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On the Singularity Induced by
Boundary Conditions in a
Third-Order Thick Plate Theory
This paper thoroughly examines the singularity of stress resultants of the form r2jF~u!
for 0,j<1 as r→0 (Williams-type singularity) at the vertex of an isotropic thick plat
the singularity is caused by homogeneous boundary conditions around the verte
eigenfunction expansion is applied to derive the first known asymptotic solution for
placement components, from the equilibrium equations of Reddy’s third-order shea
formation plate theory. The characteristic equations for determining the singularitie
stress resultants are presented for ten sets of boundary conditions. These charact
equations are independent of the thickness of the plate, Young’s modulus, and
modulus, but some do depend on Poisson’s ratio. The singularity orders of stress r
ants for various boundary conditions are expressed in graphic form as a function o
vertex angle. The characteristic equations obtained herein are compared with those
classic plate theory and first-order shear deformation plate theory. Comparison re
indicate that different plate theories yield different singular behavior for stress resulta
Only the vertex with simply supported radial edges (S(I)–S(I) boundary condition) exhib-
its the same singular behavior according to all these three plate theories.
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Introduction
Obtaining accurate numerical solutions to many elasticity pr

lems requires knowledge of the singular behavior of stress c
ponents in the neighborhood of singular points in the domain
the problem under consideration. For example, analyzing cr
~or V-notch! problems using finite element approaches usually
volves shape functions to describe correctly the singular beha
of stresses at the crack tip~@1,2#!. The admissible functions of the
Ritz method include the corner functions that precisely desc
the moment singularities at the notches or corners in vibra
problems of thin plates with V-notches or with re-entrant corne
to accelerate convergence and increase the accuracy of the
tion ~@3,4#!.

Many papers have addressed the stress singularities at s
corners based on plane elasticity theory~i.e., @5–8#! and three-
dimensional elasticity theory~@9,10#!. However, the stress singu
larities for different plate theories have received lesser attent
Williams @11# first investigated the stress singularities due
boundary conditions in the angular corner of isotropic thin pla
under bending. Williams and Owens@12# and Williams and Chap-
kis @13# extended this work to thin plates with varying flexur
rigidity and with polarly orthotropic material properties, respe
tively. Rao @14# considered the singularities at the interface c
ners for bi-material thin plates, and Ojikutu, Low, and Scott@15#
investigated stress singularities at the apex of a laminated c
posite thin plate with simply supported radial edges. Huang e
@16# discussed the singularities of moments and shear forces a
apex of a sector plate with simply supported radial edges in
exact solution for vibrations of such a plate. Sinclair@17# consid-
ered logarithmic stress singularities in thin plate theory.

Based on the first-order shear deformation plate theory, Bu
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Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
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ICS.
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and Sinclair@18# investigated the stress singularities at corn
due to six sets of homogeneous boundary conditions by introd
ing a stress potential. Huang et al.@19# examined the singularities
of moments and shear forces at the vertex of a Mindlin sec
plate with simply supported radial edges, by establishing an e
solution in terms of Bessel functions for the vibrations of such
plate. Recently, Huang@20# comprehensively investigated th
stress singularities of moments and shear forces at corners ca
by ten sets of homogeneous boundary conditions by adopting
and Chaudhuri’s technique~@10#! to directly solve the equilibrium
equations in terms of displacement components. Comparing
results with the exact solution given by Huang et al.@19# reveals
that the singularity orders for moments and shear forces in H
ng’s results~@20#! are consistent with those in the exact soluti
for a simply supported corner, while the solution proposed
Burton and Sinclair@18# is consistent only for moment singular
ties but not for shear force singularities.

Comparing published work based on classical plate theory
on first-order shear deformation plate theory reveals that diffe
singularity orders for moments and shear forces are suggeste
different plate theories. Consequently, this study aims primarily
investigate for the first time, what results are suggested by
third-order shear deformation thick plate theory. This study
plies Reddy’s refined plate theory~@21#!. The theory is equivalent
to other third-order shear deformation plate theories proposed
Schmidt@22# and Krishna Murty@23#. This work considers only
the Williams-type stress singularities at a corner caused by var
boundary conditions but does not consider logarithmic stress
gularities as the former singularities are more often encounte
than the latter. The eigenfunction expansion methodology p
posed by Hartranft and Sih@9# for three-dimensional elasticity
problems is adopted to determine the asymptotic displacem
field around the corner by solving the equilibrium equations
terms of displacement components in Reddy’s refined p
theory. The characteristic equations for determining the singu
ity orders of stress resultants are established for ten sets of bo
ary conditions around a corner. Finally, the singular behavior
stress resultants obtained in this investigation is compared
those determined from the classic plate theory, first-order sh
deformation plate theory, and three-dimensional elasticity theo
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Basic Formulation
For a sector plate with cylindrical coordinates shown in Fig.

the displacement field for the third-order plate theory proposed
Reddy@21# is given as

u5zFc r2
4

3 S z

hD 2

~c r1w,r !G , (1)

v5zFcu2
4

3 S z

hD 2S cu1
1

r
w,uD G , (2)

w5w~r ,u!, (3)

where the subscript ‘‘,j ’’ refers to a partial differential with re-
spect to independent variablej; u, v, andw denote the displace
ments of a point~r, u, z! along ther, u, andz directions, whilec r
andcu are the rotations of the midplane normal in the radial a
circumferential directions, respectively. This displacement fi
leads to zero shear stresses,szr and szu , on the plate top and
bottom surfaces.

By using the variational method, one can develop the equi
rium equations and consistent boundary conditions. The equ
rium equations without external loading in terms of the str
resultants are

C1S Pr ,rr 1
2

r
Pr ,r1

1

r 2 Pu,uu2
1

r
Pu,r1

2

r
Pru,ru1

2

r 2 Pru,uD1
Q̄r

r

1Q̄r ,r1
1

r
Q̄u,u50, (4)

M̄ r ,r1
M̄ r

r
2

M̄ u

r
1

1

r
M̄ ru,u2Q̄r50, (5)

1

r
M̄ u,u1M̄ ru,r1

2M̄ ru

r
2Q̄u50, (6)

C154/3h2, C254/h2, M̄ ru5Mru2C1Pru , M̄b5Mb2C1Pb ,
Q̄b5Qb2C2Rb , h is the thickness of plate and subscriptb de-
notesr or u. Furthermore, the radial boundary conditions~at u
5a! should specify

cu or M̄ u , c r or M̄ ru ,

w or Q̄u1C1S 2

r
Pru12Pru,r1

1

r
Pu,uD , and

w,u

r
or Pu .

(7)

The circumferential boundary conditions~at r 5R! should
prescribe

Fig. 1 Coordinate system and positive displacement compo-
nents for a sector plate
Journal of Applied Mechanics
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cu or M̄ ru , c r or M̄ r ,

w or Q̄r1C1S Pr

r
1Pr ,r1

2

r
Pru,u2

Pu

r D , and w,r or Pr .

(8)

The details of derivation for the equilibrium equations and bou
ary conditions in Cartesian coordinates can be found in Red
book @24#. The stress resultants in above equations are relate
stress components by

HQb

Rb
J 5E

2h/2

h/2

sbzH1
zJ dz, (9a)

H Mb

Pb
J 5E

2h/2

h/2

sbbH z
z3J dz, (9b)

H Mru

Pru
J 5E

2h/2

h/2

s ruH z
z3J dz. (9c)

For an isotropic and elastic plate, the relationships between
stress resultants and displacement components are establish
using strain-displacement and stress-strain relationships. The

Qr5
2Gh

3
~c r1w,r !, Qu5

2Gh

3 S cu1
1

r
w,uD ,

Rr5
Gh3

30
~c r1w,r !, Ru5

Gh3

30 S cu1
1

r
w,uD ,

Mru5Gh3F 1

12 S cu,r2
1

r
cu1

1

r
c r ,uD

2
1

60r S 2cu2
2

r
w,u1c r ,u12w,ru1rcu,r D G ,

Mr5
Eh3

12n2 H S 1

15
c r ,r2

1

60
w,rr D

1
n

r F 1

15
~c r1cu,u!2

1

60 S w,r1
1

r
w,uuD G J ,

M u5
Eh3

12n2 H 1

r F 1

15
~c r1cu,u!2

1

60 S w,r1
1

r
w,uuD G

1nS 1

15
c r ,r2

1

60
w,rr D J ,

Pru5
Gh5

1680F16cu,r2
16

r
cu1

16

r
c r ,u2

10

r S w,ru2
w,u

r D G ,
Pr5

Eh2

~12n2! H c r ,r

105
2

w,rr

336

1
n

r F 1

80
~c r1cu,u!2

1

336S cu,u1c r1w,r1
w,uu

r D G J ,

Pu5
Eh5

~12n2! H 1

r F 1

105
~c r1cu,u!2

1

336S w,r1
w,uu

r D G
1nS c r ,r

105
2

w,rr

336D J , (10)

whereE is Young’s modulus;G is the shear modulus, andn is
Poisson’s ratio.

Substituting Eq.~10! into Eqs. ~4!–~6! with careful arrange-
ment yields the equilibrium equations in terms of the displa
ment components:
NOVEMBER 2002, Vol. 69 Õ 801
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c r ,rrr 1
2

r
c r ,rr 1

1

r 2 c r ,ruu1
1

r 3 c r ,uu2
1

r 2 c r ,r1
1

r 3 c r1
1

r 3 cu,uuu

1
1

r
cu,rr u2

1

r 2 cu,ru1
1

r 3 cu,u2
5

16 S w,rrrr 1
2

r
w,rrr

1
2

r 2 w,rr uu2
1

r 2 w,rr 2
2

r 3 w,ruu1
1

r 3 w,r1
1

r 4 w,uuuu

1
4

r 4 w,uuD1
21~12n!

h2 S c r ,r1
1

r
c r1

1

r
cu,u1w,rr 1

1

r
w,r

1
1

r 2 w,uuD50, (11)

c r ,rr 1S 1

r
c r D

,r

1
12n

2

1

r 2 c r ,uu2
32n

2

1

r 2 cu,u1
11n

2

1

r
cu,ru

2
4

17 S w,rrr 1
1

r
w,rr 1

1

r 2 w,ruu2
1

r 2 w,r2
2

r 3 w,uuD
2

84~12n!

17h2 ~c r1w,r !50, (12)

11n

2

1

r
c r ,ru1

32n

2

1

r 2 c r ,u1
12n

2
cu,rr 1

12n

2 S 1

r
cuD

,r

1
1

r 2 cu,uu2
4

17 S 1

r
w,rr u1

1

r 2 w,ru1
1

r 3 w,uuuD
2

84~12n!

17h2 S cu1
1

r
w,uD50. (13)

Construction of Series Solution
The eigenfunction expansion approach proposed by Hartr

and Sih@9# for three-dimensional elasticity problems is adopt
herein to find the solution of Eqs.~11!–~13!. The displacement
components can be expressed in terms of the following serie

w~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n11Wn
~m!~u,lm!, (14a)

c r~r ,u!5 (
m50

`

(
n50,2,

`

r lm1nCn
~m!~u,lm!, (14b)

cu~r ,u!5 (
m50

`

(
n50,2,

`

r lm1nFn
~m!~u,lm!, (14c)

where the characteristic valueslm are assumed to be constan
and can be complex numbers. Notably, oddn in Eqs.~14! will not
produce any additional solution such that they are not consid
in Eqs.~14!.

The real part oflm must exceed zero to satisfy the regular
conditions at the vertex of the sector plate. The regularity con
tions require thatcu , c r , w, andw,r are finite asr approaches
zero. As a result, the solution form given in Eqs.~14! with the real
part of lm less than one leads to singularities ofMr , M u , Mru ,
Pr , Pu , and Pru , which is observed from the relationships b
tween stress resultants and displacement components given i
~10!. However, no singularity for shear forces~Qr and Qu!, Rr
andRu will be produced from the solution.

Substituting Eqs.~14! into Eqs.~11!–~13! yields
802 Õ Vol. 69, NOVEMBER 2002
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(
m50

`

(
n50,2,

`

r lm1n23H ~lmn11!Cn,uu
~m! 1~lm1n21!2~lm1n11!

3Cn
~m!1Fn,uuu

~m! 1~lm1n21!2Fn,u
~m!2

5

16
@~lm1n21!2

1~lm1n11!2Wn
~m!12~~lm1n!211!Wn,uu

~m! 1Wn,uuuu
~m! #J

1
21~12n!

h2 r lm1n21$~lm1n11!Cn
~m!1Fn,u

~m!1Wn,uu
~m!

1~lm1n11!2Wn
~m!%50 (15)

(
m50

`

(
n50,2,

`

r lm1n22H 12n

2
Cn,uu

~m! 1@~lm1n!221!GCn
~m!

1F11n

2
~lm1n!2

32n

2 GFn,u
~m!2

4

17
@~lm1n11!2

3~lm1n21!Wn
~m!1~lm1n21!Wn,uu

~m! #

2
84~12n!

17h2 r lm1n$Cn
~m!1~lm1n11!Wn

~m!%50, (16)

(
m50

`

(
n50,2,

`

r lm1n22H F11n

2
~lm1n!1

32n

2 GCn,u
~m!1Fn,uu

~m!

1
12n

2
@~lm1n!221!GFn

~m!2
4

17
@~lm1n11!2Wn,u

~m!

1Wn,uuu
~m! #%2

84~12n!

17h2 r lm1n$Fn
~m!1Wn,u

~m!%50. (17)

Satisfying Eqs.~15!–~17! leads to the coefficients ofr with dif-
ferent orders equal to zero. Subsequently, a set of recurrent
tionships amongWn

(m) , Cn
(m) , Fn

(m) and their previous values ca
be attained and expressed as

~lm1n13!Cn12,uu
~m! 1~lm1n11!2~lm1n13!Cn12

~m! 1Fn12,uuu
~m!

1~lm1n11!2Fn12,u
~m! 2

5

16
@~lm1n11!2~lm1n13!2

3Wn12
~m! 12~~lm1n12!211!Wn12,uu

~m! 1Wn12,uuuu
~m! #

52
21~12n!

h2 $~lm1n11!Cn
~m!1Fn,u

~m!1Wn,uu
~m!

1~lm1n11!2Wn
~m!%, (18)

@~lm1n12!221#Cn12
~m! 1

12n

2
Cn12,uu

~m! 2
32n

2
Fn12,u

~m!

1
11n

2
~lm1n12!Fn12,u

~m! 2
4

17
@~lm1n13!2

3~lm1n11!Wn12
~m! 1~lm1n11!Wn12,uu

~m! #

5
84~12n!

17h2 @Cn
~m!1~lm1n11!Wn

~m!#, (19)

F11n

2
~lm1n12!1

32n

2 GCn12,u
~m! 1

12n

2
@~lm1n12!221#

3Fn12
~m! 1Fn12,uu

~m! 2
4

17
@~lm1n13!2Wn12,u

~m! 1Wn12,uuu
~m! #

5
84~12n!

17h2 ~Fn
~m!1Wn,u

~m!!. (20)
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Furthermore, one can establish the following equations from
coefficients of the lowest order ofr in Eqs.~15!–~17!:

~lm11!C0,uu
~m! 1~lm21!2~lm11!C0

~m!1F0,uuu
~m! 1~lm21!2F0,u

~m!

2
5

16
@~lm21!2~lm11!2W0

~m!12~lm
2 11!W0,uu

~m! 1W0,uuuu
~m! #

50, (21)

~lm
2 21!C0

~m!1
12n

2
C0,uu

~m! 2
32n

2
F0,u

~m!1
~11n!lm

2
F0,u

~m!

2
4

17
@~lm11!2~lm21!W0

~m!1~lm21!W0,uu
~m! #50,

(22)

S ~11n!lm

2
1

32n

2 DC0,u
~m!1

12n

2
~lm

2 21!F0
~m!1F0,uu

~m!

2
4

17
@~lm11!2W0,u

~m!1W0,uuu
~m! #50. (23)

It is easy to find that the general solution for the set of ordin
differential equations given by Eqs.~21!–~23! is

F0
~m!~u,lm!5B0 cos~lm11!u1B1 sin~lm11!u

1B2 cos~lm21!u1B3 sin~lm21!u, (24a)

C0
~m!~u,lm!52B1 cos~lm11!u1B0 sin~lm11!u

1A2 cos~lm21!u1A3 sin~lm21!u, (24b)

W0
~m!~u,lm!5A0 cos~lm11!u1A1 sin~lm11!u

1~k1A21k2B3!cos~lm21!u

1~k1A32k2B2!sin~lm21!u, (24c)

where

k15
17

16lm
S ~11n!lm

2
1

32n

2 D ,

k25
17

16lm
S ~11n!lm

2
2

32n

2 D ,

andAi andBi ( i 51,2,3,4) are coefficients to be determined fro
boundary conditions.

To establish the complete series solution for equilibrium eq
tions ~i.e., Eqs.~11!–~13!!, one has to determinelm and the rela-
tions amongAi andBi in Eqs.~24! from the boundary conditions
along radial edges. Then, one finds the solutions forFn

(m) , Cn
(m) ,

and Wn
(m) with n.1 from Eqs. ~18!–~20! and boundary

conditions.
Notably, one may construct the series solution by starting w

assuming the following solution form:

w~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n1 l 1W̄n
~m!~u,lm!, (25a)

c r~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n1 l 2C̄n
~m!~u,lm!, (25b)

cu~r ,u!5 (
m50

`

(
n50,2,

`

r lm1n1 l 3F̄n
~m!~u,lm!, (25c)

where l i ( i 51,2,3) can be arbitrary integers, but at least one
them is zero. Following the above procedure, one will find
solution form given by Eqs.~14! is the only one that may yield
Williams-type stress singularities. Furthermore, there are poss
Journal of Applied Mechanics
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solutions involving logarithmic function ofr leading to logarith-
mic singularities for stress resultants at the vertex of a sector p
which are out of the scope of this work and will not be inves
gated here. The readers who are interested in the logarithmic
gularities may refer to Dempsey and Sinclair@7# and Sinclair@17#.

Characteristic Equations and Corner Functions
To determine Williams-type stress singularities at the vertex

a sector plate caused by homogeneous boundary conditions
only needs the asymptotic solution with the lowest order ofr in
the series solution of Eqs.~14!. Consequently, only the solution
with n50 in Eqs.~14! needs to be considered. Let

cu0
~m!5r lmF0

~m!~u,lm!, c r0
~m!5r lmC0

~m!~u,lm!, and

w0
~m!5r lm11W0

~m!~u,lm!. (26)

Furthermore, as well known, the stress singularities are affe
by the boundary conditions along radial edges only.

In the following, we will consider four types of homogeneou
boundary conditions along a radial edge, sayu5a, namely,

clamped: w5c r5cu5
w,u

r
50, (27a)

free: M̄ u5M̄ ru5Q̄u1C1S 2

r
Pru12Pru,r1

1

r
Pu,uD5Pu50,

(27b)

type I simply supported:w5c r5M̄ u5Pu50, (27c)

type II simply supported:w5M̄ u5M̄ ru5Pu50. (27d)

For simplicity, C and F are used to present the clamped and
boundary conditions, respectively, while S~I! and S~II ! denote
type I and type II simply supported boundary conditions.

For the sake of demonstration, we will describe the proced
for obtaining the characteristic equation forlm , and the corre-
sponding asymptotic displacement field for describing the sing
behavior of stress resultants in the vicinity of a corner. Conside
sector plate with vertex angle equal toa and having clamped and
free boundary conditions along two radial edges, respectively.
the free radial edge atu5a, substituting Eq.~26! into Eq. ~27b!
and using the relations given in Eq.~10! leads to the following
equations for the lowest order ofr:

a11A01a12A11a13A21a14A31a15B01a16B11a17B21a18B3

50, (28a)

a21A01a22A11a23A21a24A31a25B01a26B11a27B21a28B3

50, (28b)

a31A01a32A11a33A21a34A31a35B01a36B11a37B21a38B3

50, (28c)

a41A01a42A11a43A21a44A31a45B01a46B11a47B21a48B3

50, (28d)

where lengthy expression forai j is given in the Appendix. Simi-
larly, one also obtains four equations forAi and Bi from the
clamped edge atu50:

B01B250, (29a)

2B11A250, (29b)

A01k1A21k2B350, (29c)

~lm11!A11~lm21!~k1A32k2B2!50. (29d)

Equations~28! and ~29! construct a set of linear homogeneo
algebraic equations forAi andBi . To have nontrivial solution for
Ai andBi yields the characteristic equations forlm ,
NOVEMBER 2002, Vol. 69 Õ 803
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sin2 lma5
42lm

2 ~11n!2 sin2 a

~32n!~11n!
, (30a)

sin2 lma5
42lm

2 ~12n!2 sin2 a

~31n!~12n!
. (30b)

Then, one can find the relations amongAi andBi from Eqs.~29!
and~28a!–~28c!. Consequently,cu0

(m) , c r0
(m) , andw0

(m) in Eq. ~26!
are expressed as

c r0
~m!~r ,u!5B3r lmH 11lm

lm21
cos~lm11!u2h2 sin~lm11!u

2
11lm

lm21
cos~lm21!u1h1 sin~lm21!uJ ,

(31a)

cu0
~m!~r ,u!5B3r lmH 2

11lm

lm21
sin~lm11!u2h2 cos~lm11!u

1sin~lm21!u1h2 cos~lm21!uJ , (31b)

w0
~m!~r ,u!5B3r lm11H S k1~11lm!

lm21
2k2D cos~lm11!u

1
~12lm!

lm11
~k1h12k2h2!sin~lm11!u

1S 2
~11lm!k1

lm21
1k2D cos~lm21!u

1~k1h12k2h2!sin~lm21!uJ , (31c)

whereh1 andh2 are given in Table 1. Sincecu0
(m) , c r0

(m) , andw0
(m)

are the smallest order ofr in the series solution given in Eqs.~14!
for differentlm , they characterize the asymptotic behavior of t
series solution in the vicinity of the vertex. Furthermore, they
the displacement field describing the singular behavior of st
resultants at the vertex when the positive real part oflm is less
than one. The asymptotic displacement field will be called as
ner functions below.

By following the procedure given above, one can develop
characteristic equations forlm and the corresponding corner fun
tions for different boundary conditions along radial edges. Tab
1 and 2, respectively, summarize the characteristic equations
lm and the corresponding corner functions for ten different co
binations of boundary conditions. To take advantage of the pr
lem’s symmetry, the corner functions for the identical bound
conditions along two radial edges were determined by conside
the range,2a/2<u<a/2, which is also indicated in Table 1.

Notably, using trigonometric identities, the characteristic eq
tions for S~I!–S~I! in Table 2 are found equivalent to

cos~lm21!a/250 or cos~lm11!a/250, (32a)

and

sin~lm21!a/250 or sin~lm11!a/250, (32b)

for symmetric and antisymmetric cases, respectively. Con
quently, the corner functions corresponding to the roots oflm for
different equations are separately listed in Table 1. Similar sit
tion also happens to the cases with S~II !–S~II ! and S~I!–S~II !
boundary conditions.

Singularity of Stress Resultants
The relations between displacements and stress resultants

in Eq. ~10! indicate that the smallest orders ofr for moments
(Mr ,M u ,Mru) and Pr , Pu , andPru are the same, and they ar
804 Õ Vol. 69, NOVEMBER 2002
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less than those for rotation components~c r andcu! andw by one
and two, respectively. Consequently, the rootlm of the character-
istic equations with a positive real part below one leads to sing
behavior of moments andPr , Pu , andPru , described byr lm21

as r approaches zero. Moreover, the singular behavior of st
components,s rr , suu , ands ru , can also be found according t
the relationship between stresses and displacement compone
elasticity. Notably, the characteristic equations listed in Table
reveal that the thickness of the plate is unrelated to these cha
teristic equations, and Poisson’s ratio is the single material pr
erty that can affect the singularity order of stress resultants.

As stated earlier, the real part oflm (Re(lm)) must exceed zero
to meet the regularity conditions for the displacement com
nents, asr approaches zero. Figure 2 displays the minimum po
tive values of Re(lm) versus the vertex angle~a! for various
boundary conditions. These minimum values of Re(lm) were de-
termined by solving the characteristic equations in Table 2 witn
equal to 0.3. Notably, some different boundary conditions arou
a corner produce the same minimum Re(lm) within certain ranges
of vertex angles. Boundary conditions S~I!–S~I!, S~I!–S~II !, and
S~II !–S~II ! give the same minimum Re(lm), while boundary con-
ditions S~I!–F and S~II !–F yield the same minimum Re(lm) ex-
cept for 180deg,a,270deg. Boundary conditions C–C and F–F
have the same minimum Re(lm) whena exceeds 180 deg. Bound
ary conditions C–F and C–S~II ! show the same minimum Re(lm)
for a below about 128 deg. Whena is between 180 deg and 27
deg, boundary condition S~I!–C yield a minimum Re(lm) equal to
that for S~I!–F and C–S~II !.

Figure 2 indicates that no singularities of moments andPr , Pu ,
andPru occur if a is less than 60 deg, regardless of the bound
conditions around the corner. However, such singularities are
ways present ifa exceeds 180 deg. A corner with S~I!–S~I!,
S~I!–S~II !, S~II !–S~II !, S~I!–F, S~II !–F, or S~I!–C boundary con-
ditions exhibit a singularity whena exceeds 90 deg. Boundar
conditions C–F and C–S~II ! cause the strongest singularity of th
stress resultants at the vertex fora between 60 deg and approx
mately 105 deg; S~I!–S~I!, S~I!–S~II !, and S~II !–S~II ! boundary
conditions result in the strongest singularity for other vert
angles. C–C and F–F boundary conditions cause a singularity
stress resultants fora exceeding 180 deg. This singularity i
weaker than that due to other boundary conditions.

Figure 2 also indicates that singularities generally become m
severe as the vertex angle increases, except in those cases
S~I!–S~I!, S~I!–S~II !, S~II !–S~II !, C–F, or C–S~II ! boundary con-
ditions. For the C–F and C–S~II ! cases, the minimum positive
Re(lm) increases witha for a between 122 deg and 130 deg
which region the roots of the characteristic equations change f
real to complex numbers. The minimum positive Re(lm) for
S~I!–S~I!, and S~II !–S~II ! was determined from different charac
teristic equations for different ranges ofa. That is, from Eqs.~32!,
when a<p, the minimum positive Re(lm) is determined from
cos(lm11)a/250, while for p,a<3p/2 and for 3p/2<a
,2p, the minimum positive Re(lm) is determined from cos(lm
21)a/250 and sin(lm11)a/250, respectively. Asa approaches
2p, the singularity order for moments andPr , Pu , andPru due to
S~I!–S~I!, S~I!–S~II !, and S~II !–S~II ! boundary conditions ap-
proachesr 21, while F–F and C–C boundary conditions lead to a
order ofr 21/2. Other boundary conditions yield an order ofr 23/4.

Most of the characteristic equations listed in Table 2 can also
found in either classic plate theory~CPT! or first-order shear de-
formation plate theory~FSDPT!. Williams @11# obtained those
characteristic equations marked with a superscript, ‘‘#,’’ in Tab
2, from the classic plate theory. Burton and Sinclair@18# and
Huang@20# found those characteristic equations marked with
perscript ‘‘* ’’ in Table 2, based on FSDPT using different solutio
approaches. The characteristic equations pertaining to the~II !
boundary condition given in Table 2 cannot find the correspond
ones in classic plate theory because no S~II ! boundary condition
Transactions of the ASME
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Table 1 Corner functions

Case No. Boundary
Conditions Corner Functions

1
S~I!-S~I!

S2 a

2
<u<

a

2D

~1! for cos(lm21)a/250

c r0
(m)(r ,u)5A2r lm cos(lm21)u, cu0

(m)(r ,u)5B3r lm sin(lm21)u, w0
(m)(r,u)5(k1A21k2B3)r

lm11 cos(lm21)u

~2! for cos(lm11)a/250

c r0
(m)(r ,u)52B1r lm cos(lm11)u, cu0

(m)(r ,u)5B1r lm sin(lm11)u, w0
(m)(r,u)5A0r

lm11 cos(lm11)u

~3! for sin(lm21)a/250

c r0
(m)(r ,u)5A3r lm sin(lm21)u, cu0

(m)(r ,u)5B2r lm cos(lm21)u, w0
(m)(r,u)5(k1A31k2B2)r

lm11 sin(lm21)u

~4! for sin(lm11)a/250

c r0
(m)(r ,u)5B0r lm sin(lm11)u, cu0

(m)(r ,u)5B0r lm cos(lm11)u, w0
(m)(r,u)5A1r

lm11 sin(lm11)u

2 C-F
(0<u<a)

cr0
~m!~r,u!5B3r

lmH11lm

lm21
cos~lm11!u2h2 sin~lm11!u2

11lm

lm21
cos~lm21!u1h1 sin~lm21!uJ

cu0
~m!~r,u!5B3r

lmH2 11lm

lm21
sin~lm11!u2h2 cos~lm11!u1sin~lm21!u1h2 cos~lm21!u%

w0
~m!~r,u!5B3r

lm11HSk1~11lm!

lm21
2k2Dcos~lm11!u1

~12lm!

lm11
~k1h12k2h2!sin~lm11!u1S2 ~11lm!k1

lm21
1k2Dcos~lm21!u

1(k1h12k2h2)sin(lm21)u%

h15
~lm11!@~31n1nlm2lm!cos~lm21!a1~11lm!~12n!cos~lm11!a#

~lm21!@~31n1nlm2lm!sin~lm21!a2~12lm!~12n!sin~lm11!a#

h25
~31n1nlm2lm!cos~lm21!a1~11lm!~12n!cos~lm11!a

~31n1nlm2lm!sin~lm21!a2~12lm!~12n!sin~lm11!a

3 S~I!-F
(0<u<a)

cr0
~m!~r,u!5B2r

lmHh3sin~lm11!u1
lm11

lm21
sin~lm21!uJ, cu0

~m!~r,u!5B2r
lm$h3 cos~lm11!u1cos~lm21!u%

w0
~m!~r,u!5B2r

lm11Hh4 sin~lm11!u1F~lm11!k1

lm21
2k2Gsin~lm21!uJ

h352
~31n2lm1nlm!

~n21!~lm21!

sin~lm21!a

sin~lm11!a
, h45

17

4~lm11!
h3

4 S~I!-C
(0<u<a)

cr0
~m!~r,u!5B0r

lmHsin~lm11!u2
sin~lm11!a

sin~lm21!a
sin~lm21!uJ

cu0
~m!~r,u!5B0r

lmHcos~lm11!u2
cos~lm11!a

cos~lm21!a
cos~lm21!uJ

w0
~m!~r,u!5B0r

lm11Hh5 sin~lm11!u1F2 k1 sin~lm11!a

sin~lm21!a
1

k2 cos~lm11!a

cos~lm21!a Gsin~lm21!uJ
h55k12

k2~sin 2lma2sin 2a!

~sin 2lma1sin 2a!

5
F-F

S2 a

2
<u<

a

2D

~1! Symmetric case

cr0
~m!~r,u!5B3r

lmHh7 cos~lm11!u1
11lm

12lm
cos~lm21!uJ , cu0

~m!~r,u!5B3r
lm$2h7 sin~lm11!u1sin~lm21!u%

w0
~m!~r,u!5B3r

lm11Hh6 cos~lm11!u1S~11lm!k1

12lm
1k2Dcos~lm21!uJ

h65
17h7

4~11lm!
, h75

31n2lm1lmn

~211n!~lm21!

cos~lm21!a/2

cos~lm11!a/2
,

~2! Antisymmetric case

c r0
~m!~r ,u!5B2r lmH 2h9 sin~lm11!u1

lm11

lm21
sin~lm21!uJ , cu0

~m!~r,u!5B2r
lm$2h9 cos~lm11!u1cos~lm21!u%
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Table 1 „continued …

Case No. Boundary
Conditions Corner Functions

w0
~m!~r,u!5B2r

lm11H2h8 sin~lm11!u1Fk1~lm11!

lm21
2k2Gsin~lm21!uJ

h85
17

4~lm11!
h9 , h95

~31n2lm1nlm!

~n21!~lm21!

sin~lm21!a/2

sin~lm11!a/2

6
C-C

S 2
a

2
<u<

a

2 D

~1! Symmetric case:

c r0
~m!~r ,u!5B1r lmH 2cos~lm11!u1

cos~lm11!a/2

cos~lm21!a/2
cos~lm21!uJ

cu0
~m!~r,u!5B1r

lmHsin~lm11!u2
sin~lm11!a/2

sin~lm21!a/2
sin~lm21!uJ

w0
~m!~r,u!5B1r

lm11HF2k11
k2~sinlma1sina!

sinlma2sina Gcos~lm11!u1Fk1 cos~lm11!a/2

cos~lm21!a/2
2

k2 sin~lm11!a/2

sin~lm21!a/2 Gcos~lm21!uJ
~2! Antisymmetric case:

cr0
~m!~r,u!5B0r

lmHsin~lm11!u2
sin~lm11!a/2

sin~lm21!a/2
sin~lm21!uJ

cu0
~m!~r,u!5B0r

lmHcos~lm11!u2
cos~lm11!a/2

cos~lm21!a/2
cos~lm21!uJ

w0
~m!~r,u!5B0r

lm11HFk12
k2~sinlma2sina!

sinlma1sina Gsin~lm11!u1F2 k1 sin~lm11!a/2

sin~lm21!a/2
1

k2 cos~lm11!a/2

cos~lm21!a/2 Gsin~lm21!uJ

7
S~II !-S~II !

S2 a

2
<u<

a

2D

~1! Symmetric case:

When cos(lm21)a/250,
c r0

(m)(r ,u)5A2r lm cos(lm21)u, cu0
(m)(r ,u)5B3r lm sin(lm21)u, w0

(m)(r,u)5(k1A21k2B3)r
lm11 cos(lm21)u.

When cos(lm11)a/250,

c r0
(m)(r ,u)52B1r lm cos(lm11)u, cu0

(m)(r ,u)5B1r lm sin(lm11)u, w0
(m)(r,u)5A0r

lm11 cos(lm11)u.
Whenlm sina1sinlma50, the corner functions are the same as those for F-F.

~2! Antisymmetric case:

When sin(lm21)a/250,

c r0
(m)(r ,u)5A3r lm sin(lm21)u, cu0

(m)(r,u)5B2r
lm cos(lm21)u, w0

(m)(r,u)5(k1A32k2B2)r
lm11 sin(lm21)u.

When sin(lm11)a/250,

c r0
(m)(r ,u)5B0r lm sin(lm11)u, cu0

(m)(r ,u)5B0r lm cos(lm11)u, w0
(m)(r ,u)5A1r lm11 sin(lm11)u.

Whenlm sina2sinlma50, the corner functions are the same as those for F-F.

8 C-S ~II !
(0<u<a) The corner functions are the same as those for C–F.

9 S~I!-S~II !
(0<u<a)

When sin 2alm5lm sin 2a, the corresponding corner functions are the same as those for S~I!–F.

For cos 2alm52cos 2a,
when sin(lm21)a50,

c r0
(m)(r ,u)5A3r lm sin(lm21)u, cu0

(m)(r,u)5B2r
lm cos(lm21)u,

w0
(m)(r ,u)5(k1A32k2B2)r lm11 sin(lm21)u;

when sin(lm11)a50,
c r0

(m)(r ,u)5B0r lm sin(lm11)u, cu0
(m)(r,u)5B0r

lm cos(lm11)u, w0
(m)(r,u)5A1r

lm11 sin(lm11)u.

10
S~II !-F

S2 a

2
<u<

a

2D

cr0
~m!~r,u!5B3r

lmHh7 cos~lm11!u1h11 sin~lm11!u2
lm11

lm21
cos~lm21!u2

~lm11!cos~lm21!a/2

~lm21!sin~lm21!a/2
sin~lm21!uJ

cu0
~m!~r,u!5B3r

lmHh11 cos(lm11)u2h7 sin(lm11)u2
cos(lm21)a/2

sin(lm21)a/2
cos(lm21)u1sin(lm21)uJ

w0
~m!~r,u!5B3r

lm11$h6 cos~lm11!u1h10 sin~lm11!u1S2 k1~lm11!

lm21
1k2Dcos~lm21!u

1
cos~lm21!a/2

sin~lm21!a/2 S 2
k1~lm11!

lm21
1k2D sin~lm21!uJ

h105
17

4~lm11!
h11 , h115

~31n1lmn2lm!cos~lm21!a/2

~l21!~n21!sin~lm11!a/2
. 4
exists in classic plate theory. This comparison concludes that
ferent plate theories can lead to different singularity orders
moments at the corner.

To show the stress resultant distributions corresponding to
806 Õ Vol. 69, NOVEMBER 2002
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corner function with the smallest positive value of Re(lm), Fig. 3
exhibits the distributions ofMr and M u along u50deg for the
symmetric case of a wedge with free radial edges, while Fig
plots the distributions atu5150deg for a wedge with C–F bound-
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Downloaded F
ary condition around the vertex. In both cases,a5300deg and
n50.3. The value oflm is real in the case of the F–F boundary
condition, andlm is complex for the C–F condition. The stress
resultants were computed by substituting the corresponding co
functions given in Table 1 into Eq.~10! and setting the undeter
mined coefficients~such asB3 in Table 1! in the corner functions
equal to unity. Notably, whenlm is a complex number, the corre
sponding stress resultants are also complex functions. Figu
only presents the distributions for the imaginary parts of the st
resultants. In Fig. 4, the superscripts ‘‘1’’ and ‘‘ 2’’ in the legend

Table 2 Characteristic equations for high-order shear defor-
mation plate theory

Case
No.

Boundary
Conditions Characteristic Equations

1 S~I!-S~I!
Symmetric: coslma52cosa* ,#

Antisymmetric: coslma51cosa* ,#

2 C–F

sin2 lma5
42lm

2 ~11n!2sin2 a*

~32n!~11n!

sin2 lma5
42lm

2 ~12n!2sin2 a#

~31n!~12n!

3 S~I!–F

sin 2lma5lm sin 2a*

sin 2lma5
lm~12n!

232n
sin 2a#

4 S~I!–C
sin 2lma5

lm~11n!

231n
sin 2a*

sin 2lma5lm sin 2a#

5 F–F

Symmetric:

sinlma52lm sina,*

sinlma52
lm~12n!

232n
sina#

Antisymmetric:
sinlma5lm sina,*

sinlma5
lm~12n!

232n
sina#

6 C–C

Symmetric:

sinlma52
lm~11n!

231n
sina,*

sinlma52lm sina#

Antisymmetric:

sinlma5
lm~11n!

231n
sina,*

sinlma5lm sina#

7 S~II !–S~II !

Symmetric:

sinlma52lm sina,* coslma52cosa
Antisymmetric:
sinlma5lm sina,* coslma5cosa

8 C–S~II !
sin2 lma5

42lm
2 ~11n!2 sin2 a*

~32n!~11n!

sin 2lma5lm sin 2a

9 S~I!–S~II !
sin 2lma5lm sin 2a*

cos 2lma5cos 2a

10 S~II !–F sinlma56lm sina*

sin 2lma5
lm~211n!

31n
sin 2a

Note:* means that the equation can be recovered in FSDPT.
# means that the equation can be recovered in CPT.
Journal of Applied Mechanics
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of the vertical axis are the signs for the stress resultants. Pos
stress resultants were plotted as LoguM 1/Du versus Logr and
negative stress resultants were plotted as LoguM 2/Du versus
Logr , whereD is the flexural rigidity.

Figure 3 shows that the magnitudes of the stress resultants
the present solution monotonically approach infinity asr ap-
proaches zero, becauselm is a positive real number and smalle
than unity. Figure 3 also displays the stress resultant distribut
obtained by CPT and by FSDPT. The stress resultant distribut
for FSDPT were computed using the corner functions given
@20#, and the distributions for CPT were obtained from the corn
functions given in@25# and@26#. The coefficients to be determine
in the corner functions for CPT and FSDPT were obtained
requiring that the values ofMr at r 51025 for CPT and FSDPT
should be identical to that from the present solution. The value
r was arbitrarily chosen. Consequently, the distribution ofMr for
FSDPT coincides with that for the theory used here because
theories have the samelm in this case. However, the distribution
of M u for these two theories are not coincident~Fig. 3!. In fact,
the distributions of stress resultants along various values ou,
determined by these two theories, are generally not coincid
which fact is not depicted here. Therefore, although the the
used here and FSDPT have the samelm for the case shown in Fig
3, the stress resultants approach infinity at different rates for e
theory asr approaches zero. This may be due to the fact thatMru
is required to equal zero along a free edge in FSDPT, whe
Mru for the theory used here still approaches infinity asr ap-
proaches zero, even along a free edge. The stress resultan
CPT approach infinity more slowly than those for FSDPT and
theory used here asr approaches zero, since the value oflm for
CPT exceeds those for the other two theories.

Figure 4 reveals that the stress resultants from the presen
lution oscillate toward infinitely asr goes to zero becauselm is
complex. Figure 4 also plots the distributions of stress resulta
for CPT and FSDPT. The corner function for FSDPT given in@20#
and the corner function for CPT given in@4# and@26# were used to
determine these distributions. The undetermined coefficients
these corner functions were obtained in the same way as for
3. Notably,lm for CPT equals that for the theory used here in t
case of Fig. 4. Figure 4 indicates that the distributions of str
resultants from the present solution coincide with those for C
Stress resultant functions ofMr , M u , andMru from the present
solution can be shown to be exactly the same as those for CP
this case. The value oflm for FSDPT is also a complex numbe
but differs from those for CPT and the theory used here. Acco
ingly, the distributions of stress resultants for FSDPT significan
differ from those for CPT and the theory used here.

The present solution involves no singularities for shear for
or Rb , which is attributable to the regularity conditions atr 50
and the relations between stress resultants and displacement
ponents. The regularity conditions requirecu , c r , w, andw,r to
remain finite asr approaches zero. The relations in Eq.~10! sug-
gest that the shear forces andRb either have the same order ofr as
cu or c r , or one order lower thanw. Consequently, shear force
and Rb cannot exhibit singular behavior asr approaches zero
regardless of the boundary conditions around the vertex. Nota
this finding markedly differs from that observed in CPT and F
DPT. Since shear deformation is not considered in CPT, sh
forces are determined from equilibrium equations such that
singularity of shear forces is always stronger than that for m
ments. Huang@20# found the characteristic equations for the si
gularity of shear forces in first-order shear deformation pl
theory, according to which the singularity order of shear forc
also depends on both the boundary conditions and the ve
angle.

Comparing the singular behavior in various plate theories w
that in elasticity theory yields interesting results. Hartranft and
@9# developed the characteristic equations for a completely
NOVEMBER 2002, Vol. 69 Õ 807
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Fig. 2 Variation of minimum Re „lm… with vertex angle
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wedge based on a three-dimensional elasticity approach. Acc
ing to their results, the stress singularity order ofr at the vertex of
the wedge islm21, wherelm is determined by

sinlma5lm sina, (33a)

sinlma52lm sina, (33b)
MBER 2002

nics.asmedigitalcollection.asme.org/ on 04/28/20
ord- or lm5~2m11!p/a, (33c)

wherem50,1,2,3 . . . . Thefirst two equations also appear in th
present work for F–F boundary conditions~Table 2!, while none
of these equations are found in CPT@11#. However, all three equa
tions are also found in FSDPT@20#. The third equation character
izes the singular behavior of shear forces in FSDPT.
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Concluding Remarks
This study has established the asymptotic displacement fie

describe the singular behavior of stress resultants at the verte
a sector thick plate based on Reddy’s third-order thick pl
theory. The solution was obtained using an eigenfunction exp
sion approach to solve the equilibrium equations in terms of
placement components. The characteristic equations for deter
ing Williams-type singularities of stress resultants were a
developed for ten sets of boundary conditions around the ver
These characteristic equations do not involve the thicknes
plate. Poisson’s ratio is the single material property that co
possibly influence the singular behavior of stress resultants. N
bly, unlike the singularity of shear forces found in classic pla
theory and first-order shear deformation plate theory, no such
gularity is involved in Reddy’s plate theory.

Fig. 3 Distribution of Mr and Mu along the symmetric axis for
a wedge with free radial edges
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The characteristic equations for determining the singular beh
ior of Mr , M u , Mru , Pr , Pu , andPru in this work include the
characteristic equations for classic plate theory and first-or
shear deformation plate theory. For the same boundary conditi
different plate theories usually lead to different singularity ord
for stress resultants, except for the case with S~I!–S~I! boundary
conditions. For a plate withn50.3, no singularity occurs when
the vertex angle is less than 60 deg, while a singularity is alw
present when the vertex angle exceeds 180 deg. C–F boundary
conditions result in the strongest singularity among the ten set
boundary conditions considered in this study when the ver
angle is less than approximately 105 deg, while S~I!–S~I!,
S~II !–S~II !, and S~I!–S~II ! boundary conditions lead to the stron
gest singularity for other angles. F–F and C–C boundary condi-
tions cause the weakest singularity.

The singularity orders for stress resultants and the corresp
ing corner functions given in this investigation are important

Fig. 4 Distributions of Mr and MuÄaÕ2 for a wedge with C –F
boundary conditions
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Downloaded F
developing singularity elements in finite element approach
complex thick plate problems involving corner stress singularit
Furthermore, the corner functions for various corner bound
conditions provided herein are also very valuable for applying
Ritz method to solve thick plate problems with reentrant corn
like the work by McGee et al.@4# and Leissa et al.@3# for thin
plate problems.
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Appendix
The coefficients for Eqs.~28! are

a1155lm~11lm!cos~11lm!a,

a1255lm~11lm!sin~11lm!a,

a135
r1

n21
cos~12lm!a, a1452

r1

n21
sin~12lm!a,

a155216lm sin~11lm!a,

a16516lm cos~11lm!a, a175
r2

n21
sin~12lm!a,

a185
r2

n21
cos~12lm!a

a215~n21!lm~11lm!cos~11lm!a,

a225~n21!lm~11lm!sin~11lm!a

a235d1 cos~12lm!a, a2452d1 sin~12lm!a,

a25524~n21!lm sin~11lm!a,

a2654~n21!lm cos~11lm!a, a275d2 sin~12lm!a,

a285d2 cos~12lm!a,

a3158lm~11lm!sin~11lm!a,

a32528lm~11lm!cos~11lm!a,

a3352~lm21!~21718k1lm!sin~12lm!a,

a3452~lm21!~21718k1lm!cos~12lm!a,

a35534lm cos~11lm!a, a36534lm sin~11lm!a,

a375~lm21!~1718k2lm!cos~12lm!a,

a3852~lm21!~1718k2lm!sin~12lm!a

a4152g1 sin~11lm!a, a425g1 cos~11lm!a,

a4352g2 sin~12lm!a,

a4452g2 cos~12lm!a, a4552g3 cos~11lm!a,

a4652g3 sin~11lm!a,

a4752g4 cos~12lm!a, a485g4 sin~12lm!a

r15216~11nlm!15k1lm~31n2lm1nlm!,

r25161~21615~31n!k2!lm15~n21!k2lm
2 ,

d1524~11nlm!1~31n2lm1nlm!k1lm ,
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d2541~241~31n!k2!lm1~n21!k2lm
2 ,

g155~n21!Elm~11lm!~12lm!,

g25E~lm21!lm@2~211n!~2815k1lm!116~11nlm!

25k1lm~31n2lm1nlm!#,

g3516~n21!Elm~12lm!,

g45E~lm21!@161~216115k215nk2216~n21!!lm

25~n21!k2lm
2 #.
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