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In the architecture of cellular neural networks (CNN), connections among cells are built on
linear coupling laws. These laws are characterized by the so-called templates which express
the local interaction weights among cells. Recently, the complete stability for CNN has been
extended from symmetric connections to cycle-symmetric connections. In this presentation,
we investigate a class of two-dimensional space-invariant templates. We find necessary and
sufficient conditions for the class of templates to have cycle-symmetric connections. Complete
stability for CNN with several interesting templates is thus concluded.
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1. Introduction

This investigation aims to explore the structures of
templates in cellular neural networks (CNN), which
yield cycle-symmetric connectivity among cells, and
hence complete stability for the networks. We shall
illustrate our results in the CNN proposed by Chua
and Yang [1988]. Assume that the model is for-
mulated on a two-dimensional n1 × n2 array Tn :=
{(i, j) ∈ Z2|1 ≤ i ≤ n1, 1 ≤ j ≤ n2}. The circuit
equation of a cell is given by

dxi,j
dt

= −xi,j +
∑

(k, `)∈Nr(i, j)

A(i, j; k, `)fk,`(xk,`)

+ bi,j, (i, j) ∈ Tn , (1)

where Nr(i, j) represents the r-neighborhood of the

cell at (i, j). That is,

Nr(i, j) = {(k, `)|max(|k − i|, |`− j|) ≤ r} .

The feedback operator is represented by real num-
bers A(i, j; k, `), (i, j) ∈ Tn, (k, `) ∈ Nr(i, j),
and these real numbers constitute the template
for CNN. This template describes the connection
weights among cells. If (k, `) ∈ Nr(i, j), for some
(i, j) ∈ Tn and (k, `) not in Tn, then xk,` in (1) is
determined by the imposed boundary condition, cf .
[Thiran, 1993; Shih, 2000]. bi,j represent the terms
from the control operator and threshold. fk,l is
called output function. The standard output func-
tion is given by fk,`(ξ) = f(ξ) := 1/2(|ξ+1|+|ξ−1|),
(k, `) ∈ Nr(i, j), (i, j) ∈ Tn. This piecewise-linear
function f results in lack of smoothness for the
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vector field in (1). For details, please see [Chua &
Yang, 1988; Chua, 1998; Lin & Shih, 1999].

Since there are finitely many cells, the indices
{(i, j)} can be rearranged into a one-dimensional
setting. Such an arrangement can be expressed by
a bijection between the corresponding index sets,
namely, from Tn onto {i ∈ Z1|1 ≤ i ≤ n1 × n2}.
With this rearrangement, the coordinates {xi,j},
(i, j) ∈ Tn become {xi}, 1 ≤ i ≤ n, n := n1 × n2.
Equation (1) is then recast into the following form.

dx

dt
= F(x) := −x + Ay + b , (2)

where y := (f1(x1), f2(x2), . . . , fn(xn)), b is a con-
stant vector. In respecting (1), the n× n matrix A
in (2) is generated from A(i, j; k, `). We call A the
matrix of connection weights or connection matrix.
Notably, CNN with coupling (templates) of any di-
mension can be put into the form (2), as long as
there are finitely many cells. The shortcoming for
the expression (2) is that the templates features,
that is, the local coupling relation among cells can
no longer be read from the equation.

Equation (2) can also be interpreted as a ma-
trix form of (1). Indeed, let each of x, y and b
be an n1 × n2 matrix and let A be a linear op-
erator on the space of n1 × n2 matrices. That A
acts on y yields an n1 × n2 matrix Ay, which is
defined by (Ay)ij =

∑
(k,`)∈Tn

A(i, j; k, `)yk,` =∑
(k,`)∈Tn

A(i, j; k, `)fk,`(xk,`), where

A(i, j; k, `) =

{
A(i, j; k, `) if (k, `) ∈ Nr(i, j),

0 otherwise.

(3)

Indeed, A can also be regarded as an n × n ma-
trix with each of its column and row indexed by
elements of Tn. For notational convenience, if
u = (i, j), v = (k, `), we write A(u; v) for the
(u, v)-entry of A.

By complete stability, we mean that every solu-
tion of the system tends to an equilibrium as time
goes to infinity. The complete stability for (1) with
standard output function was first studied in [Chua
& Yang, 1988] when the model was proposed. [Lin
& Shih, 1999] has overcome the nondifferentiability
of the Lyapunov function and provided a rigorous
proof for complete stability of CNN in the generic
case, that is, the isolated equilibria case. The proof
relies on the construction of a Lyapunov function
and the use of LaSalle’s invariance principle. The

basic assumption in these investigations is the sym-
metry condition of the circuit parameters in (1):

A(i, j; k, `) = A(k, `; i, j),

for all (k, `), (i, j) ∈ Tn . (4)

With this assumption, if (1) is imposed with
certain discrete-type boundary conditions, A is
always symmetric, as (1) is reformulated into the
form (2). Recently, the complete stability for (2)
(hence (1)) has been extended to the so-called cycle-
symmetric connections, cf. [Shih, 2001]. Cycle-
symmetric matrices can be described as follows.
Let A = [A(u; v)] be an n × n matrix with either
A(u; v) = 0 or A(u; v)A(v; u) 6= 0 for u, v ∈ Tn.
There corresponds an undirected graph whose ver-
tex v is joined to the vertex u by the edge uv
if and only if A(u; v) 6= 0 and A(v; u) 6= 0.
With the abuse of notation, we denote this graph
also by Tn. Let u1, . . . , un be n distinct vertices.
Then the sequence u1u2 · · · u`u1 is a cycle (of length
`) if any two consecutive vertices have an edge.
Sometimes we treat the cycle as the edge set
{u1u2, u2u3, . . . , u`−1u`, u`u1}. An n×n matrix A
is cycle-symmetric if A satisfies the following two
conditions (H1), (H2).

(H1) A(u; v)A(v; u) > 0, if A(u; v) 6= 0 ,

(5)

(H2)
∏

uv∈C
A(u; v) =

∏
uv∈C

A(v; u),

for any cycle C , (6)

where Π denotes the product. A is called sign-
symmetric if A satisfies (H1). It is straightforward
to verify that symmetric A satisfies (H1) and (H2).

Convergence of dynamics (complete stability
herein) for several neural networks has been ex-
tended to connection matrices satisfying (H1) and
(H2), see [Fiedler & Gedeon, 1998; Gedeon, 1999].
An interesting linear algebra theorem states that a
square matrix A is similar to a symmetric matrix
by a positive diagonal matrix (that is, there exists
D = diag(d1, . . . , dn), di > 0 such that DAD−1

is symmetric) if and only if A satisfies both (H1)
and (H2). This theorem has simplified the verifica-
tions of convergence in the above-mentioned stud-
ies, cf. [Shih & Weng, 2000].

Notably, in addition to extending the complete
stability to cycle-symmetric connection matrices,
Shih [2001] has also addressed the complete sta-
bility for (2) with other sigmoidal output func-
tions, and the case of nonisolated equilibria. As for
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On the Templates Corresponding to Cycle-Symmetric Connectivity in Cellular Neural Networks 2959

the characterization and classification of equilibria
and their output patterns for CNN, the readers are
referred to [Juang & Lin, 1997, 2000; Shih, 1998;
Ban et al., 2001].

In this investigation, we shall explore the struc-
tures of space-invariant templates (see Sec. 2) which
yield cycle-symmetric connection among cells.
Restated, we plan to study the question: what kind
of A(i, j; k, `) in (1) would yield a cycle-symmetric
A in (2)?

This presentation is organized as follows. A
key lemma of this work is given in Sec. 2. The main
result of this investigation, on two-dimensional tem-
plates corresponding to cycle-symmetric connec-
tivity, is summarized in Theorem 3.2 in Sec. 3.
We further extend our results to CNN with one-
dimensional and three-dimensional templates and
other two-dimensional templates in Sec. 4. We
compare our results with earlier studies on the
templates and connection matrices which yield

complete stability or almost complete stability for
CNN in Sec. 5.

2. Preliminaries

In this presentation, we plan to investigate the tem-
plates which have uniform local behaviors, that
is, the connection among cells depends only on
their relative positions. Restated, A(i, j; k, `) =
m(k − i; ` − j). Such a kind of template is called
space-invariant template. A 3 × 3 space-invariant
template is characterized by a 3× 3 matrix

M =


m(−1; 1) m(0; 1) m(1; 1)

m(−1; 0) m(0; 0) m(1; 0)

m(−1; −1) m(0; −1) m(1; −1)

 .

(7)

Accordingly,

A(i, j; k, `) =

{
m(k − i; `− j) if |k − i| ≤ 1 and |`− j| ≤ 1 ,

0 otherwise .
(8)

Notably, the index of the entry of M is not stan-
dard. We use this index to make the representa-
tion of A in (8) more realizable. Observe that
this is the case r = 1 in Eq. (1). Note that
if m(i; j) = m(−i; −j), then A is a symmet-
ric matrix, that is, A(u; v) = A(v; u), where
u = (i, j), v = (k, `). Recall that

A(u; v) 6= 0 iff uv is an edge in the graph Tn .

(9)

In this case, m(v − u) 6= 0 by (8), and we say that
the edge uv has type “v − u”, where the subtrac-
tion is the usual vector subtraction. Type “u − v”
is called the opposite type of “v − u”.

We shall determine all the templates M in (7)
that ensure A to be cycle-symmetric in the next
section. The complete stability for CNN with these
templates is thus concluded. We need the follow-
ing technical lemma to prove our main result. This
lemma states that a cycle C of Tn of length at least
5 can be decomposed into two cycles by a path of
Tn, cf . Figs. 1 and 2. We omit the proof since it is
not particularly illuminating.

Lemma 2.1. Let C : u1u2 · · ·usu1 be a cycle of
length s ≥ 5 in Tn. Then there is a path P : v1 · · · vτ

3u

4u

1u

2u

Fig. 1. The cycle u1u2u3u4u1 cannot be decomposed into
two cycles.
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3u

4u

1u

2u

5u

6u

Fig. 2. The cycle u1u2u3u4u5u6u1 is decomposed into two
cycles by the edge u2u5.

in Tn such that the following (a) and (b) hold:

(a) v1 = up and vτ = uq for some p, q (1 ≤ p ≤
q − 1 ≤ s− 1).

(b) If τ = 2, then edge v1v2 6= edge u1us. If τ > 2,
then v2, . . . , vτ−1 belong to the bounded region
inside of C.

In fact, the path P in Lemma 2.1 can be cho-
sen such that each of its edge has the same or the
opposite type of some edge in the cycle C.

3. The Main Result

Throughout this section, we assume that A is
defined by (8), and

m(i; j) = 0 if and only if m(−i; −j) = 0

(i, j = −1, 0, 1) .
(10)

1u

2u 3u

1u

2u

3u

4u
1u2u3u

4u

1u 2u

3u

Fig. 3. Only four basic cycles C need to be checked in (6), if A is generated from a 3× 3 space-invariant template.
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On the Templates Corresponding to Cycle-Symmetric Connectivity in Cellular Neural Networks 2961

The assumption (10) on M ensures the condition
A(i, j; k, `) = 0 if and only if A(k, `; i, j) = 0.
The following lemma is immediate from (5), (8) and
(10).

Lemma 3.1. A is sign-symmetric if and only if
m(i; j)m(−i; −j) ≥ 0, i, j = −1, 0, 1, and (10)
holds.

Suppose A is sign-symmetric. We shall prove
that the following conditions (i)–(iv) are equivalent
to A being cycle-symmetric.

Conditions

(i) m(0; 1)m(1; 0)m(−1; −1)
= m(1; 1)m(−1; 0)m(0; −1);

(ii) m(1; 0)m(0; −1)m(−1; 1)
= m(1; −1)m(0; 1)m(−1; 0);

(iii) m(0; −1)2m(−1; 1)m(1; 1)
= m(−1; −1)m(1; −1)m(0; 1)2;

(iv) m(−1; 0)2m(1; −1)m(1; 1)
= m(−1; −1)m(−1; 1)m(1; 0)2.

Notably, conditions (i)–(iv) say that to de-
termine whether A is cycle-symmetric, one only
needs to examine (6) for the four basic cycles
shown in Fig. 3. In addition, in (i), m(0; 1)m(1; 0)
m(−1; −1) = m(1; 1)m(−1; 0)m(0; −1) is ex-
actly the condition that M is cycle-symmetric,
and in (ii), m(1; 0)m(0; −1)m(−1; 1) = m(1; −1)
m(0; 1)m(−1; 0) is the condition that

Mt

 0 0 1

0 1 0

1 0 0


is cycle-symmetric, where Mt is the transpose of
M. See (6) and (7).

Theorem 3.2. Assume that m(i; j)m(−i; −j) ≥
0, i, j = −1, 0, 1, and (10) holds. Then A defined
by (8) is cycle-symmetric if and only if Condi-
tions (i)–(iv) hold.

Proof. (⇒) Suppose A is cycle-symmetric. To
prove (i), set u1 = (1, 1), u2 = (1, 2), u3 = (2, 2),
and apply (8) to (6) with the cycle u1u2u3u1. Note
that both sides of (i) are zero if u1u2u3u1 is not a cy-
cle. Similarly, setting u1 = (1, 2), u2 = (2, 2), u3 =
(2, 1), and considering the cycle u1u2u3u1 prove
(ii). To prove (iii), set u1 = (2, 3), u2 = (2, 2),
u3 = (2, 1), u4 = (1, 2), and apply (8) to (6) with

the cycle u1u2u3u4u1. Similarly, (iv) can be proved
by setting u1 = (3, 2), u2 = (2, 2), u3 = (1, 2),
u4 = (2, 1), and considering the cycle u1u2u3u4u1.

(⇐) Suppose (i)–(iv) hold. We shall prove (6) for
any cycle C: u1 · · ·usu1 of Tn. Note that the area
of enclosed region of C is V = k/2 for some posi-
tive integer k. We prove by induction on k. Suppose
k = 1. Observe that this is equivalent to s = 3, and
u1u2u3u1 is a triangle. There are at most eight pos-
sible triangles of area 1/2 starting with u1. For each
triangle, we find Conditions (i)–(ii) are enough to
obtain (6) for the cycle C. To prove the case k = 2,
we prove a more general case that s = 4. There
are essentially three types of cycles of length 4: a
square of area 1, a square of area 2, and a triangle
of area 1 with its base of length 2. For squares,
(6) is a trivial equality. For a triangle, Conditions
(iii) and (iv) are enough to obtain (6) for the cycle
C. Now suppose k > 2 and s ≥ 5. Let P = v1 · · · vτ
be a path satisfying (a) and (b) in Lemma 2.1.
Define the following three paths P1, P2, P3.

P1 : u1u2 · · ·up
P2 : upup+1 · · ·uq
P3 : uquq+1 · · ·usu1 ,

(11)

see Fig. 4. Let P−1 be the reversed path of P. Note
that P1 ∪P ∪P3 and P−1 ∪P2 both are cycles with
smaller enclosed areas. By induction,∏

ujuj+1∈P1∪P∪P3

A(uj ; uj+1)

=
∏

ujuj+1∈P1∪P∪P3

A(uj+1; uj) , (12)

and ∏
ujuj+1∈P−1∪P2

A(uj; uj+1)

=
∏

ujuj+1∈P−1∪P2

A(uj+1; uj) . (13)

Multiplying the same sides of (12) and (13)
together, we have∏
ujuj+1∈P1∪P2∪P3∪P∪P−1

A(uj ; uj+1)

=
∏

ujuj+1∈P1∪P2∪P3∪P∪P−1

A(uj+1; uj) . (14)
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1u

su

qu

1P

P

3P

2P

Pu

1P 2P: :

3P : P :

Fig. 4. A cycle u1u2 · · ·usu1 decomposed into two cycles.

Deleting the common terms, it follows that∏
ujuj+1∈P∪P−1

A(uj ; uj+1)

=
∏

ujuj+1∈P∪P−1

A(uj+1; uj) . (15)

which is nonzero ensured by (9), we have (6).
Notably, A is sign-symmetric by Lemma 3.1. This
completes the proof. �

Corollary 3.3. In addition to the assumptions of
Theorem 3.2, suppose m(0; 1)m(−1; 0) 6= 0 holds.

Then A is cycle-symmetric if and only if Conditions
(i) and (ii) hold.

Proof. A is sign-symmetric by Lemma 3.1. Mul-
tiply the same sides of the equalities in Conditions
(i) and (ii), we obtain

m(1; 0)2m(−1; −1)m(−1; 1)m(0; 1)m(0; −1)

= m(−1; 0)2m(1; 1)m(1; −1)m(0; 1)m(0; −1) .

(16)

Observe that m(0; 1)m(0; −1) 6= 0, by the as-
sumptions. Dividing both sides of (16) by m(0; 1)
m(0; −1), we have (iv). Multiply the opposite sides
of equalities in Conditions (i) and (ii), we obtain
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On the Templates Corresponding to Cycle-Symmetric Connectivity in Cellular Neural Networks 2963

m(0; 1)2m(−1; −1)m(1; −1)m(−1; 0)m(1; 0)

= m(0; −1)2m(−1; 1)m(1; 1)m(−1; 0)m(1; 0) .

(17)

Observe m(−1; 0)m(1; 0) 6= 0. Dividing both sides
of (17) by m(0; −1)m(0; 1), we obtain (iii). �

Combining Theorem 3.2 with the theorem in
[Shih, 2001], we have the following conclusion.

Corollary 3.4. The complete stability of CNN
holds for any sign-symmetric templates which sat-
isfy Conditions (i)–(iv). In particular, the com-
plete stability of CNN holds for the following
sign-symmetric square-crossed and diagonal-crossed
templates:

M =

 0 m(0; 1) 0

m(−1; 0) m(0; 0) m(1; 0)

0 m(0; −1) 0

 ,

M =

 m(−1; 1) 0 m(1; 1)

0 m(0; 0) 0

m(−1; −1) 0 m(1; −1)

 ,

where m(i; j)m(−i; −j) ≥ 0, and m(−i; −j) = 0
whenever m(i; j) = 0, i, j = −1, 0, 1.

Remarks

(a) For the case of symmetric template, that is,
m(i; j) = m(−i; −j), −1 ≤ i, j ≤ 1, (10) and
(i)–(iv) hold obviously. Thus, cycle-symmetric
connectivity indeed generalizes symmetric
connectivity.

(b)

M =

 1 0 1

2 m(0; 0) 1

2 0 2


satisfies Conditions (i)–(iii), but does not satisfy
Condition (iv). This shows (iv) is necessary in
Theorem 3.2. Similarly, (iii) is necessary.

4. Other Templates Corresponding to
Cycle-Symmetric Connection

In this section, we would like to explore more tem-
plates corresponding to cycle-symmetric connection
in CNN. We shall consider 1 × 3 and 1 × 5 one-
dimensional templates, 5 × 5 square-crossed and
diagonal-crossed two-dimensional templates. Our
results can even be extended to CNN with three-
dimensional templates.

The evolution equation of CNN with one-
dimensional templates is given by

dxi
dt

= −xi +
∑

k∈Nr(i)
A(i; k)fk(xk) + bi, i ∈ Tn ,

(18)

where Tn := {i ∈ Z1|1 ≤ i ≤ n}. As r = 1,
we consider the space-invariant template denoted
by M1×3 = [m−1 m0 m1]. Restated, A(i; k) =
mk−i, for i ∈ Tn and k ∈ N1(i). Accordingly, for
each i ∈ Tn, we define A(i; k) = A(i; k) if k ∈
N1(i), and zero if k ∈ Tn \ N1(i). It is obvious
that A is a tridiagonal n× n matrix. Assume that
m−1m1 > 0, then the graph induced by A can only
have cycles of length two and (H2) in (6) is trivially
satisfied.

For the case r = 2, we consider the following
space-invariant template

M1×5 = [m−2 m−1 m0 m1 m2] .

Theorem 4.1. CNN with space-invariant template
M1×3 or M1×5 is completely stable if M1×3 satis-
fies m−1m1 > 0, and M1×5 satisfies m−imi > 0,
i = 1, 2 and m2m

2
−1 = m−2m

2
1.

Proof. The case with template M1×3 has already
been illustrated. For the template M1×5, consider
a cycle C in Tn. When moving along the cycle C
in a fixed direction, there are four types of edges:
“1”, “2”, “−1”, “−2”. They represent the coordi-
nate difference between two nodes connected by an
edge. More precisely, if u1u2 is an edge of type “1”
(resp. “2”), then u2 is in the east of u1 with coordi-
nate distance 1 (resp. 2). Similarly, the edge u1u2

of types “−1” or “−2” means that u2 is in the west
of u1 with coordinate distance 1 or 2, respectively.
Suppose the edge of type “i” appears ni times in C.
Then necessarily,

n1 + 2n2 − n−1 − 2n−2 = 0 , (19)

since C is a cycle. To verify (6), we need to show

mn1
1 mn2

2 m
n−1

−1 m
n−2

−2 = m
n−1

1 m
n−2

2 mn1
−1m

n2
−2 . (20)

It is clear that (20) holds from (19) if we as-
sume that m2m

2
−1 = m−2m

2
1. This completes the

proof. �

The result in Theorem 4.1 can be easily generalized
to larger two-dimensional templates. Consider the
following square-crossed 5× 5 template
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M+
5×5 =



0 0 m(0; 2) 0 0

0 0 m(0; 1) 0 0

m(−2; 0) m(−1; 0) m(0; 0) m(1; 0) m(2; 0)

0 0 m(0; −1) 0 0

0 0 m(0; −2) 0 0

 . (21)

Theorem 4.2. CNN with space-invariant template
M+

5×5 is completely stable if m(−i; 0)m(i; 0) >

0 and m(0; −i)m(0; i) > 0, i = 1, 2, and
m(2; 0)m(−1; 0)2 = m(−2; 0)m(1; 0)2, m(0; 2)×
m(0; −1)2 = m(0; −2)m(0; 1)2.

The idea of the proof is rather straightforward.
Pick any node u of a cycle C in the graph induced
by the matrix A defined from M+

5×5. Since M+
5×5

is square-crossed, u can go east, west, north and
south directions. Starting from u, in order to come
back to itself, the total length that u travels to the
east should be the same as that traveled by u to
the west, while the total length that u travels to
the south should coincide with the length that u
travels to the north. The verification of the theo-
rem then follows from similar argument as in the
proof of Theorem 4.1.

It is not difficult to see that the above re-
sult also holds for the diagonal-crossed templates.

Furthermore, we can extend the above theo-
rems to CNN with three-dimensional templates.
Notice that there are six neighboring cells con-
nected to each cell at (i1, i2, i3) ∈ Z3, as the
orthogonal template M⊥

3×3×3 in Fig. 5 is consid-
ered. The conditions in Theorem 4.2 can eas-
ily be extended to a three-dimensional version
to conclude the completely stability for CNN.
Restated, if m(1; 0; 0)m(−1; 0; 0) > 0, m(0; 1; 0)
m(0; −1; 0) > 0, m(0; 0; 1)m(0; 0; −1) > 0,
then M⊥

3×3×3 is a template which yields complete
stability for CNN. One can also consider a two-
dimensional template with six connecting neigh-
bors for each cell. For example, M in (7)
with m(−1; 1) = m(1; −1) = 0. In addition
to m(i; j)m(−i; −j) > 0, the Condition (i) in
Sec. 3 still needs to be satisfied for complete stabil-
ity of CNN. This comparison indicates that three-
dimensional template M⊥

3×3×3 requires weaker
circuit parameter condition in concluding the
complete stability of CNN.

m(-1;0;0)

m(0;0;1)

m(0;0;0)m(0;-1;0)

m(1;0;0)

m(0;0;-1)

m(0;1;0)

i

j

k

Fig. 5. An orthogonal three-dimensional template M⊥
3×3×3.
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5. Discussions and Conclusions

There are several previous works addressing the ma-
trices of connection weights which yield complete
stability for CNN. Gilli [1994] has studied a class of
connection matrices. A matrix in this class can be
transformed to a symmetric matrix by multiplying
a positive diagonal matrix from its left. Restated,
let A be an n× n matrix. If there exists a positive
diagonal matrix Λ such that ΛA is symmetric, then
the CNN (2) with connection matrix A was proved
to be completely stable. However, in addition to
that some arguments therein remain to be rigor-
ously justified, proving that limt→∞ ẋ(t) = 0 does
not imply complete stability. Nevertheless, there is
a linear algebra theorem which relates this class of
n× n matrices to our cycle-symmetric matrices.

Gedeon [1999] studied the neural networks of
Lotka–Volterra type and Grossberg’s models. In
deriving the convergence (complete stability herein)
for the systems, he proposed the same class of ma-
trices of connection weights. Let us describe the
setting. A square matrix A = [aij] is called combi-
natorially symmetric if aij 6= 0 implies aji 6= 0. We
quote Theorem 3.1 in [Gedeon, 1999] as follows.

Let A be a real, combinatorially symmetric,
irreducible matrix. There is a positive diagonal ma-
trix Λ such that ΛA is a symmetric matrix if and
only if

(a) there is a spanning tree T of the graph G(A)
such that for every edge eij ∈ T , we have
aijaji > 0, and

(b) if CT is a chord cycle in the graph G(A) with
respect to tree T , then ΠCT aij = ΠCT aji.

Though (a) is a little weaker than our condition
(H1), (a) and (b) together are equivalent to (H1)
with (H2) in (5), (6). Furthermore, the asser-
tion that there exists a positive diagonal matrix
Λ such that ΛA is a symmetric matrix is equiv-
alent to that there exists a positive diagonal ma-
trix D such that DAD−1 is symmetric. Indeed,
if DAD−1 is symmetric with D being positive di-
agonal, then DDAD−1D is symmetric, that is,
D2A is symmetric and Λ = D2 is positive diago-
nal. On the other hand, if there is a positive di-
agonal matrix Λ such that ΛA is symmetric, then
(
√

Λ)−1ΛA(
√

Λ)−1 =
√

ΛA(
√

Λ)−1 is symmetric
and D =

√
Λ is positive diagonal. With these struc-

tures recognized, it is no surprise that some of the
templates discussed in [Gilli, 1994] coincide with
ours. However, our Conditions (i)–(iv) in Sec. 3

have provided more complete descriptions on the
3× 3 templates which yield this class of connection
matrices, hence complete stability for CNN.

As continuously differentiable increasing out-
put functions are considered, Chua and Wu [1992]
derived a class of templates for almost completely
stable CNN, by applying the theory in cooperative
systems [Hirsch, 1985]. The result is stated as fol-
lows. Let J be a diagonal matrix with entries either
1 or −1. Then CNN with n×n connection matrix A
is stable almost everywhere if the equilibria are iso-
lated and JAJ = JAJ−1 is non-negative. With the
same kind of output functions or standard output
function (piecewise-linear), CNN with some of the
templates discussed therein, such as sign-symmetric
square-crossed or diagonal-crossed templates, are in
fact completely stable, instead of merely almost sta-
ble, according to our Corollary 3.4. In [Wu & Chua,
1997], assuming continuously differentiable increas-
ing output functions again, CNN with connection
matrix A is proved to be completely stable if there
exist diagonal matrices D = diag(d1, . . . , dn) and
T = diag(t1, . . . , tn) with diti > 0 such that DAT
is symmetric. It is not difficult to verify that such
n × n matrix A also satisfies our (H1) and (H2)
and vice versa. Though these two descriptions are
equivalent, the conditions (H1) and (H2) are more
concrete and explicit. Examining (H1) and (H2) is
more straightforward than finding these diagonals
D and T such that DAT is symmetric. Moreover,
all the results in this presentation hold for CNN
with standard output function as well as continu-
ously differentiable increasing output functions, as
indicated in [Shih, 2001].

As a conclusion, the present investigation has
illustrated that generalizing symmetric connectiv-
ity to cycle-symmetric connectivity among cells is
not merely a process of changing variables to the
equation or an application of a linear algebra the-
orem. It indeed provides important information on
the structures of space-invariant templates which
yield complete stability for CNN.

Acknowledgment

The authors would like to thank the referee for call-
ing their attention to the works by Gilli and Chua
and Wu.

References
Ban, J. C., Lin, S. S. & Shih, C. W. [2001] “Exact

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

2.
12

:2
95

7-
29

66
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2966 C.-W. Shih & C.-W. Weng

number of mosaic patterns in cellular neural net-
works,” Int. J. Bifurcation and Chaos 11(6),
1645–1653.

Chua, L. O. & Yang, L. [1988a] “Cellular neural
networks: Theory,” IEEE Trans. Circuits Syst. 35,
1257–1272.

Chua, L. O. & Yang, L. [1988b] “Cellular neural net-
works: Applications,” IEEE Trans. Circuits Syst. 35,
1273–1290.

Chua, L. O. & Wu, C. W. [1992] “On the universe of
stable cellular neural networks,” Int. J. Circuit Th.
Appl. 20, 497–517.

Chua, L. O. [1998] CNN: A Paradigm for Complexity,
World Scientific Series on Nonlinear Science, Series A,
Vol. 31 (World Scientific, Singapore).

Fiedler, B. & Gedeon, T. [1998] “A class of convergent
neural network dynamics,” Physica D111, 288–294.

Gedeon, T. [1999] “Structure and dynamics of artifi-
cial neural networks,” Fields Instit. Commun. 21,
217–224.

Gilli, M. [1994] “Stability of cellular neural networks
and delayed cellular neural networks with nonpositive
templates and nonmonotonic output function,” IEEE
Trans. Circuits Syst. 41, 518–528.

Hirsch, M. W. [1985] “Systems of differential equa-
tions that are competitive or coorperative II: Conver-
gence almost everywhere,” SIAM J. Math. Anal. 16,
423–439.

Juang, J. & Lin, S. S. [1997] “Cellular neural networks
II: Defect pattern and spatial chaos,” preprint.

Juang, J. & Lin, S. S. [2000] “Cellular neural networks
I: Mosaic pattern and spatial chaos,” SIAM J. Appl.
Math. 60(3), 891–915.

Lin, S. S. & Shih, C. W. [1999] “Complete stability for
standard cellular neural network,” Int. J. Bifurcation
and Chaos 9(5), 909–918.

Shih, C. W. [1998] “Pattern formation and spatial
chaos for cellular neural network with asymmet-
ric templates,” Int. J. Bifurcation and Chaos 8(10),
1907–1936.

Shih, C. W. [2000] “Influence of boundary conditions on
pattern formation and spatial chaos,” SIAM J. Appl.
Math. 61(1), 335–368.

Shih, C. W. & Weng, C. W. [2000] “Cycle-symmetric
matrices and convergent neural networks,” Physica
D146, 213–220.

Shih, C. W. [2001] “Complete stability for a class of cel-
lular neural networks,” Int. J. Bifurcation and Chaos
11(1), 169–177.

Thiran, P. [1993] “Influence of boundary conditions on
the behavior of cellular neural networks,” IEEE Trans.
Circuits Syst.-I: Fundam. Th. Appl. 40(3), 207–212.

Wu, C. W. & Chua, L. O. [1997] “A more rigorous proof
of complete stability of cellular neural networks,”
IEEE Trans. Circuits Syst.-I 44(4), 370–371.

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

2.
12

:2
95

7-
29

66
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



This article has been cited by:

1. Zhang Ruo-Xun, Yang Shi-Ping. 2009. Chaos in fractional-order generalized Lorenz system and its synchronization circuit
simulation. Chinese Physics B 18:8, 3295-3303. [CrossRef]

2. Chen Feng-Juan, Li Ji-Bin. 2008. Metric horseshoes in discrete-time RTD-based cellular neural networks. Neurocomputing
71:13-15, 2908-2913. [CrossRef]

3. FENG-JUAN CHEN, JI-BIN LI, FANG-YUE CHEN. 2008. HORSESHOE IN RTD-BASED CELLULAR NEURAL
NETWORKS. International Journal of Bifurcation and Chaos 18:03, 689-694. [Abstract] [References] [PDF] [PDF Plus]

4. FENG-JUAN CHEN, JI-BIN LI, FANG-YUE CHEN. 2007. CHAOS FOR DISCRETE-TIME RTD-BASED CELLULAR
NEURAL NETWORKS. International Journal of Bifurcation and Chaos 17:12, 4395-4401. [Abstract] [References] [PDF] [PDF
Plus]

5. Chang-Yuan Cheng, Kuang-Hui Lin, Chih-Wen Shih. 2006. Multistability in Recurrent Neural Networks. SIAM Journal on
Applied Mathematics 66:4, 1301-1320. [CrossRef]

6. SHYAN-SHIOU CHEN, CHIH-WEN SHIH. 2004. DYNAMICS FOR DISCRETE-TIME CELLULAR NEURAL
NETWORKS. International Journal of Bifurcation and Chaos 14:08, 2667-2687. [Abstract] [References] [PDF] [PDF Plus]

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

2.
12

:2
95

7-
29

66
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 C
H

IA
O

 T
U

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

04
/2

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1088/1674-1056/18/8/033
http://dx.doi.org/10.1016/j.neucom.2007.07.008
http://dx.doi.org/10.1142/S0218127408020586
http://www.worldscientific.com/doi/ref/10.1142/S0218127408020586
http://www.worldscientific.com/doi/pdf/10.1142/S0218127408020586
http://www.worldscientific.com/doi/pdfplus/10.1142/S0218127408020586
http://dx.doi.org/10.1142/S021812740702004X
http://www.worldscientific.com/doi/ref/10.1142/S021812740702004X
http://www.worldscientific.com/doi/pdf/10.1142/S021812740702004X
http://www.worldscientific.com/doi/pdfplus/10.1142/S021812740702004X
http://www.worldscientific.com/doi/pdfplus/10.1142/S021812740702004X
http://dx.doi.org/10.1137/050632440
http://dx.doi.org/10.1142/S0218127404011053
http://www.worldscientific.com/doi/ref/10.1142/S0218127404011053
http://www.worldscientific.com/doi/pdf/10.1142/S0218127404011053
http://www.worldscientific.com/doi/pdfplus/10.1142/S0218127404011053

