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Introduction and Sinclair[18] investigated the stress singularities at corners
- . . - l()jue to six sets of homogeneous boundary conditions by introduc-
Obtaining accurate numerical solutions to many elasticity prob- ial ined the sinaulariti
lems requires knowledge of the singular behavior of stress com @ stress potential. Huang et Fl9] examined the singularities
%Lmoments and shear forces at the vertex of a Mindlin sector

fhoener;gsbfgnﬁhﬁn%ee'?Zzﬂrsr;gg?agéflnggrlaéxi%mfematnha? g?nma(':rr‘a ate with simply supported radial edges, by establishing an exact
p ) Pe, yzing lution in terms of Bessel functions for the vibrations of such a

(or V-notch problems using finite element approaches usually i late. Recently, Huang20] comprehensively investigated the

volves shape functions to describe corre.ctly the singular behay fess singularities of moments and shear forces at corners caused
Of. stresses at the crack i, 2)). The aqmlssmle func_tlons of the_ by ten sets of homogeneous boundary conditions by adopting Xie
Ritz method include the corner functions that precisely descri ?\;d Chaudhuri's techniqugl]) to directly solve the equilibrium

. . . %uations in terms of displacement components. Comparing the
problems of thin plates with V-notches or with re-entrant corner sults with the exact solution given by Huang et[B] reveals

to accelerate convergence and increase the accuracy of the s Hi the singularity orders for moments and shear forces in Hua-

tion ([3,4). . . ng's results([20]) are consistent with those in the exact solution
Many papers have addressed the stress singularities at shgip, gimply supported corner, while the solution proposed by

comers based on plane elasticity thedrg., [5-8]) and thr'ee- Burton and Sinclaif18] is consistent only for moment singulari-

dimensional elasticity theor{{9,10]). However, the stress SiNGU- ias but not for shear force singularities

larities for different plate theories have received lesser attention.Comparing published work based on.classical plate theory and

Williams [11] first investigated the stress singularities due 18y, fisi order shear deformation plate theory reveals that different

boundary conditions in the angular corner of isotropic thin plates, :
) - - gularity orders for moments and shear forces are suggested by
under bending. Williams and Owefi2] and Williams and Chap- igterent plate theories. Consequently, this study aims primarily to

! ird-order shear deformation thick plate theory. This study ap-
- . . - plies Reddy’s refined plate theo(}21]). The theory is equivalent
ners for bi-material thin plates, and Ojikutu, Low, and S¢a8] 4, other third-order shear deformation plate theories proposed by
investigated stress singularities at the apex of a laminated co. shmidt[22] and Krishna Murty{23]. This work considers only
posite thin plate with simply supported radial edges. Huang et gle \jjliams-type stress singularities at a corner caused by various
[16] discussed the singularities of moments and shear forces at fig, jary conditions but does not consider logarithmic stress sin-
apex of a sector plate with simply supported radial edges in @fyarities as the former singularities are more often encountered
exact solution for vibrations of such a plate. Sinc(dir] consid- 5 the atter. The eigenfunction expansion methodology pro-
ered logarithmic stress singularities in thin plate theory. osed by Hartranft and Sif9] for three-dimensional elasticity
Based on the first-order shear deformation plate theory, Bu"gpoblems is adopted to determine the asymptotic displacement
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Basic Formulation

For a sector plate with cylindrical coordinates shown in Fig. 1,
the displacement field for the third-order plate theory proposed by

¥y of My, &, of M,,

— P 2 P
Reddy[21] is given as w or Q,+C; Tr+P”+ Fpre,a_ TH , andw, or P,.
4(z\2 (8)
u=2zl i — §(ﬁ) (¢r+W,r)}’ (1) The details of derivation for the equilibrium equations and bound-
ary conditions in Cartesian coordinates can be found in Reddy’s
4(z7\2 1 book [24]. The stress resultants in above equations are related to
V=2 hy— 5(5) Yot FW‘(,”, (2) stress components by
ol el
w=w(r = o dz, 9%
( !0)1 (3) (R,B “hi2 Bz Z ( )
where the subscript 4,” refers to a partial differential with re-
spect to independent varialjleu, v, andw denote the displace- Mgl hi2 z d %
ments of a pointr, 6, z) along ther, #, andz directions, whiley, Pg) 41/2033 2[9% (0)
and ¢, are the rotations of the midplane normal in the radial and
circumferential directions, respectively. This displacement field M, h/2 z
leads to zero shear stresses, and o,4, on the plate top and [ = ]=f Ur(}{ Ze,}dz. (9)
bottom surfaces. ro ~h/2

_ By using the vagatlona_l metht())d, %ne can (j;i‘.’e'op _trr;]e eqw!:_b- For an isotropic and elastic plate, the relationships between the
rium equations an hcon5|stent lolundz_ary con |t|0ns.f he €qullifess resultants and displacement components are established by
;gjsﬂltgﬂgsag?gs without external loading In terms of the stresx;ing strain-displacement and stress-strain relationships. They are

_ 2Gh 2Gh 1
2 Q Q=73 (WhtWo), Qp=—3—| ¥yt W,
Cl Pr,rr+Fpr,r+r_2P9,0t)_FP6,r+Fpre,r9+r_zprt),0 +T
1 R Ghs( +w,), R ik +1 )
— — =75 (Utw,), Ry=— ~W,|,
+Qrrt - Qu0=0, 4 =30 WVl Remgg | Yt W
o J1 1 1
_ M, M, 1_—  _ Miy=Gh’ 5| o= T ¥t T 0
Mert 7o 7 T M= =0, )
1 ( 2
_ ———| =y =Wty g 2W T ”
1_ N 2Mr9 . 60r 0 r ,0 r,o o o,r
FM0,9+Mr0,r+T_Qa:01 (6) 5
M Eh 1 1
Cy=4/3n2, C,=4h? M,,=M,,—CiP,,, Mz=Mz—C,Pp, 12|18V o

Qs=Qs—C;,Rg, his the thickness of plate and subscripte-
notesr or 6. Furthermore, the radial boundary conditiof 0

14
+
= a) should specify

r

1 1 1
1_5(l!fr+l/f9,9)_ %(W,ﬁ” FW,M)”:

¥y OF My, &, Or My, En® (1]1 1 1
B ) 1 w, My=1—217 E(lﬂr‘“ﬂa,a)—&) Wt W g
w or Q,+C; FP”,+2P”,J+FPHY6 , andT’ or Py. 1 1
@) +v 1_5‘//r,r_6_ow,rr )
The circumferential boundary conditiongat r=R) should 5
prescribe h

16 16 10 W,
Pro=1ggo| 160 T Yot T o™ 1| Weom 7| |

P,

_ Eh2 ’/’r,r_W,rr
(1-+7) | 105 336

vl 1 W 99
T %(¢r+¢e,9)—3—36 Voot e W+ —=] 11,

_ Eh® (11 1( W g9
Pa-m(; 105 ¥t Y00~ 33| Wit T)

Z
lpl’,l’ W,rr
+v WS— 3_36 s (10)
where E is Young’s modulusG is the shear modulus, andis
Poisson’s ratio.
Substituting Eq.(10) into Egs. (4)—(6) with careful arrange-

Fig. 1 Coordinate system and positive displacement compo- ment yields the equilibrium equations in terms of the displace-
nents for a sector plate ment components:
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2 1 1 < Z
‘//r,rrr+F‘/’r,rr+r7’//r,r€9+|7§l/fr,997FZ‘/’r,r+F§‘//r+rT$G,BBB 20 202 PAmtN=3 (N N+ 1)\If§f},)g+()\m+n—l)z()\m+n+1)
m=0 n=0,2,
1 2 5
+F¢8,rr8_r_2‘//9,re 31/’93 Wrrrr+ Wrrr X\Ifgm)—i-CD%"ngW-i-()\m-ﬁ-n—1)2(135{’”9)—1—6[()\m+n—1)2
2 1 2
+ 2 Worrpp ™ 2 W~ r—gW,rgg*' r—3W,r+ 13 W.0000 + (Am+n+1)2WM 4 2((Ap+n)2+ 1)W 6+Wn 0000 )
4 21(1-v) 1 1 1 21— »
W +T(¢r Tt T YeotWat Ty + 2 e e W+ 0+ W,
1
N r—zW,ea) o, 1) (At N+ 1)2WM =0 (15)
1 1-v 1 3-v1 1+1/1 mEOn i 2{ 2 ‘I’ﬁ]m,39+[()\ - 1)}‘1’“’1)
¢r,rr+ F¢r Zwr 06— Zwﬁt) r wﬁ,rﬁ
o 1+v 3—v m 4 )
4 1 1 1 ) + T()\m+n)— ‘Dn,e_1_7[()\m+”+1)
W+t -—W,+—55W W,— =W
17( Jrrr o 2 o0~ r2 ,T r3 ,66) ()\ +n— 1)W(m)+()\ +n— 1)W( 00]
841~ v) 841
— 1z (rtw,)=0, (12) —%rxm+"{qf<nm>+(>\m+n+1)w<nm>}=o, (16)
® o 14
1+v1 3-v1 1- 1-v(1 pAmtn-2 (m) (m)
TF%”TF‘W l/,,m — (F"b") mZ:O ngz ” ()\ +n)+ > }‘I’naﬂbn 06
o
1 41 1 +2[(>\ +n)2-1) @(m)—i[(x +n+1)2Wm)
+r_2‘//e,ee_l_7 W gt 2Wr0+ 3 W.000 2 m noo7em n.o
84(1—-v)
84(1—v 1 m) Amt (m) my
7%7)<%+FW'9 —0. (13) WiTsel} — 7z T e +Wk=0.  (17)

Satisfying Egqs(15—(17) leads to the coefficients af with dif-
. . . ferent orders equal to zero. Subsequently, a set of recurrent rela-
Construction of Series Solution tionships amongV(™ , w(™ (™ and their previous values can
The eigenfunction expansion approach proposed by Hartrab# attained and expressed as
and Sih[9] for three-dimensional elasticity problems is adopted m
herein to find the solution of Eqg11)—(13). The displacement (Am N+ )W, ppt At N+ 12N+ 3) W+ D, 4
components can be expressed in terms of the following series:

+(Aptn+1)20(0, — 6[()\m+n+1)2(>\m+n+3)2
w(r, 9)—;0 HZ Pt WM g\ (14a) XWE, + 2( (At N 2)24+ D)W, ot WA, 4]
L = %_){(x +n+1) WM+ oM+ W,
pEO= 2 2, P A, () Ot DAV, (18)
" [<xm+n+2>271]\lf<n”1)2+1—%299 ?@&%,g
ZGUEDS Lm0, (14c)

m=0 n=0

14
+— (At n+2)®d\", — 7[(>\m+ n+3)2

where the characteristic valuas, are assumed to be constants
and can be complex numbers. Notably, did Eqgs.(14) will not X (NmF+n+ D)W, + (N y+n+1)W
produce any additional solution such that they are not considered
in Egs.(14). 84(1 v)
The real part ofA,, must exceed zero to satisfy the regularity 17h?
conditions at the vertex of the sector plate. The regularity condi-
tions require thaty,, ,, w, andw , are finite asr approaches
zero. As a result, the solution form given in E¢54) with the real
part of \,, less than one leads to singularitiesMf, M,, M,,,
P,, Py, andP,,, which is observed from the relationships be-
tween stress resultants and displacement components given in Eq.
(10). However, no singularity for shear forcé®, and Q,), R,
andR, will be produced from the solution.

+259]

[P+ (Aptn+1)WM™T, (19)

+v (m) 1- 2
T(}\m+n+2) \Ifn+29+ [()\ +n+2)°—1]

2

XD, + D, )y [(7\ +1+3)2WHT, o+ W, 49

84(1 2]

——— (DM + W), (20)

Substituting Eqs(14) into Egs.(11)—(13) yields
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Furthermore, one can establish the following equations from tiselutions involving logarithmic function of leading to logarith-
coefficients of the lowest order ofin Egs.(15)—(17): mic singularities for stress resultants at the vertex of a sector plate,
which are out of the scope of this work and will not be investi-
At DU+ A= 12Nyt DYV + DT+ (A= 1)?DY  gated here. The readers who are interested in the logarithmic sin-
gularities may refer to Dempsey and Sinclait and Sinclaif17].

_ 2 _1)2 2\ (M) 2 m) (m) . . .
76l (Am~ D (At 1) WG+ 20N+ DWEG,+ WoBhool  characteristic Equations and Corner Functions
=0 (1) To determine Williams-type stress singularities at the vertex of

' a sector plate caused by homogeneous boundary conditions, one

3—v (1+v)\ only needs the asymptotic solution with the lowest order of
+

1-v
\NG—DwEV+ > Vo~ > DGy > Yy the series solution of Eq$14). Consequently, only the solution
with n=0 in Egs.(14) needs to be considered. Let
= L Ot D2 = WG+ (= DW=, Yoo =r @GV (0N ), yrg'=r WG, \y), and
(22) g™ = WG (0N ). (26)
1+ 33— 1- Furthermore, as well known, the stress singularities are affected
A 37V YN R Y NG ) by the boundary conditions along radial edges only.
2 2 )70 2 0m o o In the followin ll ider four t fh
g, we will consider four types of homogeneous
4 boundary conditions along a radial edge, #aya, namely,
— = [\t 1)2WeH+Wb,,1=0 23
7oL N+ 1)2WG + W1 =0, (23)

w

clamped: szr:%:T’{’:O, (278)

It is easy to find that the general solution for the set of ordinary
differential equations given by Eq&1)—(23) is

DI (0,\m) =Bo COI A+ 1) 6+ By Sif Ay +1) 6
+B,cog\,—1)0+Bssin(A,—1)6, (24a)

. _ 2 1
free: My=M,,=Q,+C; FPr9+2Prgyr+FP9y0):P0=0,
(270)
type | simply supportedw=,=M,=P,=0, (27)
WM (O,\ )= —B1 CO{\ y+1) 6+ Bg Sin(Ay+1) 6

_ type Il simply supported:w=M ,=M,,=P,=0. (27)
+A,COg N~ 1)+ Agsin(A,—1)6, (24b)

For simplicity, C and F are used to present the clamped and free

\N{{“)(G,)\m)=AO cog N\, +1)0+A;sin(A,+1)6 boundary conditions, respectively, whilgl5and Sll) denote
type | and type Il simply supported boundary conditions.
+ (kyAz+kaBs)cog Ny, — 1) 0 For the sake of demonstration, we will describe the procedure

for obtaining the characteristic equation fof,, and the corre-

(KiAg—koBy)sin(Ay—1)0, (24c) sponding asymptotic displacement field for describing the singular
where behavior of stress resultants in the vicinity of a corner. Consider a
sector plate with vertex angle equaldcand having clamped and
o 17 [(1+v)Ny 33— V) free boundary conditions along two radial edges, respectively. For
1716n, 2 2 ) the free radial edge &= «, substituting Eq(26) into Eq. (27b)
and using the relations given in E(L0) leads to the following
ke 17 ((1+ V) Am 3- V) equations for the lowest order of
16km 2 2 apAot+apAr+aishrtaAstaisBot aieBr taiBataigBs
andA; andB; (i=1,2,3,4) are coefficients to be determined from -0 (28)

boundary conditions.
To establish the complete series solution for equilibrium equay,. A+ a..A; + 2,28, + 8, A~+ 8-cBn+ 8-:B+ + a,-B, -+ a,.B

tions (i.e., Egs.(11)—(13)), one has to determine,, and the rela- 2ot 8zh1t Bzfat Aadhat AzeBot AzeBat azrBa+ B

tions amongA; andB; in Egs.(24) from the boundary conditions =0, (28)

along radial edges. Then, one finds the solutionsifgP , w(™
azApta +a +a +azsBotazBi+asB,r+aszgB
and W™ with n>1 from Egs. (18—(20) and boundary ' ° 2t 8sfet Baat BggBot AscBy T AgBa T Aaefs

conditions. =0, (2&)

Notably, one may construct the series solution by starting with
assuming the following solution form: aAot At Aot asAst asBot asBit aBa T asBs

. . o0, (&)
w(r,0)= 2 > Wi, (2%)  where lengthy expression far; is given in the Appendix. Simi-
m=0 n=0.2, larly, one also obtains four equations f&¢ and B; from the
© o B clamped edge a#=0:
¢r(r,0)=mE:0 ngz PAmEntlapMeg \ ), (2%) Bo+B,=0, (2%)
.. — B, +A,=0, (%)
lﬁf)(r,e): EO 202 r)\m+n+|3(1)|(_]m)(6’)\m), (2&) A0+ klA2+ k283=0, (2%)
m= n=0,2,
AmT 1AL+ (A= 1) (kiAz—K;B5)=0. (29)

wherel; (i=1,2,3) can be arbitrary integers, but at least one of
them is zero. Following the above procedure, one will find the Equations(28) and(29) construct a set of linear homogeneous
solution form given by Eqgs(14) is the only one that may yield algebraic equations fok; andB;. To have nontrivial solution for
Williams-type stress singularities. Furthermore, there are possilfieandB; yields the characteristic equations oy, ,
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4—\2(1+v)?sir a less than those for rotation componetfs and ) andw by one

SiP Apa = G=o)(1+y) (30a) and two, respectively. Consequently, the ragtof the character-
istic equations with a positive real part below one leads to singular
. 4—\2(1—v)?sir a behavior of moments ang, , P,, andP,,, described by *m~!
Sin’ \par= Brndl-») (3) asr approaches zero. Moreover, the singular behavior of stress

componentsg,, , o4, ando,,, can also be found according to
Then, one can find the relations amofgandB; from Egs.(29) the relationship between stresses and displacement components in

and(28a)—(28c). Consequentlyy{?, ™, andw{™ in Eq.(26) elasticity. Notably, the characteristic equations listed in Table 2

are expressed as reveal that the thickness of the plate is unrelated to these charac-
teristic equations, and Poisson’s ratio is the single material prop-
m N B . erty that can affect the singularity order of stress resultants.
Yo (r,6)=Bsrm - COg A+ 1)0—nosin(Aypy+1)0 As stated earlier, the real part bf, (Re(\,)) must exceed zero

to meet the regularity conditions for the displacement compo-
nents, ag approaches zero. Figure 2 displays the minimum posi-
' tive values of Re,) versus the vertex angléx) for various
boundary conditions. These minimum values of Rg(were de-
(312) termined by solving the characteristic equations in Table 2 with
Am . equal to 0.3. Notably, some different boundary conditions around
7 SINAm+1)0— 7, COSAy+1)6 a corner produce the same minimum Rg(within certain ranges
of vertex angles. Boundary conditiongl 8 S(1), S(1)_S(II), and
) S(11)_S(11) give the same minimum Re(), while boundary con-
+SiN(Ay—1) 0+ 7, COI Ny — 1)9]' (1)  gitions SI)_F and $Il)_F yield the same minimum Regf) ex-
cept for 180degt «<270deg. Boundary conditions € and F_F

Am

— " "Cog Ny~ 1)+ 7, SiN(Ay—1) 6
Am—1

1+
lﬂ%)(rﬁ):BarAm[ Y

ky(1+Np) have the same minimum Re() whena exceeds 180 deg. Bound-
wy™(r,0)= B3r”m“[ ( N1 kZ) cogAyt1)0 ary conditions CF and C_S(Il) show the same minimum Ref)
(1-r) for « below about 128 deg. Whemis between 180 deg and 270
“Am _ . deg, boundary condition(§_C yield a minimum ReX,,) equal to
o K kem)Sinim 1) 0 that for S1)_F and C S(II).
Figure 2 indicates that no singularities of moments BpdP,,

( _ (1+Amky +ky|cog A, —1)60 andP,, occur if « is less than 60 deg, regardless of the boundary
Am—1 2 m conditions around the corner. However, such singularities are al-

ways present ifa exceeds 180 deg. A corner with(15 S(1),
+ (Ky 71— Ko 272) SIN(\ py— 1)9]’ (31 S.(Il)_S(II), S.(I.I)_S(I'I), S(I)._F, Sl)_F, or §1)_C boundary con-
ditions exhibit a singularity whemx exceeds 90 deg. Boundary
wheren, and», are given in Table 1. Sincg(™ , (™ . andw(™ conditions C_F and C_S(Il) cause the strongest singularity of th_e
are thg;mallgszt ordgr ofin the series SO|clﬁi(:§n g(i/cgn in Eq(sf4) stress resultants: at the vertex febetween 60 deg and approxi-
for different),,, they characterize the asymptotic behavior of thEately 105 deg; )_S(1), S(I)_S(ll), and $il)_S(Il) boundary
series solution in the vicinity of the vertex. Furthermore, they afPnditions result in the strongest singularity for other vertex
the displacement field describing the singular behavior of stre&@gles. CC and F_F boundary conditions cause a singularity in
resultants at the vertex when the positive real park gfis less SUess resultants fow exceeding 180 deg. This singularity is
than one. The asymptotic displacement field will be called as ca¥eaker than that due to other boundary conditions.
ner functions below. Figure 2 also indicates that singularities generally become more
By following the procedure given above, one can develop tfi@vere as the vertex angle increases, except in those cases with
characteristic equations far, and the corresponding corner func-S(1)_S(1), S(1)_S(I1), S(1)_S(11), C_F, or C_S(I1) boundary con-
tions for different boundary conditions along radial edges. Tablé#ions. For the CF and C S(ll) cases, the minimum positive
1 and 2, respectively, summarize the characteristic equations Re(\) increases withy for « between 122 deg and 130 deg in
Am and the corresponding corner functions for ten different comehich region the roots of the characteristic equations change from
binations of boundary conditions. To take advantage of the proteal to complex numbers. The minimum positive Rg( for
lem’s symmetry, the corner functions for the identical boundar$(1)_S(1), and SI1)_S(I) was determined from different charac-
conditions along two radial edges were determined by consideritegistic equations for different ranges @f That is, from Eqs(32),
the range,— a/2< < «a/2, which is also indicated in Table 1.  when a<, the minimum positive Ra(,) is determined from
Notably, using trigonometric identities, the characteristic equaos{,,+1)a/2=0, while for #<a<3w/2 and for 3r/l2<«
tions for S1)_S(I) in Table 2 are found equivalent to <27, the minimum positive Ra(,) is determined from coaf,
Cog\,—1)al2=0 or cog\+1)a/2=0 (32) —1)a/2=0 and sink,,+1)a/2=0, respectively. Asx approaches
m m ' 2, the singularity order for moments aiy, P,, andP,, due to
and S(H_S(1), S(I)_S(I1), and SI1)_S(1I) boundary conditions ap-
SiN(\y— 1)a/2=0 or Sif\,+1)a/2=0 (320) proaches ~ !, while F_F and C_C boundary conditions lead to an
o i o L order ofr ~ 2. Other boundary conditions yield an orderrof*.
for symmetric and antisymmetric cases, respectively. Conse-\jost of the characteristic equations listed in Table 2 can also be
quently, the corner functions corresponding to the rootsofor  found in either classic plate theot@PT) or first-order shear de-
Qn‘ferent equations are separately Ilfsted in Table 1. Similar situgyymation plate theoryFSDPT). Williams [11] obtained those
tion also happens to the cases withl8.S(Il) and SI)_S(1)  cnaracteristic equations marked with a superscript, “#,” in Table
boundary conditions. 2, from the classic plate theory. Burton and Sinclgig] and
. . Huang[20] found those characteristic equations marked with su-
Singularity of Stress Resultants perscript *” in Table 2, based on FSDPT using different solution
The relations between displacements and stress resultants gigpproaches. The characteristic equations pertaining to th¢ S
in Eg. (10 indicate that the smallest orders offor moments boundary condition given in Table 2 cannot find the corresponding
(M, ,M,,M,,) andP,, P,, andP,, are the same, and they areones in classic plate theory because rit)Soundary condition
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Table 1 Corner functions

Boundary
Case No. Conditions Corner Functions
(1) for cosqy,—1)a/2=0
SO(r,0)=Ar*mcosppm—1)6, ¢ (r,0)=Bsr msin(\y—1)6, W(r,6)= (kA +k,By)r'm™ ! cosp,—1)6
(2) for cosp+1)al2=0
S(1)-S(1) e _ (m) b Ao Wt 6)= A it
1 @ o (r,0)=—Byr*mcos@,+1)6, ¢y (r,0)=Byr*msin(\,+1)6, Wy (r,6)=Agr*m"* cos@,,+1)60
T30 E) (3) for sin(\,—1)a/2=0
S(r,0)=Agr msin\y—1)8, #(r,0)=B,r'mcospy,—1)6, W(r,6)=(kiAg+koBy)r'm* L sin(\,—1)6
(4) for sin(\j,+1)a/2=0
SO (r,0)=Bor*msini\n+t1)6, D (r,0)=Bor*m cospy+1)0, W(r,)=Ar*m*t sin(\,,+1)60
1+N\, . Am .
#Q)(r,0)=BgrAm{)\ - CO Ay +1) = 7, SiN(\y+ 1)~ —— 1 cog\y—1)6+ 7, SiN\,—1) 0]
m
m) \ )‘m : .
W(r,6)=Bgrimi — —7 SN\ +1)0= 7 COINy 1) 0+ SiN(\ gy — 1) 64 7, COS A —1) 6}
C-E ky(14+ N (1-Ny) (LA
2 (0<p=a) \Nﬁ,m(r,@):Be,r”m*l[(—l)\ ko [CON T 1) 0+ 1 "1 (ke m)sinu + o+ - S L 1k, |cosn,—1)6
+ (k1 71— K2 72) Sin(\y— 1) 6}
O\t LG+ v+ WA= A CO A= Dt (1+ A ) (1= 1)COS N+ 1)ar]
T O = DB+ v+ Ay A)SINA— L) a— (1) (1— )Sin(Ayt 1))
~ (B+ v+ Ay A)COS Ay~ Dt (14 A (1= w)COs N+ D
2= B vt Ay Ny SINOA = D a— (1= A)(1— 0)SiN(Ay+ L)
Amt
H(r,6)=B,r*m [7735|n()\ +1)0+ sm()\ 1)6‘], H(r,6)=B,r*m! 75 cOS A+ 1) 0+ o\ — 1) 6}
S()-F A+ 1)k
3 (0<6<a) Wi(r,0) =B, X 7, sin(\p+ 1) 0+ %fkg}simhm* 1)0]
m
_ (B+v—Apt Ay SiINAp—L)a 17
BT TSN —1) sinAtDa’ A, +1) 7
sinApt+1l)a
m) — Ml g
S (r,0)=Byr {sm()\m+ 1)6— Sho—Da ———— sin(\y— ]
coq\p,t+1l)a
m) —R.rA\m _ m _
, S)-C S (r,0)=Byr {cos()\m+1)0 cosh,—Da cog\ 1)0]
(0=6=<a)
) ki sin\tl)a  kycogdhp,+1)a| .
m) —RB.Amtl M m L2 m B
Wo(r,6)=Bqr [7755|n()\m+1)0+ s —Ta ot =D Sin(\, 1)0]
ko(sin 2\ ,a—sin 2a)
5= kl_ Tein Oy o Lcin O
(sin 2\ ,a+sin 2x)
(1) Symmetric case
m) N 1+ m) A i i
H(r,6)=Bgr*m 7, O\, +1) 6+ i, cog\,— 10!,  Rr,0)=Bgr™m{— 7, Sin(\;+1) 6+ sin(\,,— 1) 6}
1+Apk
F-F wg"(r,0)= Bsr*m“[ 76 COS Ny 1) 0+ ((1_—;'91 + kz)cosxm—lw}
m
5 @ @
—Es <3 1779, 3+ v—NptAyv COgN,—1)al2

Journal of Applied Mechanics

=418 T (14 ) (A1) COSNF a2’

(2) Antisymmetric case

S (r,0)=B,r ml— 79 SN\ +1)0+)\ 7Sy 1)0], HD(r,0)=B,r — 775 cOS A+ 1) 8+ Ccog\y— 1) 6}

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.or g/ on 04/28/2014 Terms of Use: http://asme.org/terms

NOVEMBER 2002, Vol. 69 / 805



Table 1 (continued )

Boundary
Case No. Conditions Corner Functions
V\/g”‘>(r,6’)=Bzr"m*1[—ngsirl()\m-s- 1o+ %—kz SiN(\ 1)6]
m
B 17 _(3+ V—=NAmt VA ) SINN,—1)a/2
B A+ 1) 70 T TS (A y— 1) Sin(Apt D)al2
(1) Symmetric case:
cog\,+1)a/2
(m) - Aml| — ———m _
Yo (r,0)=Byr [ cog\yt+1)6+ cogny 1)01/2005()\"1 1)6]
sin\p+1)a/2
Mr 9)=R. r\m! i 2 \tmT e _
S (r,0)=Byr {S|n()\m+l)0 S, =) —5 Sin\n 1)0]
. ky(SiN\a+sin a) ki cog\y, +1)a/2 Ky sin(\p, +l)a/2
Cc-C m) R At 2 m - 1 2 —
6 @ a we(r,6)=Byr [ kot sinA\pa—sina COAm+1)0+ cod\y—D)al2  sinAy—1)al2 coshn—1)6
( -5 s0s 5) (2) Antisymmetric case:
Sin\y+1)a/2
m) = Ml i _ M T —
S (r,0)=Byr {S|n()\m+1)0 - 1)a/25'“0‘m 1)9J
cog\p,t+1)al/2
m), —R rA\m _ m _
S (r,0)=Byr [cos()\erl)a cosh,—D)al2 cos A, 1)0]
Ky(Sin\a—sina)| ki SinApt+1) /2 k, cogn,+1)al2
m) —R.M\mtl _ 2 m 1 2
We™(r,6) =Bl [kl sin\pa+sina ]Slm\m+1w+ sin(\p—1)a/2 co\y—1)al/2 SiNAm—1)6
(1) Symmetric case:
When cosk,,—1)a/2=0,
S(r,0)=Ar mcospm—1)6, ¢ (r,6)=Bsr *msinhy—1)6, WV(r,6)=(kiA+kBa)r'm* ! cosp,—1)6.
When cosk,+1)a/2=0,
S-S W(r,0)=—Byr*mcos,+1)6, 5(r,0) =B’ msin(\,+1)6, Wi(r,6)=Ag " cospy,+1)6.

; N o When\, sina+sin\,,«=0, the corner functions are the same as those for F-F.
(_ > <g< E) (2) Antisymmetric case:
When sin{,,—1)a/2=0,
B (r,0)=Agr'msin\y—1)0, HD(r,60)=Br'mcoshn—1)0, WI(r,6)=(kiAg—kB)r'm* L sin(\,—1)6.
When sinj,+1)a/2=0,
SO(r,0)=Bor msin\y+1)0, #(r,0)=Bor*mcosppmt+1)6, W™(r,0)=Ar*m* L sin(\,+1)6.
When\, sina—sin\,,a=0, the corner functions are the same as those for F-F.

C-S(Il) .
8 (0= 6=a) The corner functions are the same as those foF.C

When sin 20\ ;=\, Sin 2a, the corresponding corner functions are the same as thoséljoiFS

For cos 2\ ,,=—Co0sS 2,
S(H-S(11) when sinf,—1)a=0,
(0=6<a) e (r,6)=Agr*msin(\,—1)6,  YQ(r,60)=Bor'm coshy,—1)6,
WE(r, 6) = (kyAz—KoBo)r*m™t sin(h,—1)6;
when sini,+1)a=0,
(M(r,0) =Bor*msin\p+1)6, i0(r,6)=Bor*mcospmt+1)6, WEN(r,6)=A;r'* L sin(\,+1)6.

(Amt+1)cod\p,—1)a/2
= Dysinn,— a2 > M Am— DO

S (r,0)=Bgrm {mcos()\ +1)0+ 703 S+ 16— A +1cos()\ 1)6—

cosQ\m 1)al2

sin(\p,—1) /2
kit
A1

S(1)-F ¢#£>(r,0):83r“m{ 711 COSQm+1)0— 7, Sin(\y+1) 60— cosQ,—1)0+sin(\,— 1)0]

10 a a
(— 7=0= 5) Wo"(r,0)=Bar Y 195 COS N+ 1) 0+ 710 SIN(Apy+ 1) 0+( + kz)cos()\ o

cod Ny~ Dal2|  ki(Apt+1) )
SN - Dai2 | A1 SinAm—1)6
17 _(3+v+)\mV*)\m)COE()\m—1)a/2
A0t D) M T T (v—1)sin A+ 1) al2

+Ky

710~

exists in classic plate theory. This comparison concludes that dierner function with the smallest positive value of Rg( Fig. 3

ferent plate theories can lead to different singularity orders feixhibits the distributions oM, and M, along #=0deg for the

moments at the corner. symmetric case of a wedge with free radial edges, while Fig. 4
To show the stress resultant distributions corresponding to tpkts the distributions a#= 150deg for a wedge with G~ bound-
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Table 2 Characteristic equations for high-order shear defor-

mation plate theory

Case Boundary
No. Conditions

Characteristic Equations

Symmetric: coa=—cosa*,?

of the vertical axis are the signs for the stress resultants. Positive
stress resultants were plotted as |[Mg/D| versus Log and
negative stress resultants were plotted as|MogD| versus
Logr, whereD is the flexural rigidity.

Figure 3 shows that the magnitudes of the stress resultants from

1 S()-S(1) Antisymmetric: Cos\a=+cosa* the present solution monotonically approach infinity rasp-
proaches zero, becausg, is a positive real number and smaller
4—N(1+ vYsir? ot than unity. Figure 3 also displays the stress resultant distributions
sir? )\ma:W obtained by CPT and by FSDPT. The stress resultant distributions
2 C_F for FSDPT were computed using the corner functions given in
) 4—\2(1—-v)sir? o [20], and the distributions for CPT were obtained from the corner
Sirf Nar= T Bya-v) functions given irf25] and[26]. The coefficients to be determined
. — in the corner functions for CPT and FSDPT were obtained by
SiN 2= Sin 2 requiring that the values d¥l, atr=10 ° for CPT and FSDPT
3 Si)_F sin 2 a= Am(177) sin 22 should be identical to that from the present solution. The value of
—3-v r was arbitrarily chosen. Consequently, the distributionVgffor
' A(147) FSDPT coincides with that for the theory used here because both
4 s1)_c Sin 2= —37, Sin 20" theories have the same, in this case. However, the distributions
- of M, for these two theories are not coincidéRig. 3). In fact,
Sin A ma=\p,sin 2o the distributions of stress resultants along various values, of
Symmetric: determined by these two theories, are generally not coincident,
} - which fact is not depicted here. Therefore, although the theory
SINAma="—AmSINa, used here and FSDPT have the samdor the case shown in Fig.
Sin\a=— Mr(1=v) sino” 3, the stress resultants approach infinity at different rates for each
5 F_F ) —3= theory as approaches zero. This may be due to the fact Mhat
gﬂt)'\sgggitgi%‘a,* is required to equal zero along a free edge in FSDPT whereas
(1) M,, for the theory used here still approaches infinity raap-
sin\pa= — sina® proaches zero, even along a free edge. The stress resultants for
v CPT approach infinity more slowly than those for FSDPT and the
Symmetric: theory used here asapproaches zero, since the valuengf for
CPT exceeds those for the other two theories.
sin\ o= — Am(1+2) sina,* Figure 4 reveals that the stress resultants from the present so-
—3tv lution oscillate toward infinitely as goes to zero because, is
6 c_C Sin\pa=—\p,sin & complex. Figure 4 also plots the distributions of stress resultants
Antisymmetric: for CPT and FSDPT. The corner function for FSDPT givef2f]
Sinhae Ap(1+0) sina* and the corner function for CPT given[id] and[26] were used to
™ =3+ ' determine these distributions. The undetermined coefficients in
sin\pa=N\p, sin o these corner functions were obtained in the same way as for Fig.
Symmetric: 3. Notably,\ ,, for CPT equals that for the theory used here in the
’ case of Fig. 4. Figure 4 indicates that the distributions of stress
7 SU)_S()  SiNApe=—\psine,* cos\ya=—cosa resultants from the present solution coincide with those for CPT.
Antisymmetric: Stress resultant functions ™, , M,, andM,, from the present
SiNApa=ApSina,* cOSApa=Ccosa solution can be shown to be exactly the same as those for CPT in
_ 4—\2(1+ v Sir? o* this case. The value of,, for FSDPT is also a complex number
8 c s sir? )\ma=W _but differs from th_ose for CPT and the theory used he_re. _A_ccord-
- ingly, the distributions of stress resultants for FSDPT significantly
Sin 2Apa=\p, sin 20 differ from those for CPT and the theory used here.
sin 2, @=\,,sin 2a* The present solut_ion involves no singul_arities f(_)r_ shear forces
9 S(hH_s(I) or Rgz, which is attributable to the regularity conditionsrat 0
COS Apa=COS and the relations between stress resultants and displacement com-
10 Si_F SiNApa= =\, Sin &* ponents. The regularity conditions requifg, #, , w, andw , to
_ An(—14+0) remain finite ag approaches zero. The relations in EtQ) sug-
sin 2= 37, N 2 gest that the shear forces aRg either have the same orderoas

Note* means that the equation can be recovered in FSDPT.
# means that the equation can be recovered in CPT.

ary condition around the vertex. In both casess 300deg and
v=0.3. The value ok, is real in the case of the_fF boundary
condition, and\, is complex for the CF condition. The stress
resultants were computed by substituting the corresponding cor
functions given in Table 1 into Eq10) and setting the undeter-
mined coefficientdsuch asB; in Table 1 in the corner functions

¥y Or ¢, or one order lower thaw. Consequently, shear forces
and R, cannot exhibit singular behavior asapproaches zero,
regardless of the boundary conditions around the vertex. Notably,
this finding markedly differs from that observed in CPT and FS-
DPT. Since shear deformation is not considered in CPT, shear
forces are determined from equilibrium equations such that the
singularity of shear forces is always stronger than that for mo-
ments. Huang20] found the characteristic equations for the sin-
ﬁg}arity of shear forces in first-order shear deformation plate
eory, according to which the singularity order of shear forces
also depends on both the boundary conditions and the vertex

equal to unity. Notably, wheR,, is a complex number, the corre- angle.

sponding stress resultants are also complex functions. Figure 40mparing the singular behavior in various plate theories with
only presents the distributions for the imaginary parts of the stregt in elasticity theory yields interesting results. Hartranft and Sih
resultants. In Fig. 4, the superscripts-*and “ —" in the legend [9] developed the characteristic equations for a completely free
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Fig. 2 Variation of minimum Re (A;,) with vertex angle
wedge based on a three-dimensional elasticity approach. Accord- or A\p=(2m+1) 7/ e, (3%)
ing to their results, the stress singularity order aft the vertex of
the wedge is\,— 1, where\ ,, is determined by wherem=0,1,23 ... . Thefirst two equations also appear in the
present work for EF boundary conditiong¢Table 2, while none
sin\pa=\pSina, (33a) of these equations are found in CPIIL]. However, all three equa-
tions are also found in FSDFR0]. The third equation character-
Sin\,&=—\pSina, (33%) izes the singular behavior of shear forces in FSDPT.
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Fig. 4 Distributions of M, and My=a/2 for a wedge with C _F
Fig. 3 Distribution of M, and M, along the symmetric axis for boundary conditions
a wedge with free radial edges

The characteristic equations for determining the singular behav-
. ior of M,, My, M,,, P,, P,, andP,, in this work include the
Concluding Remarks characteristic equations for classic plate theory and first-order
This study has established the asymptotic displacement fieldsieear deformation plate theory. For the same boundary conditions,
describe the singular behavior of stress resultants at the vertexddferent plate theories usually lead to different singularity orders
a sector thick plate based on Reddy’s third-order thick plafer stress resultants, except for the case with_S(1) boundary
theory. The solution was obtained using an eigenfunction exparenditions. For a plate withh=0.3, no singularity occurs when
sion approach to solve the equilibrium equations in terms of di#e vertex angle is less than 60 deg, while a singularity is always
placement components. The characteristic equations for deternpresent when the vertex angle exceeds 180 ded: Boundary
ing Williams-type singularities of stress resultants were alsmnditions result in the strongest singularity among the ten sets of
developed for ten sets of boundary conditions around the vertésaundary conditions considered in this study when the vertex
These characteristic equations do not involve the thickness arigle is less than approximately 105 deg, whild)SS(1),
plate. Poisson’s ratio is the single material property that couls{ll)_S(Il), and $I)_S(II) boundary conditions lead to the stron-
possibly influence the singular behavior of stress resultants. Notgest singularity for other angles. F and C_C boundary condi-
bly, unlike the singularity of shear forces found in classic platBons cause the weakest singularity.
theory and first-order shear deformation plate theory, no such sin-The singularity orders for stress resultants and the correspond-
gularity is involved in Reddy’s plate theory. ing corner functions given in this investigation are important for
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developing singularity elements in finite element approach for 52:4+(—4+(3+V)kz)Ker(V—l)kz)\ﬁp
complex thick plate problems involving corner stress singularities.
Furthermore, the corner functions for various corner boundary Y1=5(v=DEN(1+ N (1= Np),

conditions provided herein are also very valuable for applying the _ _ _
Ritz method to solve thick plate problems with reentrant corners Y2=EAm= DAR[2(=1+2)(=8+5kih ) + 16(1+ A )

like the work by McGee et all4] and Leissa et al.3] for thin =5k An(3+ v—Apt+ A ]
plate problems.
v3=16(v—1)ENp(1—\p),
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