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Coexistence of a self-induced transparency soliton and a Bragg soliton
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We theoretically show that a self-induced transparef@) soliton and a Bragg soliton can coexist in a
nonlinear photonic band gafPBG) medium doped uniformly with inhomogeneous-broadening two-level
atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure
are derived first and further reduced to an effective nonlinear Saiger equation. This model describes an
equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic disper-
sion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account,
the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originat-
ing from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the
original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton
satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence
is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely
determined for given material parameters, atomic transition frequency, and input central frequency of the
soliton. The numerical examples of the SIT soliton in a one-dimensiongbAsased PBG structure doped
uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT solitor-M@®-ps
width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than
the light speed in an unprocessed host medium.
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I. INTRODUCTION [24-30. For the SIT in a uniformly doped nonlinear PBG
structure, AKabek and John have reported the fundamental
The photonic band gap material has been widely investiwork on soliton solutions for frequency detuned near the
gated since Yablonovitchl] and Johr2] introduced that a PBG edge, and call them SIT-gap solitd22]. Because the
periodic dielectric structuréphotonic crystal exhibits a for-  dopant density and the atomic detuning frequency dramati-
bidden band for optical energy. Such a photonic band gapally change the characteristics of a SIT-gap soliton, it has
(PBG) results from the coherent multiple scattering of light been suggested that such solitary propagation may be very
in the periodic structure. The simplest PBG structure is thauseful in optical telecommunications and optical computing.
fiber Bragg grating, which has been widely applied in theRecently, we have shown that a moving SIT pulse train can
practical light wave communication systems. Although aexist in a uniformly doped PBG structuf23]. However, the
PBG material has a photonic band gap, the material nonlinsingle SIT soliton with its central frequency being deep in-
earity can render the PBG “transparent” for nonlinear opticalside the forbidden gap has not yet been found.
propagatiorf3—15|. For example, gap solitons refer to soli-  In this paper, we show that a soliton can exist in a uni-
tary localization and solitary propagation of optical waves informly doped nonlinear PBG medium, even if its central fre-
a nonlinear PBG structuf@—10]. The central frequency of a quency is deep inside the stop band. This soliton solution
gap soliton is deep inside the forbidden band. The experiindicates the coexistence of a SIT soliton and a Bragg soli-
mental observation of gap solitons in a fiber Bragg gratingon. The physical mechanism for this coexistence is attrib-
[9] or in an integrated AlGaAs waveguide gratifit0] has  uted to the fact that a uniformly doped PBG structure can be
been reported. Moreover, a nonlinear PBG medium also caregarded as an effective undoped PBG structure. Because the
support solitons of an effective nonlinear Satirmer (NLS) resonant atoms dominate the effective quadratic dispersion
equation11]. Such a soliton is called a Bragg soliton and its and the effective third-order nonlinearity, the original forbid-
central frequency is close to the band gap efite-15. den band has been shifted by the dopants. Furthermore, an
Bragg solitons have also been successfully observed in fibénstantaneous nonlinearity response due to the intense pulse
Bragg gratings[12]. The experimental results agree well also shifts the original stop band. As a result, the SIT effect
with the NLS mode[13-15. renders the uniformly doped nonlinear PBG “transparent”
Another example of nonlinear optical pulse propagatingand an optical pulse satisfying the effective Bragg soliton
through a band gap material is the self-induced transparengyopagation can propagate through this PBG structure. The
(SIT) soliton in a resonant PBG mediufh6—-23. SIT soli-  derivation for this soliton solution is explicitly presented.
tons are coherent optical pulses propagating through a res@he numerical examples of such a soliton in an$shased
nant medium without loss and distortion. Such coherenPBG structure doped uniformly with Lorentzian line-shape
propagation is described by the Maxwell-Bloch equationswo-level atoms are also shown.
This paper is structured as follows: In Sec. Il, the
Maxwell-Bloch equations governing the optical pulse propa-
*FAX: 886-3-571-6631. Email address: dabin.eo86g@nctu.edu.tvgating in a uniformly doped PBG structure are derived. In
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Sec. lll, we reduce the Maxwell-Bloch equations to an effecds the grating wave numbed 4 is the grating period which
tive NLS equation and obtain its soliton solution. This solu-satisfies the Bragg conditiohy=\g/(2n), andn is the av-
tion is the SIT-Bragg soliton propagating in a resonant PBCerage refractive index of the medium.

structure. In Sec. IV, we study the characteristics of the soli- To obtain the pulse propagation equations for this uni-
ton solution by assuming the inhomogeneous-broadeninéprmly doped PBG structure, we use the perturbation theory
line shape of the resonant atoms to be Lorentzian. The resf distributed feedback31] to reduce Eq(2.4). The dielec-
duction of the soliton’s velocity by both the SIT effect and tric constanfi(w)? in Eq. (2.4) is approximated by

multiple Bragg scattering in such a resonant PBG medium is

also studied. In Sec. V, we compare our results with the  Ti(w)®~n(w)?+2n(w)[Ny|E|*+ dny cog2B42)].

previous ones and conclude this paper. (2.9

Substituting Eqs(2.2), (2.3), and(2.5) into Eqg. (2.4) yields
the following equations:

In this paper, we adopt a one-dimensional Bragg grating - -
formed in a host medium with Kerr nonlinearity as our PBG J J 2 2 2
model. The two-level atoms are uniformly embedded in this el ay? *[ken(w)®~B(w)’JF=0, (263
Kerr host medium. From Maxwell's equations, the wave

Il. MAXWELL-BLOCH EQUATIONS

equation describing the light propagation in such a medium 9E. IE.
can be written as 7 ~2iBy— +[Be(w)?=BSIE. +2Kin(w) SngE -
1 &°E 9’P 9P, ~
g~ — —R =—Uu w2P+, 2-6b
VE 2 2 Moz TRz 2.1 0w P (2.6b

whereE is the electric field in the mediun® is the electric- Whereko=w/c, B.(w) are the wave numbers that are de-

induced polarization including the linear and nonlinear contermined according to the eigenvalues of 263, E. is
tributions of the host mediunfx, is the resonant polarization the Fourier transform oE. , and P is the Fourier trans-
resulting from the two-level atoms,is the velocity of light  form of P... The transverse mode functidf(x,y) can be

in vacuum, andug is the vacuum permeability. The electric averaged out by introducing the effective core atgp[31].
field E propagating along thedirection in such a uniformly Likewise the averaged effects of the coupling strength and

doped PBG structure can be expressed as the Kerr nonlinearity can be described by
1 . oo ee)
E(r,t)= ES(F(x,y){[E+(z,t)e'(5g2—wst) kOJ f SnglF(x,y)|?dx dy
K=
i(—Byz— wgt) N
+E_(Z,t)e' g2~ wB ]+C,C.}, (22) J'7 JL |F(X,y)|2dXdy

where E, and E_ are the envelopes of the forward and
Bragg scattering fields;(x,y) is the transverse modal dis- and
tribution, wg=2mc/\g is the Bragg frequency, and; is the

Bragg wavelength. Moreover, the macroscopic resonant po- R 2
larization P; caused by the dopants is written as Ko . 7@A”t|F(va)| dx dy
1 Aﬂi: © % ’ (27)
Pa(r,)= 5 XF(x,Y){[ P (z,)e!Ps*~ e Lo fﬁxlF(x,y)lzdx dy

+P_(zt)e P e, (23 respectively. HereAn.=n,(|E.|?+2|E.|?) indicate the
nonlinear effects of self-phase modulation and cross-phase
modulation. In the perturbation theotyn.. do not affect the
modal distributiorF(x,y). However, the eigenvalugs. ()
are given by B.(w)=B(w)+AB., where B(w)
w?. ~ =(w/c)n(w) is the mode-propagation constant of the elec-
VZE+ ”(w)2—2 E=— pow’Pg, (24 tric field. Under the slowly varying envelope approximation,
Eqg. (2.6b can be reduced to

whereP, andP_ correspond to the polarization envelopes
induced byE . andE_, respectively. In Fourier domain, Eq.
(2.1) becomes

where E is the Fourier transform oE, Py is the Fourier
transform ofPg, andf(w)=n(w)+n,|E|*+ dn, cos(B,2)

is the refractive index of the periodic structure. Hei@v)
represents the frequency-dependent refractive index of the
host mediumn; is the Kerr nonlinear-index coefficientn, Mo 2"|5 2.9

= ——w
is the magnitude of the periodic-index variatigdy= /A 4 2By

*] (?l?E_Zi+[:8(w)_ﬁg]Ei+ABiEt+ KE-
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In obtaining Eg. (2.8, we have usedB(w)’-pg; 2w 90$2¢(Z,'2+h2,392]- After r_1IFg_Iecting ths{gtc;mic relax-
- T tion times and the terms oscillating as ex{§3,2), we can

~2B4[ B(w)— Byl and B(w)/ By~ 1, which indicate that the a _ . 9

grating wave number is close to the mode-propagation corXPress the atomic Bloch equations{as]

stant. Taking the inverse Fourier transform of E2.8) re-

sults in the time-domain propagation equations. For this pur- U= =(Aw+ ‘9‘“) V. (2.123
pose, we regard\ 8. as constant perturbation and expand at at '
both w? and B(w) in Taylor series near the Bragg frequency
wg, le, a)zwwé-l—Zw_B(w—.wB) and B(w)~pBot+(w ve dp+ o
—wg)B1, Wwhere gj=d'g/de!|, . (j=0.1), and the - Aot —ust o (aswptazwy),
second-order and higher-order terms in the expansion have (2.12h
been neglected. Consequently, the time-domain coupled-
mode equations that describe pulse propagating in a uni- Wy
formly doped PBG structure can be written as = 7 (@rvetaov), (2.129
+"9Ei+'ﬁ aEi+5/3 E.+kE.+T(|E.|2 J
LIV - v oE+TKEZ + Wy 2
Jz at Wz—ﬁ(aJrV,-Fa,er). (2.120
, Mowé 2i P
+2|EZ[DE.+ 28, Pt wog at | The neglecting of the terms oscillating as exj8,2) indi-

cates that this paper is devoted to finding a single-pulse so-
(2.9 lution propagating along one directidlike a Bragg solitoi,
and exciting no higher-order spatial harmonic of population

where 68,= By~ B4 implies the wave number detuning difference[22,23

from the exact Bragg resonance, dné n,wg/(CAgf) is the
Kerr nonlinearity coefficient. Note that all the second deriva-
tives of E. and P. with respect toz andt have been ne- ll. APPROXIMATE SOLITON SOLUTION TO THE
glected by using the slowly varying envelope approximation. MAXWELL-BLOCH EQUATIONS
The coherent interactions between the electric field and . . .
. . In this section, we reduce the Maxwell-Bloch equations to

the two-level atoms can be described by the atomic Bloch : . . .

: . . the effective NLS equation for the optical pulse propagating
equations. To express the Bloch equations, we first assume

. INn a nonlinear PBG structure doped uniformly with
the complex envelopds.. andP.. can be further written as . . .
inhomogeneous-broadening two-level atoms. The atomic

E.(zt)=a.(z,t)exdie.(z1)], (2.1039  Bloch equations can be solved by using the factorization
B B B ansatz v. (Aw,z,t)=v; (0z,t)f(Aw), where f(Aw)=(1
P.(zt)=[U.(z,t) +iV_(zt)Jexdie«(z1)], +cAw+c,Aw?) "1 is the dipole spectra-response function

(2.10h  of the resonant aton{22,23,25,27,2pP Because such an an-

) satz can lead to a self-consistent solution to the Maxwell-
wherea.. are real e_nvelopes;,?i are phase functiong) . Bloch equations, it has been widely applied to solve the SIT
correspond to the dispersion mdu.ced by the resonant atomﬁroblems. The undetermined constaggsandc, both relate
andV.. correspond to the absorption caused by the resonai, the frequency detuning and the pulse width of the electric
atoms. Moreover, the Bloch vectors.(,v..,w) relate the  field, and they will be identified in the following section.

macroscopic polarization and population difference as folysing the factorization ansaf23], we have
lows:

o o Ip+ M
U,V ,W)=f (Us, v W)g(Aw—Awp)d(Aw), U= 10~ | —Aw)cz 7 Wif(AwaL(zt), (313
(2.11
_ M J
whereAw is defined byAw=w, — wg, (U. ,v. ,w) describe ve=Cop Wit(Aw) —a.(z1), (3.1b

the components of the polarization and population difference
contributed from the atoms with resonant frequencies in the

c 2
whole range of Aw, g(Aw—Aw,) is the normalized w0=wi—§2(%) wif(Aw)[ai(z,t)+a2,(z,t)],
inhomogeneous-broadening line-shape functiba, is de- (3.10
fined by Aw,g=w;g—wg, and w,q is the center of the '
broadening line-shape function. Here, the quantity c )
= u(N;—N,) is the macroscopic population difference mul- W :__Z(ﬁ) wf(Ao)a.(zta_ (zt 31
tiplied by the transition matrix element between the ! 2\ %) WiAela(zba-(zy]. (.19

ground state i{l;) and the upper stateN;) of the two-level
system. Furthermore, to keep a closed set of the Bloch equavrhere w;=Npu is the initial population difference, and
tions, we assumep-(z,t)=¢(z,t) = (z,t) and w=wy Np=N;+ N, is the doping concentration of the resonant at-
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oms. The initial population difference is in the ground state

of the two-level system. Substituting Eq8.1) into Egs.
(2.129 and(2.12bh, we have

da. dp- I?Z‘Pi Cq da~
+—ya.=———, :
at ot aZ 2= c, dt (3.23
Pa. 1 c¢fdos n I \?
_T: —_— a+
ot C2 C2 ot ot -
2
- W(aiJrZaé)ai . (3.2b

Now we defines:ﬂowéwiu/(z,[%gh) and two integral con-
stants

|1=fmwf(Aw)g(Aw—Aw,o)d(Aw), (3.33

l,= fjchwf(Aw)g(Aw—Awro)d(Aw). (3.3b

Then substituting Eqs(2.10), (2.11), and (3.1)—(3.3) into
Egs.(2.9), we obtain

+i ﬁE—i+iB§E+5ﬁeEi+KE;+Fe(|Ei|2
0z ot
+2|E5|})E. =0, (3.4
where the effective parameters are
OBe= 8B+ scli—(2sly/wg) +sGl 5, (3.5a
B5=pB1+sGl1+2scl,/wg, (3.5
I'.=T+sc,l u?/(wgh?). (3.50

Therefore, EQ.(2.9) is reduced to effective nonlinear
coupled-mode equation®LCMESs) under the slowly vary-
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FIG. 1. Frequency detuning &.. with respect to the original
dispersion reIatiorﬂ?_, of the PBG structure, and the effective dis-
persion relatior() .. for the linear terms of Eq(3.4).

=Q., where() andQ are the frequency and wave number

detuning from the effective Bragg resonangg. According

to Eqg. (3.59, the equivalent Bragg frequency has been
shifted towg= wg— (— 8B/ B;) because of the resonant at-
oms. It is known that the original Bragg wavelengthhis
=2nA4. The lower Bragg frequencyg points out that the
effective index in a uniformly doped PBG structure is greater
than that in a pure PBG structure. Accordingly, the effective
velocity 1/85, indicated by Eq(3.5b), is slower than that in

a pure material. Here we defitewg= — 8B8./8; and Aw,
=wy— wg, Wherewq is the input carrier frequency of the
electric field. Figure 1 schematically shows the frequency
detuning Awy with repect to the dispersion relations. The
hyperbolic curvesﬂ‘i indicate the original dispersion rela-
tion of the PBG structure without dopants, afid indicate
the effective dispersion relation associated with the linear
terms of Eq.(3.4), i.e.,, Q% are identical toQthDZO. The
center of the original gap is located @, and this original
gap has a width equal tok23, . After we take into account
the effects from the resonant atoms, not only the Bragg fre-
guency is shifted tavg, but also the width of this effective
gap is narrowed to 2/37 because of the larger effective
index. The Bloch wavefinear eigenstatesorresponding to

ing envelope approximation. The effective NLCMEs de-(), are exact solutions to the linear terms of Eg.4). In
scribe that a uniformly doped PBG structure can be modelegddition, the group velocity of the Bloch wave on the upper
by an effective PBG structure without dopants. Conse{yranch isvg=dQ , /9Q; thus we haveQ), = ry/BS and Q

quently, many of the results known for the NLCMESs can be _ vicy by definingv=ﬁ‘jvg andy=1/\J1— »2. The solution

easily applied to clarify the existence of the SIT soliton in a

to Eqg. (3.4 now can be treated as the envelope function of

nonli_near dope_d_PBG structure. We stress that the analytiﬁ]e Bloch wave corresponding to the upper band gap edge
solutions describing the pulse propagation in a doped nonl|n[4_5,11_15,31 Such an envelope function expressed as

ear PBG structure have to satisfy both E(&2) and (3.4).
We call Egs.(3.2 and(3.4) the Bloch-NLCMEs.
The NLCMEs in the form of Eq(3.4) have exact gap-

soliton solutiong 3—8]; however, such an exact single-pulse

solution cannot satisfy Eq$3.2). The exact solution to both

Egs. (3.2) and (3.4) is a distortionless pulse-train solution
given by sinusoidal functions with a dc background and a

modulated phasg23]. In this paper, we try to find out a

E(z,t) describes how the positive nonlinearity weakly modu-
lates the Bloch wave. Consequently, under the limitations of
low intensity, the effective NLCMEs for

1+=v

1/2
Ei(gvT)%i<%) E(f,T)ei(QZ—Q+t)e—i(—Ath)

(3.6

single-pulse solitary wave in a uniformly doped nonlinearcan be well approximated by an effective NLS equation
PBG structure. Hence we focus our study on an approximatgl4,31]
solution such as a Bragg soliton in an undoped fiber grating.

The linear terms of Eq(3.4) are considered first. Their dis-
persion relation is written a)=w—wg=*+ Q%+ %/ A5

JE 1 _PE 5
|___ﬂ2_§7_2 +I',|E|*E=0,

9E 2 3.7
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where 7=t—2z/v4 and {&=z are the moving frame coordi- Ao o
nates, and the parameters of this NLS equation depend on the E. (& 7)= i—secré —) g/l(¢/2Lp)+Qz=(~Awg+ 2 )]
effective undoped PBG structure via 0
(3.13
33— V2 1 . . 2 e
=T, B5=—(B52—5. (3.9  where the dispersion length isp=Tg/|B5|. Because the
2v KY central frequency,= wg— Awg+ ), of this optical field is

inherently located at the effective band gap edge,(Bd.3
represent a Bragg soliton. This soliton undergoes the effec-
tive third-order nonlinearity and quadratic grating dispersion
r‘la\xpressed in Eq3.8). Furthermore, such a soliton solution
also satisfies the atomic Bloch equations. Hence it indicates
the coexistence of a SIT soliton and a Bragg soliton. This
mixed state is referred to as a SIT-Bragg soliton. Note that
the characteristics of the effective PBG structure described
by Eq. (3.4) is not fixed by the associated medium param-
eters. Such an effective model can be determined by the
input pulse widthT incorporated with either the atomic fre-
where L is the dispersion length representing the Iengthquency detuningAw,o or the Bragg frequency detuning

scale over which the dispersive effects are important. Inte-A"’o' Therefore, a SIT-Bragg soliton can exist deep inside

grating Eg. (3.29 and using a.(z,t)==*E(&,7)|/V2= the original forbidden gap as long aswy=—c4/(2cC,)

Although Eg.(3.7) has well-known Bragg-soliton solu-
tions, the solution to Eq(3.7) has to satisfy Eqs3.2) ob-
tained from the Bloch equations. Notice that the reductio
from Eg. (3.4) to Eq. (3.7) is valid at any soliton velocity
[15]. However, to satisfy Eq$3.2), we use the slow-velocity
(v<1) limit [5] so thatE. (&, 7) are written asE. (&, 7)~
+E(&,7)exdi(Qz—Q . t)+iAwgt]/V2 approximately. In addi-
tion, we seek the solution in the form of

E(¢, m)=a(r)exdie(r)+ié/(2Lp)], (3.9

+a(7)/v2, we obtain <«l By
do. _de. _Ci 26 310 IV. CHARACTERISTICS OF SIT-BRAGG SOLITON
gr  dr 2c, a(r)?’ ' To examine the existence of a SIT-Bragg soliton, we study
the soliton solution in an A$;-based fiber Bragg grating
where ¢y is an integration constant, and we s&twy= (As,S;-FBG) doped uniformly with Lorentzian line-shape

—Awg+Q,=—cy/(2c,) and dg/dT=2co/a(7)%. Equa- two-level atoms. The AS;-based fiber is a type of
tion (3.10 describes the general phase modulation, or pulsehalcogenide-glass fiber with the Kerr nonlinearity being two
chirping in the SIT. The constantc,/(2c,) indicates that orders of magnitude higher than the value of silica-glass fiber
the carrier frequency of the optical field isg—c4/(2c,); [32,33. The fabrication of an AsS;-FBG has also been re-
moreover, the instantaneous frequency is inversely propoforted[34]. The material parameters for such an,8sFBG
tional to the pulse intensity. Such a chirping relation has beeare assumed to bag=n(wg)=2.39, Bp=5.9x10° m™ 1,
studied for the SIT in a nonlinear medium without the PBG g,=7.9x 10"9 s/m, andn,=2.5x 10~2° m%/V?2 at 1550 nm
structure [27]. Substituting Eg. (3.10 and a.(zt)= wavelength region. The coupling coefficient of the Bragg
*+a(7)/v2 into Eq. (3.2, and then substituting Eq3.9  grating is k=100 cm !, corresponding to the index vibra-
and dpld7=2co/a(r)? into Eq. (3.7), we find that both of  tion 6ny=0.005 at the Bragg wavelengiiy=1553 nm. For
the resulting equations lead to the embedded resonant atoms, the Lorentzian line-shape
function is written as

9a  4ch
ﬁ=a—3°+v1a+ 38°, (3.1 g Aw—Awg)=(Aw2m)[(Aw—Aw, )+ (Aw,/2)?],
where Aw,=27Af, is the full width at half maximum
where (FWHM) of g(Aw—Aw,y). We assume thatAf,
1 2 1 3.2 o =1472 GHz, w©=1.4x10%*Cm, and Np=8.0
= = = SH_S v (3.12 X 10°° m~23. Note that the large\f, is realistic for erbium
c, 4c5 |BSILp’ an® | gs| atoms. In addition, to numerically solve the parameters of a

SIT-Bragg soliton, we have to assumav,>1/T,, which
Forcy#0, Eq.(3.11) has a distortionless pulse-train solution indicates that the spectral width of the pulse is much less
given by the Jacobi elliptic function. Such pulse-train propa-than the spectral width of the inhomogeneous-broadening
gation results from the energy of resonant atoms periodicalljinewidth. Hence the soliton pulse width in our numerical
oscillating between the ground state and the upper state. Fetudy must satisfyl ;>0.1 ps.
a resonance medium without PBG structure, a real shape- The soliton pulse width and group velocity now can be
preserving pulse train has been observed in the experimenumerically obtained according to the characteristic equa-
[30]. Here we focus our attention on a single-pulse solutiortions for the SIT-Bragg soliton, which are rewritten as
to Eq. (3.11). For cy=0, we obtaina(r)=A,sechf/Ty),

whereAy= | BS|/(T, T2) = 2v2h!(V3uT,) is the pulse am- Awo=—Awp+,=-c1/(2Cy), (4.1a
plitude andT,=1/\/y; is the pulse width. Consequently, we
obtain Ag=VIB3|I(T", T5)=2vV2hI(V3uTy), (4.1b
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Atomic Detuning 8. = S(@,)-wp) (cm) Carrier Detuning 68,= B/(w-awy) (cm™')
FIG. 2. Pulse width of the SIT-Bragg solitons as a function of 7 T T Y
atomic detuningsB, at carrier detuningsB,=20 cm ! (dotted -
line), 8,=22 cni ! (dashed ling and58,=24 cm* (solid line). g 6
Note that the original band gap edge of the,8sbased fiber grat- § 5
ing is located at- k=100 cni . The FWHM curve for a fixed o
6B is symmetric t0dB,= 6By. Thus the minimum pulse width ~ 4
(maximum peak intensilyrequired for a SIT-Bragg soliton occurs 2
on exact atomic resonane®,= w,q. g 3
E,
where Awg=—6B./8; and Q, =«y/pB]; likewise y §
=1/J1— 17 is approximated by % »%2 under the slow- a 1
velocity limitation. Because these characteristic equations 0 . f f
strictly constrain the coexistence of a SIT and a Bragg soli- 20 40 60 80 100

ton, the soliton pulse width and group velocity are uniquely
determined for the Bragg detuning, atomic detuning, and
given material parameters. Figure 2 first shows the pulse fig. 3. (3 Pulse width andb) corresponding peak intensity
width (FWHM, Ty~ 1.763T,) of the SIT-Bragg solitons as a required for the SIT-Bragg solitons as a function of carrier detuning
function of atomic detuning,, when the carrier detuning 5, on exact atomic resonana®g, =0. The inset shows that the
is located atéB,=20cm ! (dotted ling, 6B,=22cm ! pulse width rapidly increases as the carrier detuning decreases.
(dashed ling and 68,=24 cm ! (solid line). The FWHM
curve for a fixeddB, is symmetric tod8,= 88, ; thus the
minimum pulse width required for a SIT-Bragg soliton oc- and Fig. 4b) shows the nonlinear dispersion cunjéd] of
curs on exact atomic resonaneg=w;q. The influence of the effective PBG structure for a SIT-Bragg soliton with car-
Bragg detuning on the required pulse width is further showrrier detuning 88,=100cm!, atomic detuning 83,
in Fig. 3. For the atomic on-resonance cagg(=0), Fig. =0cm !, and peak intensity=6.70 GW/cni. The dashed
3(a) shows that a larger Bragg detuning implies a narrowekcurves show the original linear case. Because this soliton is
pulse width for the existence of a SIT-Bragg soliton. Forlocated at the original upper band gap edgéSd{=«
85Bo<40 cmi 1, the required pulse width rapidly increases. =100 cm 1), the position of the effective upper band gap
Figure 3b) shows the corresponding peak intensity requirededge remains unchanged at the original PBG edge. However,
for a SIT-Bragg soliton abB, =0 as a function 063,. The  the width of the effective band gap has been narrowed from
peak intensity of a SIT-Bragg soliton is defined by  2x=200cm ! to 133.33 cm*. When the effective nonlin-
=(no/2)(Veo! o)A, Wheree, is the vacuum permittivity ~ earity is taken into account, the effective upper band gap
[13,14]. Obviously, for §8,>40 cm !, the intensity curve edge has been down shifted to 45.58 ¢rdue to the intense
shows the approximately linear dependence of the peak irpeak intensity. By contrast, Fig(e) also shows the effective
tensity and the Bragg detuning of a SIT-Bragg soliton. No-linear dispersion curves, and Fig(d shows the nonlinear
tice that Fig. 3 does not exhibit the pulse width and pealdispersion curves of the effective PBG structure for a SIT-
intensity for 0< §B8,<20 because the required pulse width Bragg soliton with §8,=20cm !, §8,=0cm !, andlp
for this range dramatically exceeds 1 ns that is not much less 0.30 GW/cm3. The effective linear dispersion relation
than the atomic relaxation times. The inset of Fi(p)Jre- shows that the effective upper band gap edge has been
sents the remarkably increasing trend of the pulse width for ahifted to 20 cm? and the width of the effective forbidden
small carrier detuning. From an experimental viewpoint, theband has become 57.12 ch Because the peak intensity in
atomic relaxation processes would incoherently absorb ththis case is much smaller than that in Fighy the effective
pulse energy for & 68,<20. upper band gap edge is down shifted only 6.51 tritom
Figure 4a) shows the effective linear dispersion curvesthe upper band gap edge of its linear dispersion relation.

Carrier Detuning 88, = B,(w-wg) (cm™)
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Consequently, a SIT-Bragg soliton is an optical pulse satising pulsed width required for the SIT-Bragg soliton. The re-
fying the Bragg soliton propagation in an effective undopedation between the pulse width and the PBG coupling coef-
PBG structure. ficient is approximately a linear dependence. We emphasize
The group velocity of such a SIT-Bragg soliton in the that the slow-velocity limit is invalid for a SIT-Bragg soliton
range of 26<53,<100 is shown in Fig. &). The quantity in an erbium-doped silica-based FBG. Consequently, in this
of vy approximately corresponds to 1/250 of the speed obaper we focus our numerical study on a dopedSjdased
light in vacuum. This propagating delay originates from bothFBG to make the slow-velocity limit valid and reduce the
the SIT effect and the multiple scattering due to the periodigequired peak intensity. Alternatively, an integrated AlGaAs
structure. Furthermore, the relativistic velocity= Bivg is waveguide grating doped with resonant atoms could be a
shown in Fig. Bb). The magnitude ofv is less than 0.05. suitable PBG medium for the observation of a SIT-Bragg
Thus the slow-velocity limit is valid for the SIT-Bragg soli- soliton, because the AlGaAs waveguides have sufficient
ton. It is well known that one of the attractive characteristicspower-handling capabilities to reduce the required peak in-
of a Bragg soliton is the reduction of its group velocity. The tensity [10]. A large coupling coefficient of the AlGaAs
experiments have shown that a Bragg soliton with 80-psvaveguide grating also can be easily achieved for the slow-
width can travel with the velocity as low as 50% of the light velocity limitation of a SIT-Bragg soliton.
speed in an unprocessed filjéA]. Hence all optical buffer Finally, we stress that although our results for a SIT-Bragg
based on the slow propagation of a Bragg soliton is an onsoliton in a doped AsS;-based FBG are realistic, the doping
going challenge. Figure (& shows the velocity of a SIT- concentration adopted in the numerical study is two orders of
Bragg soliton as a function of the coupling coefficient atmagnitude larger than the value of a typically erbium-doped
8Bo=60cm ! and 58,=0 cm *. When the coupling coef- fiber. Figure 7 shows the soliton pulse width as a function of
ficient is increased, the group velocity of a SIT-Bragg solitonthe doping concentration atB,=60cm ! and &8,
is smoothly decreased. It is obvious that a larger index varia=0 cm 2. It presents the remarkably increasing trend of the
tion of the periodic structure leads to the more serious Braggulse width for a small doping concentration. From an ex-
scattering. The magnitude of the soliton velocity maintainsperimental viewpoint, the atomic relaxation processes would
its order at 18 m/s due to the SIT effect. The relativistic incoherently absorb the pulse energy for low concentration.
velocity v=pBJvq is shown in the inset of Fig.(6). The  Nevertheless, it will be interesting to study the suitable ma-
slow-velocity limitation for our doped A$;-based FBG terial, for example, an erbium-doped AlGaAs waveguide
with coupling coefficient from x=20cm! to « grating with high doping density, to experimentally investi-
=100 cm ! is also valid. Figure @) shows the correspond- gate the existence of a SIT-Bragg soliton.
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oBo on exact atomic resonana¥g, =0. Notice that the trends of solitons as functions of the coupling coefficient of a doped
the group velocity curve and the relativistic velocity curve are op-As,S,-based PBG structure.

posite, because the effective group velocitgltlescribing the ve-

locity of each optical frequency componei@W casg also varies  ing with both the material Kerr nonlinearity and the resonant
with the Bragg detuning. The relativistic velocity shows that the effects determined by the Bloch equations. Because of this
slow-velocity limit is valid for a SIT-Bragg soliton in a doped palance based on the pure grating dispersion, the doping con-

As,S;-based PBG structure. centration and the atomic detuning frequency can dramati-
cally change the characteristics of a SIT gap soliton when the
V. DISCUSSION AND CONCLUSIONS carrier detuning is close to the original band gap edge. By

In this paper, we adopt a uniformly doped nonlinear ppgcontrast, in our study, the NLCMEs with polarization enve-

model to study the SIT effect deep inside the forbidden bandOP€S are first reduced to effective NLCMEs, and these ef-
The fundamental work of SIT in such a uniformly doped fective NLCMEs are subsequently reduced to effective NLS

PBG structure has been studied in R€g]. In this previous equation. On the basis of such reduction, our effective model

study, the authors reduce the NLCMESs with polarization en_corn_pletely involves thg dis_p_ersion due to the polarization. In
velopes by directly expanding the dispersion relation of thé?arncular, our model simplifies the resonant effects to effec-

pure grating. Hence their model represented by our notatiorldV€ dispersion and effective nonlinearity, even if the atomic
can be written as line shape is inhomogeneously broadening. Figutb) 8

shows our effective grating dispersion of an,8gbased

FBG uniformly doped with resonant atoms as a function of
P=0, (5.2) carrier detuning. Because the resonant effects have been
2Bo taken into account and a SIT-Bragg soliton is inherently lo-

cated at the effective band gap edge, such an effective qua-

where ,8? is quadratic dispersion for pure grating. Figure dratic dispersion is much larger than the pure grating disper-
8(a) shows the pure grating dispersioi4,31 of an  sion for a fixed carrier detuning. Furthermore, the slow
As,S;-based FBG as a function of carrier detuning. The insepropagation caused by the SIT effect can lead to the SIT-
shows that when the carrier is near the original band gajnduced dispersiofi23,29. This induced dispersion should
edge (=100 cm ), the pure grating dispersion trends to be considered by keeping the second derivative of the elec-
infinity. Therefore, a SIT-gap soliton is a distortionless opti-tromagnetic field with respect to the propagation distance.
cal pulse resulting from this pure grating dispersion, balancThe SIT-induced dispersion can be written as

JE 1 _J°E Low3
> | C 2
=582 Pr: +T'|E[’E+
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dispersion based on the group velocity shown in Fi@).5

Obviously, the SIT-induced dispersion is much smaller than
the effective quadratic dispersion originating from the effec-
tive periodic structure. Hence this induced dispersion due to

the slow propagation is negligible for a SIT-Bragg soliton. 98.425 T
According to Sec. IV and the above-mentioned discus- c

sion, the physical interpretation for a SIT-Bragg soliton can 2 E 98.396

be described as follows: A uniformly doped PBG structure g o)

can be regarded as an effective undoped PBG structure. The 8 2 98376

resonant atoms lead to the effective grating dispersion and v 2

resonant enhanced nonlinearity. Hence the original forbidden _‘g‘ ~ 98.938

band has been shifted. Furthermore, an instantaneous nonlin- £5, 7

earity response due to the intense pulse also shifts the stop '5 =

band. As a result, a nonlinear optical pulse that satisfies the 98.309

soliton pulse shape and obeys the SIT chirping relation ren- ©

ders the PBG “transparent.” In particular, for distortionless 98.220 L A l 1

propagation in the uniformly doped nonlinear PBG structure, 20 40 60 80 100 120

the effective quadratic dispersion has to balance with the Carrier Detuning 85, = §(w-a3) (cm)

effective third-order nonlinearity. Although our results ex-
hibit such a SIT soliton, we emphasize that the populatiorbal

difference W:W0+2Vr\]/.1 cog2yfzh) +25,7] is a bIaS|c 45" The inset shows that when the carrier is near the original band gap
Sumptlon. We use_t IS as_sumptlon tp get a closed set dge =100 cm!), the pure grating dispersion trends to infinity.
atomic Bloch equations. Strictly speaking, we have ”eg'eCte%’o) Effective grating dispersion adopted in our study for balancing

all higher-order spatial harmonics of the population differ-yt the effective nonlinearityc) SIT-induced dispersion resulting
ence. Hence the theoretical model and its analytic solutiongom the slow propagation.

in our work are constrained by this assumption. On the other

hand, such an assumption can be avoided by assuming thiain in a doped nonlinear PBG medium would be an attractive
the resonant atoms are periodically doped in a host mediursubject, which can lead to the practical expansions of Bragg
[16—21]. However, from a practical viewpoint, the fabrica- grating solitons in the vast area of light wave systems.

tion of a uniformly doped PBG model is simple. It would be  In summary, we have found an approximate soliton solu-
interesting to study the impacts of the higher-order spatiation to the Bloch-NLCMESs, and studied the characteristics of
harmonics on the stability of the solitary propagation. Con-such solitons in an A$;-based PBG structure doped uni-
sequently, the experimental observation of a SIT-Bragg soliformly with Lorentzian line-shape two-level atoms. Our re-

FIG. 8. (a) Pure grating dispersion adopted in RE?2] for
ancing with the material Kerr nonlinearity and resonant effects.
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sults indicate the existence of a SIT-Bragg soliton evertive Bragg-soliton propagation in this uniformly doped non-
within the forbidden band of the PBG structure. Such coexiinear PBG structure.

istence originates from the offset of the stop band due to the

effec;tlve .quadratllc dlsperS|o_n and the resonqnt enhanced ACKNOWLEDGMENT

nonlinearity. The intense optical pulse also shifts the band
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