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Observation of the Wave Function of a Quantum Billiard from the Transverse Patterns
of Vertical Cavity Surface Emitting Lasers
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We demonstrate experimentally that the near-field and far-field transverse patterns of a large aperture
vertical cavity surface emitting laser (VCSEL) can be successfully interpreted as a two-dimensional
(2D) billiard system. It is found that the near-field and far-field transverse patterns of a large aperture
VCSEL evidently represent the coordinate-space and momentum-space wave functions of a 2D
quantum billiard, respectively. The result of this paper suggests that large aperture VCSELs are
potentially appropriate physical systems for the wave-function study in quantum problems.
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VCSELs are appropriate devices for the study of the be-
havior of the wave functions in quantum billiard prob-

Although this diamond ‘‘scar’’ has been discussed exten-
sively in the wave functions of ballistic quantum dots
Vertical cavity surface emitting lasers (VCSELs) have
become of considerable interest for short-range data com-
munications and sensor applications [1]. Of scientific in-
terest, VCSELs inherently emit in single-longitudinal
mode due to their extremely short cavity length, but large
aperture devices can exhibit a complex transverse mode
structure. The transverse mode pattern and the polariza-
tion instabilities in VCSELs have been the main interests
in the past few years [2–7]. Hegarty et al. [8] reported
interesting transverse mode patterns from oxide-confined
square-shaped VCSELs with larger aperture. Their ex-
perimental results revealed that a wave incident upon the
current-guiding oxide boundary would undergo total in-
ternal reflection because of large index discontinuities
between the oxide layer and the surrounding semiconduc-
tor material. Namely, VCSELs can be considered as a
planar waveguide with a dominant wave vector along
the vertical direction. Because of the analogy between
the Schrodinger and Helmholtz equations [9], it is essen-
tially feasible to use the oxide-confined VCSEL cavities,
such as microwave cavities [10,11], to represent quantum
mechanical potential wells. In this case, the transverse
patterns can reveal the probability density of the corre-
sponding wave functions to the two-dimensional quan-
tum billiards. However, such a correspondence has not
been established as yet because the thermal effects usu-
ally result in a complex refraction-index distribution to
distort the VCSEL planoplanar resonators [6].

In this Letter, we experimentally demonstrate that,
when the thermal effects are reduced by cooling the de-
vice at the temperature below 10 �C, the near-field and
far-field transverse patterns of a large aperture VCSEL
evidently represent the coordinate-space and momentum-
space wave functions of a 2D quantum billiard, respec-
tively. The satisfactory correspondence implies that
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lems. SinceVCSELs, in general, can be fabricated for any
two-dimensional shape, this versatility makes these de-
vices extremely flexible to explore a great deal of inter-
esting physics.

In this investigation, we fabricate square-shaped
VCSELs with large aperture and measure near-field and
far-field patterns of the transverse mode. The size of the
oxide aperture is 40� 40 �m2. The device structure of
these oxide-confined VCSELs and the methods used to
measure the far-field and near-field patterns are similar to
those described by Ref. [8]. Experimental results show
that the transverse patterns of VCSELs can be certainly
divided into two regimes of low-divergence and high-
divergence emissions. Hereafter, we will concentrate on
the high-divergence emission, which appears only at re-
duced temperature and near threshold operation. It is
expected the thermal-lensing effect will switch the de-
vice into the low-divergence regime because the joule
heating induces a temperature rise across the device cross
section. Typically, high-divergence patterns are very
symmetric and those of low divergence are more irregu-
lar. Therefore it is easy to differentiate the regimes in
which the lasers are being operated.

We first controlled the device at the temperature of
10 �C. As shown in Fig. 1, the near-field pattern of the
device was found to be a bouncing-ball scar that is similar
to the result of Ref. [8], except that the order is higher. It
can be seen that the observed bouncing-ball scar is not
perfectly periodic but contains dislocations to show some
wavy structure. Even so, the laser beam was measured to
be linearly polarized. As the device was cooled at the
temperature around 0 �C, the near-field pattern changed
dramatically, as shown in Fig. 2. It can be seen that the
near-field intensity apparently was highly concentrated
along the trajectory of a diamond-shaped classical orbit.
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FIG. 2. The experimental result for the near-field pattern of
the VCSEL device near the lasing threshold. The device was
operated at the temperature 0 �C

FIG. 1. The experimental result for the near-field pattern of
the VCSEL device near the lasing threshold. The device was
operated at the temperature 10 �C.
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[12–14], it is the first time to observe this interesting
pattern from a laser transverse pattern. The specific wave
scars confirm the fact that the oxide-confined VCSELs
can be considered as a planar waveguide.

In order to understand the observed transverse patterns,
it is helpful to simplify the VCSEL structure first. We
consider the large aperture VCSEL to be a very narrow
square-shaped three-dimensional resonator with em-
bedded gain material. The two distributed feedback re-
flectors (DBR) were separated by nearly one wavelength
and the square-shaped oxide aperture defined the lateral
billiard boundary. The wave vectors can be decomposed
into kz and kt, where kz is the wave-vector component
along the direction of vertical emission and kt is the
transverse wave-vector component. Since the vertical di-
mension is designed to be nearly one wavelength, kz is the
dominating component in the emission wave vector. The
lateral boundary has a dimension of 40� 40 �m2; con-
sequently, the transverse kt is much smaller than kz. The
lateral oxide boundary can be considered as rigid walls
with infinite potentials since the photons will experience
total reflection at the lateral oxide walls due to a large kz
component and a relatively small transverse compo-
nent kt. Furthermore, since the mirrors in VCSELs are
DBRs, they can be considered as plane mirrors with no
curvature. The photons can be treated as particles con-
fined in a boundary with infinite potential and zero
potential inside the square. Vertical emission in the z
direction can be considered to be the coupling of the
resonance fields inside the cavity to the outside medium
through the top DBR. Therefore, the phasor amplitude of
the emission field distribution E�x; y; z� is conveniently
given by E�x; y; z� �  �x; y�e�jkzz. After separating the z
component in the wave equation, we are left with a two-
dimensional Helmholtz equation: �r2

t � k2t � �x; y� � 0.
Here, r2

t means the Laplacian operator operating on the
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coordinates in the transverse plane and  �x; y� is a scalar
wave function that describes the transverse profile of the
laser. The solutions to the Helmholtz equation with total
internal reflection boundaries are equivalent to the solu-
tions of the 2D Schrodinger equation with hard wall
boundaries [ �x; y� � 0 at the boundary] of the same
geometry. This analogy has been exploited most success-
fully in microwave cavities and scarred eigenfunctions of
a chaotic billiard have been demonstrated [10,11]. The
wave functions for the 2D quantum billiards are also
important understanding the behavior of mesoscopic
structures, and will be crucial for the design of nanoscale
electronic devices [12–14].

It is well known that the solution to a perfect square
billiard can be obtained by separation of variables. How-
ever, this subtle solution definitely cannot account for the
present observed pattern. It is self-evident that the perfect
square billiard is quite rare in most of the real physical
problems. In real VCSEL devices, the square aperture is
fabricated first by etching a square mesa and then oxidizes
the AlAs layer to form the oxide boundary. Process
induced deformation is unavoidable, and therefore a per-
fect square billiard is not appropriate for the simulation.
In order to simulate the square billiard formed by the
oxide aperture, we modify the square by rounding off
the corners. With the rounded off square boundary, the
Helmholtz equation can no longer be solved by the
method of separation of variables. We use a numerical
method called expansion method [15] to solve the equa-
tion. Because of symmetry breaking, the eigenfunctions
obtained are much more interesting than those of the per-
fect square billiard. For low order solutions, the patterns
are similar to those of the perfect square billiard. How-
ever, the higher order eigenfunctions are drastically dif-
ferent in structure and very rich patterns appear. It is of
surprising interest that some of the solutions display the
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FIG. 3. The calculated wave functions of the square billiards
modified by rounding off the corners. (a) and (b) are similar to
the observed near-field patterns in Figs. 1 and 2, respectively.
The dashed lines indicate the boundary of the simulation.

FIG. 4 (color). The experimental result for the far-field pat-
tern corresponding to the near-field pattern in Fig. 2.

FIG. 5. The calculated momentum-space wave function cor-
responding to the coordinate-space wave function in Fig. 3(b).
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distorted bouncing-ball and diamond-shaped scars simi-
lar to the experimental results. Figure 3 shows two of the
calculated eigenfunctions that are similar to the observed
near-field patterns in Figs. 1 and 2. Note that the present
modified square billiards always have the high-order ei-
genfunctions demonstrating the distorted bouncing-ball
and diamond-shaped scars, almost irrelevant to the de-
gree of how much the corners are rounded off.

It is worthwhile to mention that Nöckel and Stone [16]
have designed stadium-shaped microcavity lasers and
demonstrated high power directional emission in the
midinfrared wavelength based on some chaotic two-
dimensional billiard dynamics. However, due to the geo-
metrical structure of the laser, only edge emission was
allowed in these deformed microdisk lasers. Therefore, a
comparison between the experimentally determined far-
field pattern and simulation was limited for only one di-
mension. The near-field pattern was not measured because
high-resolution midinfrared detection was not possible.

The optical far-field intensity essentially is the spatial
2D Fourier transform (FT) of the near-field pattern,
while the FT of the coordinate-space wave function cor-
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responds to the momentum-space representation in the
quantum mechanics. Recently, Delande and Sornette [17]
have calculated the acoustic radiation from a stadium-
shaped membrane by applying FT to the eigenfunctions.
Similar calculations focusing on the momentum repre-
sentation of the wave functions were also reported by
Bäcker and Schubert [18]. Both theoretical papers sug-
gested that momentum distribution of a two-dimensional
quantum billiard is actually experimentally observable
and such information can provide a more comprehensive
understanding to the billiard system. Therefore, it is con-
sequentially meaningful to measure the far-field pattern
for the VCSEL devices. Figure 4 shows the experimental
observation of the far-field pattern corresponding to the
diamond-shaped wave function in Fig. 2. It can be clearly
seen that the far-field pattern exhibited some strong in-
tensity lotus flower structure at the corners of the square
and some weak stripes connecting the lotus structure.
This far-field pattern is consistent with the near-field
224102-3



FIG. 6 (color). Experimental results of the near-field and far-
field patterns for the VCSEL device with a stadium-shaped
boundary.
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diamond-shaped scar that apparently was concentrated
along the trajectory traced by a particle bouncing off
the neighboring walls of the square. Figure 5 shows
the momentum-space wave function of the theoretical
diamond-shaped scar shown in Fig. 3. The good agree-
ment between experimental results and theoretical calcu-
lations confirms our physical analysis and validates the
present theoretical model.

Finally, it is worthwhile to clarify that the present
interpretation is based on the assumption that the influ-
ence of carrier dynamics on the transverse pattern near
threshold is negligible. To further justify this assumption,
we fabricated the devices with a shape of Bunimovich
stadium boundary and measured the near-field and far-
field intensities. As shown in Fig. 6, the near-field inten-
sity displays a scarred pattern and the far-field intensity
resembles the calculated results of Refs. [17,18] in appear-
ance. The boundary-shape dependence of the VCSEL
patterns confirms the present interpretation.

In conclusion, we have observed unique near- and far-
field transverse patterns in large aperture VCSELs. A
two-dimensional quantum billiard model is utilized to
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explain the experiments. It turns out the square billiard
with minor modification is adequate to simulate the real
device. Rounding off the corners certainly breaks the
symmetry and introduces coupling of the two originally
independent variables. This symmetry breaking makes
the solution of the high-order eigenfunctions much more
interesting as they display highly graphical patterns. The
observed near-field pattern in the transverse mode appar-
ently can be interpreted as from these solutions. Further-
more, the corresponding far-field patterns can also be
explained by the momentum-space wave functions in
the billiard. The result of this paper also suggests that
large aperture VCSELs are potentially appropriate physi-
cal systems for the quantum chaos study.
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