elements a < b < c, such that a, c ∈ πi(u) and b ∈ πj(u). But this implies
that πi and πj are not consecutive.

Similarly, suppose π is not index-monotone. Then there exist a type u such that
either two parts are not consecutive, or πi(u) > πj(u) for some i < j . In the
former case, the argument for consecutiveness works. In the latter case, πi and πj
are not index-monotone.

Finally, we show that monotonicity is not k-consistent for all k. Consider p = k,
and Nu = {θu1 � θu2} for 1 � u � t . Then πi = {θi1, θ(i+1)2}, i = 1, . . . , p − 1,
and πp = {θp1, θ12} do not satisfy monotonicity, but every (p − 1)πi does. For
example, for π1, . . . , πp−1, the linear order is π1 > π2 > · · · > πp−1. �

3. The sortabilities of I and C

We first observe that two results proved in [2] for single-partition also work for
multipartition.

LEMMA 3. Suppose Q is not k-consistent. Then Q is not (l, k, F)-sortable for
all l and F .

LEMMA 4. Suppose Q′ implies Q and Q is k-consistent. Then Q′ being (sort-
specific, k, F) sortable implies the same for Q.

From Theorem 2 and Lemma 3, we conclude immediately thatM is not (l, k, F)
sortable for all l, k, and F . Next we prove that

LEMMA 5. If Q ∈ {C, I } is not (strong, k, F) sortable, then Q is not so for
k′ > k.

Proof. It suffices to prove for k′ = k+ 1. Let F = {π1, . . . , πm} be a family of
partitions of N not satisfying Q but for every πi ∈ F not satisfying Q, there exists
a set of k parts not satisfying Q and a k-Q-sorting which turns πi into πj ∈ F .
Let N∗ be obtained from N by adding |N | new θuj ’s for each u, all greater than
θunu , and let πi∗ be obtained from πi by adding a new part P consisting of these
new θuj

′s. We consider only sorting in which P remains invariant. Let K denote
a k-part not satisfying Q in πi . Then K ∪ P is a (k + 1)-part not satisfying Q in
πi∗, and a k-Q-sorting of πi into πj corresponds to a (k + 1)-Q-sorting of πi∗ to
πj∗. Hence F ∗ = {πi∗ : π ∈ F } is a family proving Q is not (strong, k + 1, F)
sortable. �
We now prove some results on sortability.

THEOREM 6. I is strong-k-shape sortable for all k � 2.

SORTABILITY OF MULTI-PARTITIONS 467

Proof. Define s(π) = ∑p

i=1 i
∑t

u=1

∑
j∈πui j . Suppose that π contain a set K

of k parts not satisfying I . I -sort K to obtain π ′. Since π ′ assigns the smaller j
to the part with the smaller index i, it achieves the maximum of s(π) on K and is
strictly greater than s(π) on K since the latter has at least one inversion. Finally,
since parts not in K remain unchanged, s(π ′) < s(π). �

Clearly, if Q is not (l, k, F) sortable for 1-partition, then it is not so for multi-
partition. The following example was given in [2] to demonstrate that consecutive-
ness is not strongly-k-shape sortable for k = 3 (hence all k � 3) in 1-partition:
n = 5, p = 4, n1 = 2, n2 = n3 = n4 = 1, ! = {π1, π2}, π1

1 = {1, 3}, π1
2 = {2},

π 1
3 = {4}, π1

4 = {5}, π2
1 = {3, 5}, π2

2 = {2}, π2
3 = {4}, π2

4 = {1}. π1 can be
sorted into π2 by C-sorting π1

1 , π2
2 and π1

4 , while π2 can be sorted into π1 by C-
sorting π2

1 , π
2
3 , π

2
4 . But neither π1 nor π2 is consecutive. By setting πjui = π

j

i for
j = 1, 2 and u = 1, . . . , t , the above example can be turned into an example that
monotonicity is not strongly-k-shape sortable for all k � 3.

Next we show that Q ∈ {C, I } is not (strong, k, size) sortable for all k � 2.
By Lemma 5, it suffices to prove for k = 2. Let ! = {π1, π2, π3, π4}, where
p = 3, t = 4 and ni = 5 for i = 1, 2, 3, 4.

π1 π2 π3 π4

13 4 25 123 4 5 12 34 5 1 34 25

1 24 35 13 24 5 123 4 5 123 4 5

13 34 5 1 34 25 13 4 25 123 4 5

123 4 5 12 4 35 1 24 35 13 24 5

No partition in ! satisfies Q. 2-Q-sort parts 1 and 3, then π1 becomes π2, π3

becomes π4. 2-Q-sort parts 1 and 2, then π2 becomes π3, π4 becomes π1.
We also show that C is not (part-specific, 2, shape) sortable. Suppose p = 3,

t = 4, each type has 4 elements with n11 = n21 = n33 = n43 = 2 and all other
nuv = 1. Let ! = {π1, π2, π3, π4} where

π1 π2 π3 π4

24 3 1 23 4 1 12 4 3 12 3 4

12 4 3 24 1 3 23 1 4 23 4 1

3 4 12 4 3 12 1 3 24 1 4 23

4 1 23 1 4 23 3 4 12 3 1 24

No partition in ! satisfies C. 2-C-sort parts 1 and 2, then π1 becomes π2. 2-C-sort
parts 1 and 3, then π2 becomes π3, π4 becomes π1. 2-C-sort parts 2 and 3, then

468 F.K. HWANG ET AL.

π3 becomes π4. Note that in each case, the pair of parts we sort is the only pair not
satisfying Q.

Finally, we show that Q ∈ {I, C} is not (part-specific, k, size) sortable for
k = 3. Suppose p = 4, t = 3, each type has 6 elements. Consider these partitions:

π1 π2 π3

1 23 456 1 23 456 145 23 6

123 45 6 123 45 6 1 45 236

1 23 456 145 23 6 1 23 456

123 45 6 1 45 236 123 45 6

145 236 123 456 123 456

Let F 1 denote a family of 120 partitions obtained by permuting the five types of π1,
and let F 2 and F 3 be obtained from π2 and π3 similarly. Define F = {F 1, F 2, F 3}.
Note that no partition in F satisfiesQ. For any partition π in F 2, and any three parts
of π not satisfying Q, there exists a 3-Q-sort which turns π into π ′ where π ′ is in
one of the other two Fj family. The labels of the links in the following figure show
the set of parts involved in the 3-Q-sorting:

We will use the 12-cell table introduced in [2] to summarize our finding of
sortability of a partition property. The 12 cells represent the combinations of four
levels and three types.

strong-open strong-size strong-shape sort-sp.-shape sort-sp.-size sort-sp.-open

part-sp.-open part-sp.-size part-sp.-shape weak-shape weak-size weak-open

In each cell, we give the set K = {k : k-sortability is proved.} and the set K = {k :
k-sortability is disproved.}. It was established in [2] that k ∈ K in a cell implies the

SORTABILITY OF MULTI-PARTITIONS 469

same for all cells below or to the right. The implication of k ∈ K goes the reverse
way.

We now give the tables for I, C.

I:

NA K = {k � 2} K = {k � 2} K = {k � 2} K = {k � 2} NA

NA K = {3} K = {k � 2} K = {k � 2} K = {k � 2} NA

NA: not applicable.

C:

K = {k � 2} K = {k � 2} K = {k � 2} K = {k � 2} K = {k � 2} K = {k � 2}
K = {2, 3} K = {2, 3} K = {k = 2} K = {k � 2} K = {k � 2} K = {k � 2}

4. Special cases

We can prove more on sortability if some additional conditions are imposed.

THEOREM 7. For t = 2, M is (part-specific, 2, size) sortable.
Proof. We prove Theorem 7 by induction on p. Theorem 7 is trivially true for

p = 1, 2. We now prove for general p � 3.
C-sort π1(1), . . . , πp(1) into π1 < · · · < π[p](1). Let e denote the index of

the element in π[1](2) such that θ21, θ22, . . . , θ2e are in π[1](2), but not θ2,e+1. If θ21

is not in π[1](2), set e = 0. Set e = ∞ if π[1](2) = {θ21, θ22, . . . , θ2e}. Note that e
is defined only when π1 is consecutive, meaning π1 = {θ1j : 1 � j � w,
for some w}.

Define s(π) = e. We prove that if s(π) < ∞, then every M-2-sorting increases
s(π); or at least it will after a sequence of steps. Since e can take at most n − 2
values, eventually e = ∞, or equivalently, both π1 and π[1](2) are consecutive
with the smallest elements in types 1 and 2, respectively. Use induction to obtain
an M-partition on

⋃p

i=2 π[i]. The partition plus π[1] then yields an M-partition for
the p parts.

Let π[1] be the part containing θ2,e+1. M-sort (π[1], π[i]) to obtain π ′. Consider
two cases:

(i) π ′
1 is consecutive (this must happen if i = 2). Then π[1](2) is either con-

secutive or it contains θ21, θ22, . . . , θ2,e+1, θ2,x for some x > e+2. Therefore
s(π ′) � e + 1 > s(π).

(ii) π1 is not consecutive by picking up some smallest elements from π[i](1)
(hence i � 3).

Suppose that elements θ21, θ22, . . . , θ2e′ are in π[1](2) but not θ2,e′+1 (if π[1](2) = ∅,
then e′ = 0). Use induction to obtain an M-partition on

⋃
j<i π

′
|j |. Let π2 denote

this partition plus π ′
[i]. Then π2

1 is consecutive. π2
[1](2) is either consecutive or

it contains θ21, θ22, . . . , θ2,e′, θ2x for some x > e′ + 1. In the former case s(π) =
∞ > s(π). In the latter case, I -sort (π2

[1], π
2
i) to obtain π3. If π3

1 is consecutive,

470 F.K. HWANG ET AL.

then as before, either π3
[1](2) is consecutive or s(π3) = max{e + 1, e′ + 1}. In

either case s(π3) > s(π). If π3
1 is not consecutive by picking up some smallest

elements from π3
[i](1). Then we iterate as before by using induction on

⋃
j<i π

3.
Note that in each such iteration, the number of elements in π[i](1) decrease. Since
that number has a lower bound 0, eventually the iteration must stop, meaning for
some r, πr1 is consecutive and s(πr) > s(π). �
COROLLARY 8. For t = 2, I is (part-specific, 2, size) sortable.

Proof. By replacing π[i] with πi in the proof of Theorem 7. �
A type k will be called a universal type if |πi(k)| > 0 for all i. Let Qu denote Q

conditional on the existence of a universal type. Let Qa denote Q conditional on
every type is universal.

THEOREM 9. The minimum consistency index is 2 for Mu and Ma .
Proof. Suppose every pair of parts are monotone. Let type k be a universal type.

Then every pair of parts is ordered in type k. The ordering of pairs in other types
must follow this ordering or that pair would not be monotone. Since this pairwise
ordering is transitive, it implies a linear ordering on the parts. �
THEOREM 10. I a is (part-specific, k, size) sortable for all k � 2.

Proof. It is easily verified that if there exist k parts in π not satisfying I a, then
there exist k consecutive parts K not satisfying I a. I-sort K to obtain π ′. Define
s(π) to be the number of inversions in π , i.e., an inversion occurs if x ∈ πi , y ∈ πj
and (x − y)(i − j) < 0. Then the number of inversions is intact in π\K but
decreases in K. Hence s(π ′) < s(π). �
THEOREM 11. Mu (hence Ma) is (sort-specific, k, shape) sortable for all k � 2.

Proof. Follows from Lemma 4 since I is (sort-specific, k, shape) sortable for all
k � 2 and Mu is 2-consistent. �

5. An application to optimal assembly

Consider a coherent system consisting of p series modules, meaning a module
works if and only if all components work. There are t types of components and
module i needs nui components of type u for u = 1, . . . , t . Components of
the same type are functionally interchangeable. Define nu = ∑p

i=1 nui and n =∑t
u=1 nu. Let the nu components of type u have respective reliabilities θu1 � θu2 �

· · · � θunu . The problem is to assemble the components into the p modules to
maximize the system reliability. Clearly, this is a t-partition problem.

Since the first paper by Derman et al. [3], there has been a large body of lit-
erature [4, 5, 6, 11] on this optimal assembly problem, proving that monotone

SORTABILITY OF MULTI-PARTITIONS 471

assembly, or its simplified versions, is optimal under various conditions. This line
of research culminated in Hwang and Rothblum [9] who gave the weakest suffi-
cient conditions requiring only that the system be coherent (essentially meaning
no module is without impact on system reliability). They proved the optimality of
monotone partition by first proving that if π is a non-monotone optimal 2-partition,
then any M-2-sorting preserves optimality. The sortability approach is implicit in
the extension from 2 to p. Since M is not 2-sortable, even weakly, a fictitious
universal type is introduced to turn M to Mu. Set s(π) = ∑p

i=1

∑t
u=1 maxπi(u),

where maxπi(u) = max{θuj ∈ πi(u)}. They showed that by properly choosing the
parts, s(π) decreases during every Mu-2-sorting. But this is not so in two cases:
Case (i). Suppose t = 1 and n1 or n2 = 1. For example, π = {θ1, θ3} and

π2 = {θ2}. The Mu (or consecutive)-sorting yields π ′
1 = {θ1, θ2} and

π ′
2 = {θ3}. But {maxπ1,maxπ2} = {θ2, θ3} before and after sorting.

This example can be extended to t > 1 by having other types satisfying
Mu and staying put during sorting.

Case (ii). Suppose πi and πj are consecutive but not monotone. Then the Mu-
sorting does not decrease s(π). For example, π1 = ({θ11, θ12}, {θ23, θ24}),
π2 = ({θ13, θ14}, {θ21, θ22}). After the monotone-sorting π ′

1 = ({θ11, θ12},
{θ21, θ22}) π ′

2 = ({θ13, θ14}, {θ23, θ24}). Again s(π) remains unchanged.
Note that the problem in Case (i) can be resolved by changing the statist-
ics max πi(u) to range πi(u). But the problem in Case (ii) is not affected
by this change.

By showing Mu is (sort-specific, 2, shape) sortable (Theorem 11), we finally
justify the extension from two parts to p parts.

Acknowledgment

Research supported in part by a grant from the National Science Council grant NSC
89-2115-M-009-011. The authors would like to thank the anonymous reviewers for
helpful suggestions.

References

1. Chakravarty, A.K., Orlin, J.B. and Rothlbum, U.G. (1982), A partitioning problem with additive
objective with an application to optimal inventory grouping for joint replenishment, Oper. Res.
30: 1018–1022.

2. Chang G.J. et al. (1999), Sortabilities of partition properties, J. Combin. Opt. 2: 413–427.
3. Derman, C., Lieberman, G.J. and Ross, S.M. (1972), On optimal assembly of systems, Naval

Res. Logist. Quart. 19: 564–574.
4. Du, D.Z., When is a monotonic grouping optimal? in: Osalei, S. and Cas, J. (eds), Reliability

Theory and Applications, World Scientific, New Jersey, pp. 66–76.
5. Du, D.Z. and Hwang, F.K. (1990), Optimal assembly of an s-stage k-out-of-n system, SIAM J.

Disc. Math. 3: 349–354.
6. Hollander, M., Proschan, F. and Sethuraman, J. (1977), Functions decreasing in transportation

and their applications in ranking problems, Ann. Statist. 5: 722–733.

472 F.K. HWANG ET AL.

7. Hwang, F.K. (1981), Optimal partitions, J. Opt. Thy. and Appl. 34: 1–10.
8. Hwang, F.K. and Mallows, C.L. (1995), Enumerating consecutive and nested partitions, J.

Combin. Thys., Series A 70: 1–23.
9. Hwang, F.K. and Rothblum, U.G. (1994), Optimality of monotone assemblies for coherent

systems composed of series modules, Oper. Res. 42: 709–720.
10. Hwang, F.K., Rothblum, U.G. and Yao, Y.C. (1996), Localizing combinatorial properties of

partitions, Disc. Math. 160: 1–23.
11. El-Neweihi, E., Proschan, F. and Setheraman, J. (1987), Optimal assembly of systems using

Schur functions and majorization, Naval Res. logist. Quart. 34: 705–712.

