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A NOTE ON THE INTERVAL ESTIMATION OF C,;
WITH ASYMMETRIC TOLERANCES
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2Department of Communication Engineering, National Penghu Institute of Technology, Penghu,
Taiwan, ROC; *Department of Industrial Engineering and Management, National Chiao Tung
University, Taiwan, ROC

(Received May 2001; In final form February 2002)

Pearn and Chen (1998) proposed a generalization of the widely used process capability index (PCI) Cp; to handle
processes with asymmetric tolerances. They investigated the sampling distribution and obtained the exact formulae
for the expected value and variance of its natural estimator. Recently, Pearn and Lin (2000) considered a different
estimator under different process condition, and investigated the statistical properties of the new estimator.
However, their efforts focused on the small sample properties under the normality assumption. In this paper, we
investigate the large sample properties of its natural estimator under the general condition. Based on the limiting
distribution of the new estimator, we provide an approximate 100(1 — «)% confidence interval of the considered
PCI. The obtained confidence interval provides great benefit to quality engineers on monitoring the process and
assessing process performance.

Keywords: Asymmetric tolerances; Process capability index

1 INTRODUCTION

Process capability index C,; (Kane, 1986) has been widely used in the manufacturing indus-
try to provide numerical measures of process potential and performance. As noted by many
quality control researchers and practitioners, Cy; is yield-based and is independent of the tar-
get 7, which fails to account for process centering with symmetric tolerances, has an even
greater problem with asymmetric tolerances. To overcome the problem, Pearn and Chen
(1998) considered a generalization of Cpy, referred to as Cy, which is defined as:

. d* _A*
iy (1)
where d* = min{dy, d;}, A* = max{d*(u — T)/dy, d*(T — p)/d,}, dy = USL — T is the
right hand side tolerance, and d; = T — LSL is the left hand side tolerance. Clearly, if
T = m (symmetric case), then d* = d, 4A* = |u — m| and the generalization C;k reduces to
the original index Cp. The factors d* and 4™ ensure that the generalization C7; obtains its
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maximal value at T (process is on-target) regardless of whether the tolerances are symmetric
or asymmetric.

2 THE NATURAL ESTIMATOR OF C,;

The natural estimator C* o of €y can be obtained by replacing p and o by X=>",X/n
and S, = {d_,(Xi — X X)? /(n 1)}!/2 respectively in expression (1).

A* d*_la*

pk = 38, ’ (2)

where A* = max{d*(X — T)/dy, d"(T — X)/d,}. Under the normality assumption, Pearn
and Chen (1998) showed that the rth moment (about 0) of C7; is:

VT (=05 TR\ (dN (d )
a6 =e(t02) T R(0)(E) (-5)
4 =0 \J 4 Vn
P 7 7 r=j
x adl
max i
Hence, the first two moments of C‘;‘k are (Pearn and Chen, 1998):
. 1 1/d a*\ [2 6
ECH =—1C ——|—+—)./—
rk b,,_l{ k 6<dU+dL> Xp( 2)
~(O(=10]) dr d*\(o\ (24"
3 dU dL \/_ g ’

s~ () () -] () ]

55 ><* F r(- *>+<‘I’<;'5”><3n>

(-]
o) —'5'>><%:>2 ;[CZY (5]
()5 sz

where 6 = /n(u — T)/0, byt = \/2/(n = D{T[(n — 1)/2]/T(n — 2)/2]}.
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3 LARGE SAMPLE PROPERTIES OF é’;‘k

Pearn and Chen (1998) succeeded in obtaining the moments of é‘;‘k.

Their investigation

focused on processes with normal distribution. Under general conditions, the asymptotic

behavior of C*k is desirable. Let X7, X5, ..

, X, be a random sample of measurements from

a process Wthh has d1str1but10n G with mean u and variance o2. We note that Cpk is a con-

tinuous function of X,
is a consistent est1mator of

pk

THEOREM 1

Let X1,X,,..., X, C.
SJourth central moment yu, exists and LSL < u < USL, then as n — oo, ﬁ(C;k -

2 ) and (X,

_,) converges to (i, 2) in probability. Therefore,

be a random sample of measurements from a process whose

Cor)

converges to the following in distribution.

(a) N(O, ap ,if u>T,
(b) N(O,ap Jif w<T, and
() —=IVI/(Bo) —[d*/(6a™ W, if u=T
where
1 dp— (=" , tg—0* [d—(u-")\" .
%2 L 4
=43 L-T>T-LSL
Ophi 9+363 30 + 454 30 > US = SL,
Lo [d=@-D))  pa—c*[d—@u-D .
*2 3 4
=43 L-T=T-LSL
%ot =T33 36 R 36 > U SL,
1w [dy—(u="D)) , ps—c*[dy—(u-D)> .
*2 3 4
=3 L-T<T-LSL
Tkt =5t 353 30 T4 3¢ > U = SL,
1w [d+u=D)  w—d*[d+u-D .
*2 _ - M3 4 _ _
P29 343 30 R 30 > USL=T>T-LSL,
1w [d+u=D)]  mu—d*[d+@u-D .
®2 _ M3 4 _ T T _
P79 363 30 40 30 » §USL-T=T-LL,
L [dut+ =D =0 [du+@-D"
*2 3 4
=3 L-T<T-LSL
Tpk2 T 97 343 30 e 30 . U = SL,

2

. . . . o
(V, W)~ N((0,0), X) with variance—covariance matrix £ = [ H 4:|.

Proof See Appendix.

Hy H4—0O

THEOREM 2 C*k is asymptotically unbiased.

Proof From Theorem 1, we know that as n — oo, E{\/n (

E{f( e — C*k)} — —/2/n/3,if u =T, since E{|V|} = 0'\/(2/71). Therefore, as n — o0,

then E (
asymptotlcally unbiased.

Ci) = (1/ymE(/a(Cl —

C;k)} — 0,if u#T, and

C,)} = 0 implies that the estimator C‘;‘k is

THEOREM 3 If the process characteristic follows a normal distribution N(u, 6%), then C*k is
asymptotically efficient, if © # T.

Proof From Theorem 1, we know that if u # T, then as n — 00, \/n! ( C

C,y) converges

in distribution to N (0, kal) if u > T, and N(0, kaZ) if u < T. Under normahty assumption,
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,u3 =0, u, = 30* 1mphes that \/n ( C,;) converges in distribution to N(0, ¢ 2 ), where

=(1/9)+(C, 2/2). The 1nformat10n matrix is

pkn

1/0* 0
1(0) = 1(u, 0) = |: /OG 120 j| Since the Cramer-Rao lower bound
o
* * —1 aC;k *2
oG, 0G5 17(0) ou | _ %pkn
ou 0g? n Cy | n
0o?

is achieved, therefore é‘;‘k is asymptotically efficient.

Since C*k is asymptotically efficient for u # T, defining M3 = nm3[(n —Dn-2)0"!
and My = [n(n* — 2n + 3)my — 3n(2n — 3)m3] [(n — 1)(n — 2)(n — 3L, where my =
Z] , X —-X XY /n, k=234, we can show that Ms, M, are unblased estimators of
Uz, Ua, respectively. If p > T, an estimator for *21 is obtained as:

1 M . M, — §* .
A*Z _ 3 % 4 n—1 *2
Oprt =5+ <T31> Cn + (T,L) G 3)

where é‘*kl [d* — (X — T)]/(3S,_1). Using this estimator, an approximate 100(1 — )%
one- 51ded confidence interval of Cy; can be constructed as:

. Ot
Cc* £z, 0], 4
< e ) @
where z, represents the upper ath quantile of the standard normal distribution.
Similarly, if 4 < T, an estimator for 0;1%2 is obtained as:

1My M, — 5
Gr = 5 <F> Co + (T) Cpk2’ ()

where é;kz = [d* + (X — T)]/(3S,_1). Using the estimator and its limiting distribution, an
approximate 100(1 — «)% one-sided confidence interval of C can be constructed as:

~ O'
(c;;k2 5;_2 Zy, oo>. (6)

4 AN EXAMPLE

Consider the following example taken from a manufacturer and supplier in Taiwan exporting
high-end audio speaker components including rubber edge, Pulux edge, Kevlar cone, honey-
comb and many others. The production specifications for a particular model of Pulux edge
are (LSL, 7, USL) = (5.650, 5.835,5.950). A total of 90 observations were collected
which are displayed in Table I If the true Cj, value fell into expressions (4) or (6), we
conclude that the process is capable, otherwise, the process is incapable under the given
confidence level.
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TABLE I Collected Sample Data (90 Observations).

5.88 5.83 5.84 5.80 5.89 5.81 5.84 5.83 5.82 5.83
5.81 5.82 5.85 5.81 5.81 5.81 5.84 5.82 5.80 5.84
5.86 5.87 5.82 5.87 5.80 5.81 5.85 5.84 5.83 5.86
5.81 5.81 5.82 5.83 5.85 5.80 5.86 5.82 5.86 5.83
5.80 5.77 5.82 5.85 5.84 5.82 5.85 5.81 5.86 5.79
5.84 5.83 5.80 5.83 5.81 5.83 5.81 5.85 5.83 5.88
5.82 5.87 5.80 5.82 5.83 5.81 5.84 5.79 5.85 5.85
5.84 5.84 5.80 5.82 5.84 5.85 5.86 5.81 5.81 5.85
5.86 5.81 5.81 5.83 5.85 5.85 5.82 5.83 5.86 5.81

We note that the mid-point m = (USL + LSL)/2 = 5.800 and the half length of the speci-
fication interval d = (USL — LSL)/2 = 0.150, d* = min(USL — 7', T — LSL) = 0.125. The
sample mean X = 2?21 x;/90 = 5.83033, sample standard deviation s, = {Z?ﬁl(xi —%)?/
(90—1)}/2=0.02334, 4*=0.00290. m, =5.39 x 107%, m3=2.49 x 107, my=7.64x 1077,
M, =5.45%x10"%, M;=2.87x10"% and My;=7.79x 10~". Since the sample mean is less
then the target value, C, =[(USL—T)+(x—T)]/(3s,-1)=1.57563. Apply the expression
(5), we obtained 6';k2 = 1.11739. From the expression (6), an approximate 95% one-sided
confidence bound of C;, is [1.38, 00). A process with C;; < 1.00 is called “inadequate”,
a process with 1.00 < €7 < 1.33 is called “capable”, a process with 1.33 < €}, < 1.50 is
called “satisfactory”, a process with 1.50 < €, < 2.00 is called “excellent”. In this exam-
ple, we have 95% confidence to claim that the process is satisfactory.
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APPENDIX

Proof of Theorem 1

() If USL—T>T-LSL, then Cj=(d,—Ip—T)/Go) and C;=
(dp —1X = T1)/(BSu-1).

Case (a) We first consider the case with u > 7. We define the function g;;(x,y) =
(dr — (x—T))/(3,/y), where x > T and y > 0. Note that g;; is a real-valued and differ-
entiable function for x > 7 and y > 0, with

0 1 0
o8t —_— . and 254
(e P 30 oy

=202 30

i{dL —(/l—T)}'

(1.0%)
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Define Dy = (%’%
Then, we have

(1,0%)s ag;;l’(ﬂ’o_z». Note that D;; # (0, 0).
V(Ch = Ch) = g (X, S2) — g, o)
converges to N(0, oﬁl) in distribution (Serfling, 1980), where

I u
*2 — 3
kal = DuZDL] = § + 30’3

{dL —(u— T)} LM o {dL —(u— T)}z_

3¢ 4q* 30

Case (b) For the case with u < T, we define the function

d+(x—T1)

gnx,y) = NG

where x < T and y > 0. Note that g;, is also a real-valued and differentiable function for all
x < T and y > 0, with

0812
Ox

1 0
=—, and %
(ot 30 oy

1 {dL-l-(,U—T)}

P ol P

Define Dy, = (ag—f
Then, we have

ﬁ(é;k — Ci) =V {ga(X. S,_)) — g2, 0°)} converges to N(0, a7p,)

in distribution (Serfling, 1980), where

9
(o) %\WZ)). Note that Dy, # (0, 0).

1 u
2 _ 3
G;kz = DLZZDL2 = § — —30_3 {

di+ (=D  ps=0* [d+@=D)*
30 404 30 ’

Case (c) For the case with u =T,

VX —uld (AR =)
3Sn—1 30—(0- + Sn—l) Sn—l .

V(Cl — Ch) = —

Since /n(X — u, S, — ¢%) converges to (V, W) ~ N((0,0),X) in distribution (Serfling,

1980), and (—1/(3S,-1), —dL/(30(d + S,-1)Sy—1) converges to (—1/(30), —d; /(66%)) in

probability  (Serfling, 1980), then, we have ﬁ(C;k —C,;) converges to

Wi = —|V|/Bo) — (d,/(66°))W in distribution (Serfling, 1980), where (V, W)~
2

N((0, 0), ¥) with variance—covariance matrix = = | © s 4l

LU H4—O
Therefore, if USL — 7' > T — LSL, then ﬁ(C;k — C;) converges to the following in

distribution.

(a) N(O, o;fl ,ifu>T,
(b) N(O, a;‘;,zcz), ifu<T,
(© —IVI/Bo) = (d/(6a* )W, if u =T,
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where

g2 Lt [d=w=T))  p—ot [d— (=T
PEL =9 1 343 30 40 30 ’
w _ 1 {dL"i‘(/J—T)}+N4—04{dL+(#—T)}2

Opk2 = 9 343 30 4q4 30

2
(V, W) ~ N((0, 0), ) with variance—covariance matrix ¥ = |:Z P # ot :|
3 Mg —

(II) If USL—-T < T —LSL, then Gy =(du — lu—T/(3o0)
pk - (dU - |X T|)/(3Sn l)
Applying the same techniques used in (I) with

—(x=T —
701[1 o ), foru>T, gUz(x,y):—dU+(x )

guilx,y) = NG 35

and

. 14 du
WU:_§_<Q W, fOI',Ll:T.
N(O, akl) for u>T.

As n — 00, /n(Cyy — Cjy) converges to {N(O, arn) forp<T.

, for u < T,

in distribution.

653

and

Therefore, if USL — T' < T — LSL, then as n — o0, ﬁ(é‘;‘k — ;) converges to the follow-

ing in distribution.

(a) N(O, ka1) ifu>T,
(b) N(O, Ukz) ifu<T,
(c) —IVI/(36) (du/603)W ifpu=T,

where

g2 L [do=(=T))  p—o fdy—(u=T) 2
Trkl T 9T 3453 30 4g4 30 ’
o 1 {dU+(M—T)}+M4—U4{dU+(M—T)}2

P27 9 343 3¢ 4q4 3¢

2
(V, W) ~ N((0, 0), X) with variance—covariance matrix X = |:Z u = o i|
3 Mg —

m If USL-T=T-LSL, then Cy =(d—I|u—ml)/(30o), and
(d — X —ml)/(3S,-1).
Again, we apply the same technique with

d—(x— d —
d=x=m s m, gm(x,y)_M

eui(x,y) = 3«/J7 = 3ﬁ

sk
pk

, for u < m,
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and

14 d
wr o= — (LW for y=m.
M= T (34 <6G3) orp=m

N(O, O’;]%l) for 4 > m.

in distribution.
N(O, ‘7;1%2) for 1 < m. in distribution

Then as n — oo, +/a( A;k — C;k) converges to {

Therefore, if USL — T'=T — LSL, then as n — oo, ﬁ(é’;k — ;) converges to the follow-
ing in distribution.

(a) N(O, o;,%l), ifu>T,

(b) N(0,0%2,), if u < T,

©) —|V|/30 — (d/66*)W, if u=T,

where

ka1=§ 363 3¢ 44 3¢
o 1 {d+(u—T)}+u4—04{d+(u—T)}2

Opk2 = 9 33 3¢ 4q4 3¢

R {d—(M—T)}+u4—a4{d—(u—T)}2

2
(V, W) ~ N((0, 0), ) with variance—covariance matrix ¥ = [Z P # o :|
3 Mg —



