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Abstract

Java has become the most important language in the Internet area, but its execution performance is severely limited by the true data

dependency inherited from the stack architecture defined by the Sun’s Java Virtual Machine (JVM). To enhance the performance of the JVM,

a stack operations folding mechanism for the picoJava-II processor was proposed by Sun Microsystems to fold 42.3% stack push/pop

instructions. A systematic folding algorithm—Producer, Operator, and Consumer (POC) folding model was proposed in the earlier research

to eliminate up to 82.9% of stack push/pop instructions. The remaining push and pop instructions cannot be folded due to the sequential

checking characteristic of the POC folding model. A new folding algorithm—enhanced POC (EPOC) folding model is proposed in this paper

to further fold the remaining push and pop instructions. In the EPOC folding model, stack push/pop instructions are folded with the proposed

Stack Reorder Buffer (SROB) architecture. With a small SROB size of 584 bits, almost all of the stack push/pop instructions can be folded

with the precise exception handling capability. Statistical data shows that 98.8% of the stack push/pop instructions can be folded, and the

average execution performance speedup of a 4-foldable processor with a 7-byte instruction buffer is 1.74 as compared to a traditional single-

pipelined stack machine without folding. q 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Internet has become the most feasible means of accessing

information and performing electronic transactions. Java [1]

is the most popular language used over the Internet owing to

its portability, compact code size, object-oriented, multi-

threaded nature, and write-once-run-anywhere character-

istics. With these, Java is suitable for smart phones, PDAs,

Internet TVs or other consumer and embedded products.

The specification for a virtual machine that executes Java

bytecodes is called Java Virtual Machine (JVM) [2,3]. JVM

is a stack-based machine with the machine code named

bytecode. The execution performance of JVM is limited by

true data dependency among bytecodes. A means of

avoiding such a limitation, i.e. Stack Operations Folding

[4–6], was proposed by Sun Microsystems. In this paper,

we give the definition of the Stack Operations Folding as

below:

Definition. Stack Operations Folding. The ability to detect

some instructions with true data dependency in the

instruction flow of a stack machine, and execute these

instructions collectively in some way like a single,

compound instruction.

Assume that we want to perform an arithmetic

expression C ¼ A þ B; the four generated bytecodes and

the execution behavior of a Java processor without Stack

Operations Folding is shown in Fig. 1.

According to the JVM specification [2], JVM defines

various runtime data areas that are used during execution of

a program. As shown in Fig. 1, the Local Variable (LV) and

the Operand Stack (OS) are used to store data and partial

results for each execution method. The six dashed lines are

used to represent the accesses of the OS and the three solid

lines are used to indicate the accesses of the LV. All four

bytecodes require thirteen execution cycles in a single-

pipelined Java processor as shown in Fig. 2. The six pipeline

stages are the same as the Sun’s picoJava-II processor. The

abbreviated symbols are F (Instruction Fetch), D (Instruc-

tion Decode), R (Operand Read), E (Execution), C (Cache

Access), and W (Write Back) [6]. The gray ellipses indicate
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the pipeline bubbles introduced by true data dependency

among OS accesses.

In the above example, we can observe that some

bytecodes define some values onto the OS and some

bytecodes that are true dependent on them use those values.

The define-use chain is linked by role of the OS.

Consequently, Stack Operations Folding tries to observe

these true dependence relations among original accesses of

OS and performs direct data linking among decoded

bytecodes instead of multiple accesses of OS. The execution

behavior of a Java processor with Stack Operations Folding

is shown in Fig. 3.

In order to detect the true data dependency among

accesses of the OS, the Stack Operations Folding mechan-

ism requires wider instruction fetcher and decoder to

provide multiple decoded bytecodes in each cycle. This

seems not a good idea for a low-cost oriented Java processor

design. In fact, the JVM itself compensates this by its

compact code size of the stack-based zero-address machine

architecture. Study shows that the average bytecode size is

only 1.8 bytes [4]. Another proof of this is the Sun’s

picoJava-II processor design with the decoder width of 7-

byte to provide the maximum of four bytecodes for folding

check in each cycle [6].

In Fig. 3, if we can decode these four bytecodes

simultaneously in one cycle, we can know all the required

source/destination fields of each bytecode. By comparing all

the source/destination fields, the data dependency relations

can be determined and thus Stack Operations Folding can be

performed. In this example, we can observe that stack push/

pop bytecodes (iload_0, iload_1, and istore_2) either

provide or consume data to/from OS. They do not need

any functional unit to be physically executed. Instead, only

data movements are performed for these bytecodes. The

only one bytecode to be executed is the integer addition

(iadd). As shown in Fig. 4, decoded bytecodes with source/

destination fields are folded together to form the so-called

Folded Bytecode Instruction (FBI) with all true data

dependency among accesses of OS been eliminated. As

shown in Fig. 5, the number of required execution cycles is

five as compared to thirteen without Stack Operations

Folding.

In Fig. 5, we can observe that all four bytecodes are

fetched and decoded together. The stack push/pop byte-

codes are folded to the iadd bytecode and it will fetch the

source operands according to the reassigned source fields.

Similarly, when the iadd is about to write the result back, the

Fig. 1. Execution behavior of a Java Processor without Stack Operations Folding.

Fig. 2. Execution cycles of a six-stage single-pipelined Java processor without Stack Operations Folding.

Fig. 3. Execution behavior of a Java Processor with Stack Operations

Folding.
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reassigned destination field indicates the result to be written

to LV instead of OS. By performing Stack Operations

Folding, a single-pipelined Java processor can break the

theoretically upper bound of the Instructions per Cycle

(IPC) with the maximum value of one. This is the major

contribution for enhancing the execution performance of

Java processors. Various Stack Operations Folding mech-

anisms are proposed to detect as more foldable bytecodes as

possible. In this paper, we will propose an optimal folding

mechanism to fold all foldable bytecodes within Java

methods and shown its highly applicable design.

This paper is organized as follows. Section 2 describes

researches about Stack Operations Folding. Section 3

proposes the EPOC folding model and its corresponding

folding procedures. Section 4 describes the hardware

implementation of the EPOC folding model. Furthermore,

the SROB architecture to keep precise interrupt in the Java

processor is also given. Section 5 shows the trace-driven

simulation environment, benchmarks, and simulation

results. Finally, a conclusion about Stack Operations

Folding is given in Section 6.

2. Related work

Performance of the stack-based JVM suffers mainly from

the sequential accessing of OS. Sun’s solution revealed in

their JavaChip family is the folding technique. The first

implementation of the JVM in hardware is Sun’s picoJava-I

and picoJava-II cores design. The folding technique is

implemented in both picoJava-I and picoJava-II cores with

folding capabilities of up to 2 and 4 bytecodes, respectively

[4–6].

In the Stack Operations Folding researches, we classify

different folding approaches into four categories—continu-

ous-folding with patterns, continuous-folding without

patterns, discontinuous-folding with patterns and discon-

tinuous-folding without patterns, as described in Sections

2.1–2.4.

2.1. Continuous-folding with patterns

By defining various opcode or instruction type combi-

nations, the continuous-folding with patterns can be

implemented using quite simple comparison circuitry.

Researches about continuous-folding with patterns are

parts of our early projects in 1997. In Refs. [7,8], different

folding patterns with different cost/performance issues were

proposed. Vijaykrishnan also proposed similar folding

method in 1998 [9]. These researches proposed different

sets of grouping rules like what Sun’s picoJava-I and

picoJava-II do with limited folding performance. In this

paper, we use the picoJava-II as a representation of the

continuous-folding with patterns.

As described in Sun’s picoJava-II microarchitecture

guide, bytecodes are classified into six types as shown in

Table 1 [6]. The Instruction Folding Unit (IFU) then

examines the top 7 bytes in the instruction buffer to

determine how many instructions can be folded (up to a

maximum of four) according to the IFU grouping patterns as

shown in Table 2 [6].

The main drawback of the continuous-folding with

patterns is that only continuous bytecodes that exactly

match the grouping patterns can be folded. If the sequence

of bytecodes matches no grouping patterns, the bytecodes

will be executed in serial.

2.2. Continuous-folding without patterns

Further folding benefits can be achieved by applying the

Producer, Operator and Consumer (POC) folding model, the

previous research results of our team in 1998 [10]. As shown

in Table 3, bytecodes in the POC folding model are

classified into three types according to the usage of source

Fig. 4. Performing Stack Operations Folding by re-assigning Source/Des-

tination fields of bytecodes.

Fig. 5. Execution cycles of a six-stage single-pipelined Java processor with

Stack Operations Folding.

Table 1

Instruction types in picoJava-II core (cited from Ref. [6])

Types Descriptions

LV A local variable load or load from global register or push constant

OP An operation that uses the top two entries of stack and that produces a one-word result

BG2 An operation that uses the top two entries of stack and breaks the group

BG1 An operation that uses only the topmost entry of stack and breaks the group

MEM A local variable store, global register store, and memory load

NF A non-foldable instruction
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and destination storage. ‘O’ type instructions are further

divided into four sub-types according to their execution

behavior.

In the POC folding model, foldability check is performed

by examining each pair of consecutive bytecodes. By

applying the POC folding rules, the two bytecodes may be

combined into a new POC type, which is used in further

foldability check with the following bytecodes. Conse-

quently, the POC folding model is quite different from

previous one because there is no fixed folding patterns. The

POC folding rules can be represented as a state diagram

shown in Fig. 6. In some states the P and C type instructions

can be repeatedly added according to the source or

destination operands of the following O or C type

bytecodes. If more Ps are provided then the O or C need,

the extra Ps will be executed sequentially.

For example, if the bytecode sequence is iload_2,

iconst_2, iload 5, iadd, imul, istore 6, their correspond-

ing POC types are P, P, P, OE, OE, and C. By applying

the POC folding rules, the first P must be executed

lonely. The following three and the last two bytecodes

will become two FBIs, which results the Issued

Instructions Per Cycle (IIPC) of two for a single

pipelined architecture. In this case, it is obvious that the

first P is the first operand prepared for the imul

bytecode, and the result of the iadd bytecode is the

second. If we can fold the first P with the last two

bytecodes, then these six bytecodes can be issued in

two cycles with the IIPC of three. This could be done

using discontinuous-folding mechanisms in Sections 2.3

and 2.4.

2.3. Discontinuous-folding with patterns

The researches of discontinuous-folding with patterns

were proposed in September 2000 with the name of the so-

called advanced POC model [11,12]. Based on the POC

folding model, four new folding sequence types are further

added to fold the discontinuous bytecodes. As opposed to

the original POC folding model, the number of sub-types for

the O type bytecodes is reduced from four to two. The newly

defined subtypes are OP and OC that represents the

producible and consumable operators, respectively. The

occurrence percentages for each type used in the advanced

POC model are shown in Table 4.

As shown in Fig. 7, the execution order is rearranged

according to data dependency. Consequently, out-of-order

execution occurs except in the sequence type III. Statistical

data shows that the percentage of both types II and III is

nearly zero [11,12]. The proposed folding patterns with the

percentages of the corresponding occurrences are shown in

Table 5.

There are some mistakes in the advanced POC model. As

shown in Table 4, the occurrence percentage of the OP type

and OC type bytecodes is 26.1%. Researches show that the

dynamic frequency of O type instruction is about 50% [13,

Table 2

Grouping patterns in picoJava-II core (cited from Ref. [6])

1st Bytecode 2nd Bytecode 3rd Bytecode 4th Bytecode

LV LV OP MEM

LV LV OP

LV LV BG2

LV OP MEM

LV BG2

LV BG1

LV OP

LV MEM

OP MEM

Table 3

POC types

POC Descriptions Occurrence (in %)

P A bytecode that pushes constant or loads variable from LV to OS 41.09

OE A bytecode that will be executed in functional units 21.29

OB A bytecode that conditionally branches or jumps to target address 12.90

OC A bytecode that will be executed in micro-coded ROM or trapped as a sequence of bytecodes 20.22

OT A bytecode that will force the folding check to be terminated for the difficulty in performing folding 2.30

C A bytecode that pops the value from OS and stores it into LV 2.29

Fig. 6. Folding rules for POC Folding Model.
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14]. The difference may be caused by wrong definition of

the POC types for each bytecode. As an example of the C

type bytecodes in Table 4, the lastore bytecode is a memory

array store instruction with a long data width of 64-bit [2].

Three source operands should be popped from the top of

stack first and the array address is generated to perform the

memory store operation. It is not applicable to load the data

from memory (laload: P), compute the result (ladd: OP) and

store to memory (lastore: C) within an instruction cycle.

Furthermore, many frequently occurred patterns such as P–

OP and P–P–OP are not included in Table 5. This will lead

the folding performance degrade dramatically and even

worse than the original POC folding model. For the

correctness of the paper, we do not show their folding

performance in Section 5.

2.4. Discontinuous-folding without patterns

In this paper, we will propose an optimal folding

mechanism named as an Enhanced POC (EPOC) folding

model [15]. Without defining any folding pattern, the EPOC

folding model can fold almost all the possible combinations

in Java bytecode sequences using the proposed SROB

architecture. Unlike the out-of-order execution manner in

the advanced POC model, the bytecodes are issued in-order

to the SROB in the EPOC folding model. In the following

section, the EPOC folding mechanism is shown with an

overview of the proposed Java processor architecture.

3. The EPOC folding model and overview of the

proposed Java processor architecture

The POC folding model handles the continuous folding

well, and the EPOC folding model is designed to further

fold the discontinuous Ps with their corresponding O or C

type bytecodes. In the following two subsections, we will

introduce the EPOC folding rules and the overview of the

proposed Java processor architecture.

3.1. EPOC folding rules

In the POC folding model, the valid folding combi-

nations can be expressed as a regular expression as follows:

PC þ PþOE þ PþOB þ PþOC þ PpOECþ þ PpOCCþ
� �

According to the regular expression, the folding rules can be

simplified to the following two rules:

† P type bytecode can be folded into the following adjacent

C or O type bytecode except OT type bytecode.

† C type bytecode can be folded into previous adjacent OE

or OC type bytecode.

In the original POC folding model, if the number of Ps is

greater than the requirement of the corresponding O or C

type bytecode, the extra Ps are issued sequentially. In the

EPOC folding model, the extra Ps are logged in the SROB

instead of issuing them sequentially. The processing steps of

the EPOC folding model are shown in Fig. 8 with the

following symbols as described below:

† SROB.WP #: the number of write ports of the SROB.

† FBI.Source #: the number of source operands required

for an O or C type bytecode.

† FBI.Result #: the number of results generated by an OE or

OC type bytecode.

In Fig. 8, if the number of Ps in the instruction buffer is

greater than the number of write ports of the SROB, these Ps

will be logged in-order to SROB for further folding check in

Table 4

POC types in the Advanced POC Model (cited from Ref. [12])

Type Definition Example Percentage

P Producers iconst_1, dload_3 59.5

OP Producible operators iadd, fcmpl 22.0

OC Consumable operators if_icmpeq, if_acmpne 4.1

C Consumers lastore, istore_0 14.4

Fig. 7. New instruction sequence types in the Advanced POC Model (cited from Ref. [12]).

Table 5

Folding patterns in the Advanced POC Model (cited from Ref. [12])

Instruction pattern Percentage Instruction pattern Percentage

P–C 31.7 P–P–OP–OC 0.6

P–OP–C 1.0 P–P–P–C 10.7

P–P–C 3.6 P–P–P–OP–C 8.4

P–P–OC 18.9 P–P–P–OP–OC 2.6

P–OP–OP–C 0.6 P–OP–P–OP–C 0.1

P–P–OP–C 21.2 P–P–P–P–OP–C 0.5
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the following cycles. The source values of these Ps will be

fetched in the operand fetch stage and this prevents the anti-

dependency from occurring on these Ps. Further description

about the SROB will be shown in Section 4. The folding-

related units of both P and C type bytecodes are shown in

grayscale. If a P/C type bytecode can be folded into an FBI,

the EPOC folding model just replaces the source/destination

field of the FBI by the P/C type’s source/destination tag.

3.2. Overview of the proposed Java processor architecture

In our Java processor architecture as shown in Fig. 9, we

use six pipeline stages similar to picoJava-II’s design [6].

The six pipeline stages are described below in the sequence

in which they occur:

† Fetch. The Instruction Fetch Unit fetches bytecodes

either from the instruction cache or from external

memory.

Fig. 8. Flow Chart for the EPOC Folding Rules Check.

Fig. 9. Block diagram of the proposed Java architecture with EPOC folding.
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† Decode and Fold. The Instruction Decode Unit decodes

the bytecodes to generate information like POC types

and tags. POC information is sent to EPOC Folding Unit

for folding rules check.

† Operands Fetch. The Operands Log and Operands Fetch

Unit fetches the operands from SROB first. If the

condition of SROB miss occurs, it will fetch the operands

from OS or LV.

† Execution. The Integer/Floating Point Execution Unit

either executes arithmetic or calculates the effective

address for memory load/store bytecodes.

† Memory. Data cache access for object fields and arrays.

† Write Back and Retire. Execution result is written back to

SROB. The bottom entry of the SROB is retired in each

cycle.

In the SROB, the read/write controls are implemented in

the SROB Management Unit. Each bytecode is logged in-

order to the SROB in the Operands Fetch stage. If an exception

occurs for some bytecodes in the pipeline, the exception bit in

the SROB will be set. The Retiring/Exception Handling Unit

will examine this bit at the bottom entry of the SROB. The

Stack Management Unit is used to maintain the data in the on-

chip Operand Stack with the filling/spilling mechanism like

what picoJava-II processor does [6].

4. Design of the Java processor architecture with EPOC

folding

According to the simulation results, the decoder width,

foldability and other parameters for the Java processor

architecture with the EPOC folding design are proposed.

Similar with the design in picoJava-II processor, the

decoder examines first 7 bytes of the instruction buffer in

our Java processor architecture [6]. As shown in Fig. 10, the

first 7 bytes of the instruction buffer are sent to 7 decoders in

parallel to generate the decoded information like control

signals (OP), POC type information (POC), and bytecode

length information (L). Since the first byte in the instruction

Fig. 10. Java processor architecture with the EPOC Folding.
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buffer is designed to be a valid opcode field of Java

bytecodes, the length information of the first bytecode will

indicate the location of the next bytecode. If byte i is a an

opcode and the next location of a valid opcode is j; each

decoded information from i þ 1 to j 2 1 is cleared and the

values from byte i þ 1 to j 2 1 are assigned to the

immediate operands (Imm) of the byte i: For each valid

opcode, the tag field (Tag) is assigned for each data

generated by the opcode.

The four boxes shown in grayscale is the core folding

units for the EPOC folding model. According to the POC

information generated by the bytecode decoders, the

Leading O/C Detector determines where the first O or C

type bytecode is and generates the select inputs for the P, O,

and C type multiplexers. After the number of folded

bytecodes is determined, the value of next program counter

address can also be generated. Simple priority encoders are

enough to implement the function of Leading O/C Detector.

If there are extra Ps in the EPOC folding check procedure,

they are sent to the P Tag Logger and updated into the

SROB in the original order. The SROB consists of seven

fields as described below. The required number of bits for

each field is shown in the parentheses after the field name.

† V field (1). This field indicates that whether an entry in

the SROB is valid or not.

† PC field (32). This field is to keep the program counter

for the precise interrupt consideration.

† Tag field (5). This field is used as an identification

number of the data in the dependency chain. For a P type

bytecode, the Tag field is used to indicate the source from

one of LV, Constant Register (CR), or immediate value.

For an O type bytecode, the Tag field is used to indicate

the destination of OS. For a C type bytecode, the Tag

field is used to indicate the destination of the LV.

† Value field (32). This field is the resulting value of the

bytecode.

† VV field (1). This field is used to indicate whether the

result value in the Value field is valid or not.

† E field (1). This field is used to indicate the exception

status for the corresponding bytecode. If exception

occurs for one bytecode, this field is set to 1.

† p/oc field (1). This field is used to indicate the POC type

for the corresponding bytecode. Upon an exception

condition is examined in the Retiring/Exception Hand-

ling Unit, the p/oc field is used to indicate whether the

Value field is required to restore to the LV.

A simple program slice is shown in Table 6 to

demonstrate the operation of the EPOC folding with

SROB architecture. Three Ps who provide source operands

but not used immediately by O or C type bytecodes are

shown in bold italic font with subscripts from a to c. The O

type bytecodes with mOn notation means that it needs m

source operands and produces n results from/to the OS. In

the original POC folding model, the Pa through Pc will be

issued in-order. Bytecodes 4–6 form a FBI and the number

of total execution cycles is six.

In the EPOC folding model, if we assume that the

number of write ports of SROB is four, the bytecodes 1–4

will be logged in-order to the SROB in the first cycle.

Bytecodes 5 and 6 will be logged into the SROB in the

second cycle while the first four Ps are in the Operands

Fetch stage. EPOC folding is done by passing the value in

SROB to bytecode 6. In the third cycle, the Pc will be folded

into bytecode 7. Finally, both Pa and Pb will be folded into

bytecode 8 in the fourth cycle.

With the SROB design, both data forwarding and precise

exception are done. Due to the simplicity of the SROB, the

required storage cost for an n-entry SROB is ð1 þ 32 þ 5 þ

32 þ 1 þ 1 þ 1Þ £ n bits. Simulation data shows that 8

entries (584 bits) are enough to achieve the proposed

performance.

Table 6

An example program slice and the corresponding POC types

Instruction # Bytecode POC types

1 aload_1 Pa

2 iload_3 Pb

3 aload_1 Pc

4 iload_3 P

5 iconst_1 P

6 Iadd 2O1

7 Iaload 2O1

8 Iastore 2O0

Source statement: a½j� ¼ a½j þ 1�:

Table 7

Dynamic bytecode counts of SPECjvm98 Benchmark Suite

Trace names Bytecode counts (million)

compress 1137

db 74

jack 341

javac 63

jess 121

mpegaudio-3 1220

raytracer 160

Table 8

Occurrence percentages of the POC types

Trace names P OE OB OC OT OALL C

compress 40.02 26.24 8.54 19.61 1.39 55.77 4.21

db 44.14 20.48 13.51 14.13 5.63 53.76 2.10

jack 32.67 25.04 13.10 27.87 0.46 66.48 0.85

javac 41.82 15.00 14.76 21.94 3.31 55.01 3.16

jess 44.00 9.31 19.78 20.72 2.43 52.23 3.77

mpegaudio-3 45.61 38.00 4.20 8.99 1.85 53.04 1.35

raytracer 39.35 14.28 16.44 28.27 1.03 60.03 0.62

Average 41.09 21.19 12.90 20.22 2.30 56.62 2.29
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5. Simulation results

By modifying the Sun’s JDK Virtual Machine [16],

runtime bytecode traces are generated when the bench-

mark program is running. In this research, we developed

a benchmark profiler and a trace-driven simulator with

three different folding models for our performance study.

The three different folding models include picoJava-II,

POC and EPOC folding models. We use the SPECjvm98

benchmark as our simulation source data. There are three

input data set scales for the SPECjvm98 benchmarks: s1,

s10, and s100 [17]. In this paper, we use s10 data set as

the simulation basis. The number of bytecodes in the

traces for the SPECjvm98 benchmarks is collected by the

benchmark profiler as shown in Table 7. The detailed

occurrence percentages for each type of bytecodes are

shown in Table 8.

In Table 8, the average occurrence percentage for P

and C type bytecodes are 43.38%. Theoretically speak-

ing, if all of the P and C type bytecodes are folded, the

number of bytecodes to be executed will be reduced to

56.62% of the original traces. Reducing the number

of bytecodes to be executed results in the increase of

average number of IIPC from 1 to the maximum of

about 1.77 with the assumption of one cycle execution

for each bytecode. In practice, unlike the P type

bytecodes that could be folded completely, not all of

the C type bytecodes could be folded. The only three

foldable combinations for the C type bytecodes are

P þ C, OE þ C and OC þ C. In the case of P þ C

folding, the P type bytecode is folded into the C type

bytecode to write the result back to the LV. Conse-

quently, only the C type bytecodes in the OE þ C and

OC þ C combination are treated as folded. In the case of

C type bytecodes, only 40% (FRC) of them could be

folded. This also indicates that the maximum perform-

ance speedup of an optimal folding mechanism can be

derived from the following formula. According to this

formula, the upper bound of speedup for the SPECjvm98

benchmark is 1.74 if all foldable P and C type bytecodes

Fig. 11. Percentages of Folded P Type bytecodes.

Fig. 12. Percentages of Folded C Type bytecodes.
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are folded.

Speedup ¼
CyclesP þ CyclesO þ CyclesC

CyclesPð1 2 FPPÞ þ CyclesO þ CyclesCð1 2 FRCFPCÞ

where

Cyclesx ¼ Execution Cycles

FPx ¼ Folded Percentage for x type bytecodes

FRC ¼ Max Foldable Ratio for C

8>><
>>:

The following simulation results are gathered using the

parameter of a 7-byte instruction buffer and an 8-entry

SROB. As shown in Fig. 11, the percentages of folded P

type operations for each folding model are compared.

For POC and EPOC folding model, the foldability with 2,

3, 4 and unlimited number of bytecodes that can be folded

together are simulated. Results show that 3-foldable is

enough for both POC and EPOC folding models if we want

to fold P type bytecodes only. With the information from

Table 8, the average occurrence percentage of P type

bytecodes is 41.09% in the whole program. Consequently,

the Java processor would execute 82.8, 66.4 and 59.5% of

the original bytecodes with the picoJava-II, 3-foldable POC

and 3-foldable EPOC folding mechanisms, respectively.

In Fig. 12, the percentages of folded C type bytecodes are

shown. The average occurrence percentage of C type

bytecodes is far less than the occurrence percentage of P type

bytecodes. Architecture designers of Java processors may treat

the folding circuitry for C type bytecodes as a design option.

Simulation shows that using a 4-foldable POC or EPOC

folding mechanism can fold all the foldable C type bytecodes.

Fig. 13 shows the percentages of all folded P and C type

bytecodes. If the POC and the EPOC folding models can

fold up to four bytecodes like picoJava-II, the average

percentages of folded stack operations are 42.32, 82.90 and

98.83% for the folding mechanism of picoJava-II, POC and

EPOC folding model, respectively.

The numbers of IIPC for a single-pipelined Java

processor architecture are shown in Fig. 14. The average

numbers of IIPC are 1.25, 1.54 and 1.74 for the folding

mechanism of picoJava-II, POC and EPOC folding model,

Fig. 13. Percentages of Folded P and C Type bytecodes.

Fig. 14. Issued instructions per cycle for each Folding Model.
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respectively. As mentioned at the beginning of this section,

the average upper bound of IIPC is 1.74. This reveals that

the EPOC folding model achieves the optimal folding

speedup as compared to all other folding models.

6. Conclusion

In this paper, we have proposed the EPOC folding model

based on the previously proposed POC folding model.

Discontinuous-folding has shown more powerful and over-

rides the continuous-folding used in picoJava-II. Further-

more, the folding mechanism with patterns is shown that is

more restricted than the one without patterns. With the

EPOC folding model, the folding ratio is higher than the

picoJava-II for 133%.

The performance enhancement from POC to EPOC

folding model benefits mainly from the foldability of

discontinuous P type bytecodes. The 4-foldable strategy

which folds up to four bytecodes for POC and EPOC folding

model can eliminate 82.90 and 98.83% P and C type

bytecodes, respectively. For all the bytecodes, the percen-

tages of eliminated bytecodes for POC and EPOC are 36 and

43%, respectively. In other words, less than 60% of

bytecodes should be executed by the Java processor with

the EPOC folding model.

The hardware implementation of the EPOC folding model

is shown easily to be integrated into the decoding stage using

parallel priority encoders to generate the tags selection fields

of the FBI within constant delay time. The SROB is proposed

to meet the precise exception requirement in modern

processors. With the SROB size of 584 bits, data forwarding

is also done using the tag field to prevent the pipeline from

stalling. In our future research, the SROB will play an

important role in a superscalar Java processor. By using the

EPOC folding model with SROB, multiple FBIs might be

issued in parallel to exploit higher ILP with lower hardware

cost as compared to traditional superscalar processors.
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