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Coexistence of a self-induced transparency soliton and a Bragg soliton
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We theoretically show that a self-induced transparency~SIT! soliton and a Bragg soliton can coexist in a
nonlinear photonic band gap~PBG! medium doped uniformly with inhomogeneous-broadening two-level
atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure
are derived first and further reduced to an effective nonlinear Schro¨dinger equation. This model describes an
equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic disper-
sion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account,
the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originat-
ing from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the
original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton
satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence
is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely
determined for given material parameters, atomic transition frequency, and input central frequency of the
soliton. The numerical examples of the SIT soliton in a one-dimensional As2S3-based PBG structure doped
uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT soliton with;100-ps
width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than
the light speed in an unprocessed host medium.
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I. INTRODUCTION

The photonic band gap material has been widely inve
gated since Yablonovitch@1# and John@2# introduced that a
periodic dielectric structure~photonic crystal! exhibits a for-
bidden band for optical energy. Such a photonic band
~PBG! results from the coherent multiple scattering of lig
in the periodic structure. The simplest PBG structure is
fiber Bragg grating, which has been widely applied in t
practical light wave communication systems. Although
PBG material has a photonic band gap, the material non
earity can render the PBG ‘‘transparent’’ for nonlinear optic
propagation@3–15#. For example, gap solitons refer to so
tary localization and solitary propagation of optical waves
a nonlinear PBG structure@3–10#. The central frequency of a
gap soliton is deep inside the forbidden band. The exp
mental observation of gap solitons in a fiber Bragg grat
@9# or in an integrated AlGaAs waveguide grating@10# has
been reported. Moreover, a nonlinear PBG medium also
support solitons of an effective nonlinear Schro¨dinger~NLS!
equation@11#. Such a soliton is called a Bragg soliton and
central frequency is close to the band gap edge@12–15#.
Bragg solitons have also been successfully observed in
Bragg gratings@12#. The experimental results agree we
with the NLS model@13–15#.

Another example of nonlinear optical pulse propagat
through a band gap material is the self-induced transpare
~SIT! soliton in a resonant PBG medium@16–23#. SIT soli-
tons are coherent optical pulses propagating through a r
nant medium without loss and distortion. Such coher
propagation is described by the Maxwell-Bloch equatio
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@24–30#. For the SIT in a uniformly doped nonlinear PB
structure, Ako¨zbek and John have reported the fundamen
work on soliton solutions for frequency detuned near
PBG edge, and call them SIT-gap solitons@22#. Because the
dopant density and the atomic detuning frequency dram
cally change the characteristics of a SIT-gap soliton, it h
been suggested that such solitary propagation may be
useful in optical telecommunications and optical computin
Recently, we have shown that a moving SIT pulse train c
exist in a uniformly doped PBG structure@23#. However, the
single SIT soliton with its central frequency being deep
side the forbidden gap has not yet been found.

In this paper, we show that a soliton can exist in a u
formly doped nonlinear PBG medium, even if its central fr
quency is deep inside the stop band. This soliton solut
indicates the coexistence of a SIT soliton and a Bragg s
ton. The physical mechanism for this coexistence is att
uted to the fact that a uniformly doped PBG structure can
regarded as an effective undoped PBG structure. Becaus
resonant atoms dominate the effective quadratic disper
and the effective third-order nonlinearity, the original forbi
den band has been shifted by the dopants. Furthermore
instantaneous nonlinearity response due to the intense p
also shifts the original stop band. As a result, the SIT eff
renders the uniformly doped nonlinear PBG ‘‘transparen
and an optical pulse satisfying the effective Bragg solit
propagation can propagate through this PBG structure.
derivation for this soliton solution is explicitly presente
The numerical examples of such a soliton in an As2S3-based
PBG structure doped uniformly with Lorentzian line-sha
two-level atoms are also shown.

This paper is structured as follows: In Sec. II, th
Maxwell-Bloch equations governing the optical pulse prop
gating in a uniformly doped PBG structure are derived.w
©2002 The American Physical Society06-1
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HONG-YIH TSENG AND SIEN CHI PHYSICAL REVIEW E66, 056606 ~2002!
Sec. III, we reduce the Maxwell-Bloch equations to an eff
tive NLS equation and obtain its soliton solution. This so
tion is the SIT-Bragg soliton propagating in a resonant P
structure. In Sec. IV, we study the characteristics of the s
ton solution by assuming the inhomogeneous-broaden
line shape of the resonant atoms to be Lorentzian. The
duction of the soliton’s velocity by both the SIT effect an
multiple Bragg scattering in such a resonant PBG medium
also studied. In Sec. V, we compare our results with
previous ones and conclude this paper.

II. MAXWELL-BLOCH EQUATIONS

In this paper, we adopt a one-dimensional Bragg grat
formed in a host medium with Kerr nonlinearity as our PB
model. The two-level atoms are uniformly embedded in t
Kerr host medium. From Maxwell’s equations, the wa
equation describing the light propagation in such a med
can be written as

¹2E2
1

c2

]2E

]t2 2m0

]2P

]t2 5m0

]2PR

]t2 , ~2.1!

whereE is the electric field in the medium,P is the electric-
induced polarization including the linear and nonlinear co
tributions of the host medium,PR is the resonant polarizatio
resulting from the two-level atoms,c is the velocity of light
in vacuum, andm0 is the vacuum permeability. The electr
field E propagating along thez direction in such a uniformly
doped PBG structure can be expressed as

E~r ,t !5
1

2
x̂F~x,y!$@E1~z,t !ei ~bgz2vBt !

1E2~z,t !ei ~2bgz2vBt !#1c.c.%, ~2.2!

where E1 and E2 are the envelopes of the forward an
Bragg scattering fields,F(x,y) is the transverse modal dis
tribution,vB52pc/lB is the Bragg frequency, andlB is the
Bragg wavelength. Moreover, the macroscopic resonant
larizationPR caused by the dopants is written as

PR~r ,t !5
1

2
x̂F~x,y!$@P1~z,t !ei ~bgz2vBt !

1P2~z,t !ei ~2bgz2vBt !#1c.c.%, ~2.3!

whereP1 and P2 correspond to the polarization envelop
induced byE1 andE2 , respectively. In Fourier domain, Eq
~2.1! becomes

¹2Ẽ1ñ~v!2
v2

c2 Ẽ52m0v2P̃R , ~2.4!

where Ẽ is the Fourier transform ofE, P̃R is the Fourier
transform ofPR , and ñ(v)5n(v)1n2uEu21dng cos(2bgz)
is the refractive index of the periodic structure. Heren(v)
represents the frequency-dependent refractive index of
host medium,n2 is the Kerr nonlinear-index coefficient,dng
is the magnitude of the periodic-index variation,bg5p/Lg
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is the grating wave number,Lg is the grating period which
satisfies the Bragg conditionLg5lB /(2n̄), andn̄ is the av-
erage refractive index of the medium.

To obtain the pulse propagation equations for this u
formly doped PBG structure, we use the perturbation the
of distributed feedback@31# to reduce Eq.~2.4!. The dielec-
tric constantñ(v)2 in Eq. ~2.4! is approximated by

ñ~v!2'n~v!212n~v!@n2uEu21dng cos~2bgz!#.
~2.5!

Substituting Eqs.~2.2!, ~2.3!, and~2.5! into Eq. ~2.4! yields
the following equations:

]2F

]x2 1
]2F

]y2 1@k0
2n~v!22b̃6~v!2#F50, ~2.6a!

]2Ẽ6

]z2 62 j bg

]Ẽ6

]z
1@b̃6~v!22bg

2#Ẽ612k0
2n~v!dngẼ7

52u0v2P̃6 , ~2.6b!

wherek05v/c, b̃6(v) are the wave numbers that are d
termined according to the eigenvalues of Eq.~2.6a!, Ẽ6 is
the Fourier transform ofE6 , and P̃6 is the Fourier trans-
form of P6 . The transverse mode functionF(x,y) can be
averaged out by introducing the effective core areaAeff @31#.
Likewise the averaged effects of the coupling strength a
the Kerr nonlinearity can be described by

k5

k0E
2`

` E
2`

`

dnguF~x,y!u2dx dy

E
2`

` E
2`

`

uF~x,y!u2dx dy

and

Db65

k0E
2`

` E
2`

`

Dn6uF~x,y!u2dx dy

E
2`

` E
2`

`

uF~x,y!u2dx dy

, ~2.7!

respectively. HereDn6[n2(uẼ6u212uẼ7u2) indicate the
nonlinear effects of self-phase modulation and cross-ph
modulation. In the perturbation theory,Dn6 do not affect the
modal distributionF(x,y). However, the eigenvaluesb̃6(v)
are given by b̃6(v)5b(v)1Db6 , where b(v)
5(v/c)n(v) is the mode-propagation constant of the ele
tric field. Under the slowly varying envelope approximatio
Eq. ~2.6b! can be reduced to

6 j
]Ẽ6

]z
1@b~v!2bg#Ẽ61Db6Ẽ61kẼ7

52
m0

2bg
v2P̃6 . ~2.8!
6-2
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In obtaining Eq. ~2.8!, we have used b̃(v)22bg
2

'2bg@b̃(v)2bg# andb(v)/bg'1, which indicate that the
grating wave number is close to the mode-propagation c
stant. Taking the inverse Fourier transform of Eq.~2.8! re-
sults in the time-domain propagation equations. For this p
pose, we regardDb6 as constant perturbation and expa
both v2 andb~v! in Taylor series near the Bragg frequen
vB , i.e., v2'vB

212vB(v2vB) and b(v)'b01(v
2vB)b1 , where b j5djb/dv j uv2vB

( j 50,1), and the
second-order and higher-order terms in the expansion h
been neglected. Consequently, the time-domain coup
mode equations that describe pulse propagating in a
formly doped PBG structure can be written as

6 i
]E6

]z
1 ib1

]E6

]t
1db0E61kE71G~ uE6u2

12uE7u2!E61
m0vB

2

2bg
S P61

2i

vB

]P6

]t D50,

~2.9!

where db05b02bg implies the wave number detunin
from the exact Bragg resonance, andG5n2vB /(cAeff) is the
Kerr nonlinearity coefficient. Note that all the second deriv
tives of E6 and P6 with respect toz and t have been ne-
glected by using the slowly varying envelope approximati

The coherent interactions between the electric field
the two-level atoms can be described by the atomic Bl
equations. To express the Bloch equations, we first ass
the complex envelopesE6 andP6 can be further written as

E6~z,t !5a6~z,t !exp@ iw6~z,t !#, ~2.10a!

P6~z,t !5@U6~z,t !1 iV6~z,t !#exp@ iw6~z,t !#,
~2.10b!

wherea6 are real envelopes,w6 are phase functions,U6

correspond to the dispersion induced by the resonant ato
andV6 correspond to the absorption caused by the reso
atoms. Moreover, the Bloch vectors (u6 ,n6 ,w) relate the
macroscopic polarization and population difference as
lows:

~U6 ,V6 ,W!5E
2`

`

~u6 ,n6 ,w!g~Dv2Dv r0!d~Dv!,

~2.11!

whereDv is defined byDv5v r2vB , (u6 ,n6 ,w) describe
the components of the polarization and population differe
contributed from the atoms with resonant frequencies in
whole range of Dv, g(Dv2Dv r0) is the normalized
inhomogeneous-broadening line-shape function,Dv r0 is de-
fined by Dv r05v r02vB , and v r0 is the center of the
broadening line-shape function. Here, the quantityW
5m(N12N2) is the macroscopic population difference mu
tiplied by the transition matrix elementm between the
ground state (N1) and the upper state (N2) of the two-level
system. Furthermore, to keep a closed set of the Bloch e
tions, we assumew6(z,t)5f(z,t)6c(z,t) and w5w0
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12w1 cos@2c(z,t)12bgz#. After neglecting the atomic relax
ation times and the terms oscillating as exp(6i3bgz), we can
express the atomic Bloch equations as@23#

]u6

]t
5S Dv1

]w6

]t D n6 , ~2.12a!

]n6

]t
52S Dv1

]w6

]t Du61
m

\
~a6w01a7w1!,

~2.12b!

]w0

]t
5

m

\
~a1n11a2n2!, ~2.12c!

]w1

]t
52

m

2\
~a1n21a2n1!. ~2.12d!

The neglecting of the terms oscillating as exp(6i3bgz) indi-
cates that this paper is devoted to finding a single-pulse
lution propagating along one direction~like a Bragg soliton!,
and exciting no higher-order spatial harmonic of populat
difference@22,23#.

III. APPROXIMATE SOLITON SOLUTION TO THE
MAXWELL-BLOCH EQUATIONS

In this section, we reduce the Maxwell-Bloch equations
the effective NLS equation for the optical pulse propagat
in a nonlinear PBG structure doped uniformly wi
inhomogeneous-broadening two-level atoms. The ato
Bloch equations can be solved by using the factorizat
ansatz n6(Dv,z,t)5n1

6(0,z,t) f (Dv), where f (Dv)5(1
1c1Dv1c2Dv2)21 is the dipole spectra-response functio
of the resonant atoms@22,23,25,27,29#. Because such an an
satz can lead to a self-consistent solution to the Maxw
Bloch equations, it has been widely applied to solve the S
problems. The undetermined constantsc1 andc2 both relate
to the frequency detuning and the pulse width of the elec
field, and they will be identified in the following section
Using the factorization ansatz@23#, we have

u65Fc12S ]w6

]t
2Dv D c2G m

\
wi f ~Dv!a6~z,t !, ~3.1a!

n65c2

m

\
wi f ~Dv!

]

]t
a6~z,t !, ~3.1b!

w05wi2
c2

2 S m

\ D 2

wi f ~Dv!@a1
2 ~z,t !1a2

2 ~z,t !#,

~3.1c!

w152
c2

2 S m

\ D 2

wi f ~Dv!@a1~z,t !a2~z,t !#, ~3.1d!

where wi5NDm is the initial population difference, and
ND5N11N2 is the doping concentration of the resonant
6-3
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oms. The initial population difference is in the ground sta
of the two-level system. Substituting Eqs.~3.1! into Eqs.
~2.12a! and ~2.12b!, we have

2
]a6

]t

]w6

]t
1

]2w6

]t2 a65
c1

c2

]a6

]t
, ~3.2a!

]2a6

]t2 5F 1

c2
2

c1

c2
S ]w6

]t D1S ]w6

]t D 2Ga6

2
m2

2\2 ~a6
2 12a7

2 !a6 . ~3.2b!

Now we defines5m0vB
2wim/(2bg\) and two integral con-

stants

I 15E
2`

`

f ~Dv!g~Dv2Dv r0!d~Dv!, ~3.3a!

I 25E
2`

`

Dv f ~Dv!g~Dv2Dv r0!d~Dv!. ~3.3b!

Then substituting Eqs.~2.10!, ~2.11!, and ~3.1!–~3.3! into
Eqs.~2.9!, we obtain

6 i
]E6

]z
1 ib1

e ]E6

]t
1dbeE61kE71Ge~ uE6u2

12uE7u2!E650, ~3.4!

where the effective parameters are

dbe5db01sc1I 12~2sI1 /vB!1sc2I 2 , ~3.5a!

b1
e5b11sc2I 112sc2I 2 /vB , ~3.5b!

Ge5G1sc2I 1m2/~vB\2!. ~3.5c!

Therefore, Eq. ~2.9! is reduced to effective nonlinea
coupled-mode equations~NLCMEs! under the slowly vary-
ing envelope approximation. The effective NLCMEs d
scribe that a uniformly doped PBG structure can be mode
by an effective PBG structure without dopants. Con
quently, many of the results known for the NLCMEs can
easily applied to clarify the existence of the SIT soliton in
nonlinear doped PBG structure. We stress that the ana
solutions describing the pulse propagation in a doped non
ear PBG structure have to satisfy both Eqs.~3.2! and ~3.4!.
We call Eqs.~3.2! and ~3.4! the Bloch-NLCMEs.

The NLCMEs in the form of Eq.~3.4! have exact gap-
soliton solutions@3–8#; however, such an exact single-pul
solution cannot satisfy Eqs.~3.2!. The exact solution to both
Eqs. ~3.2! and ~3.4! is a distortionless pulse-train solutio
given by sinusoidal functions with a dc background and
modulated phase@23#. In this paper, we try to find out a
single-pulse solitary wave in a uniformly doped nonline
PBG structure. Hence we focus our study on an approxim
solution such as a Bragg soliton in an undoped fiber grat
The linear terms of Eq.~3.4! are considered first. Their dis
persion relation is written asV5v2vB856AQ21k2/b1

e
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[V6 , whereV andQ are the frequency and wave numb
detuning from the effective Bragg resonancevB8 . According
to Eq. ~3.5a!, the equivalent Bragg frequency has be
shifted tovB85vB2(2dbe /b1

e) because of the resonant a
oms. It is known that the original Bragg wavelength islB

52n̄Lg . The lower Bragg frequencyvB8 points out that the
effective index in a uniformly doped PBG structure is grea
than that in a pure PBG structure. Accordingly, the effect
velocity 1/b1

e , indicated by Eq.~3.5b!, is slower than that in
a pure material. Here we defineDvB52dbe /b1

e andDv0

5v02vB , wherev0 is the input carrier frequency of th
electric field. Figure 1 schematically shows the frequen
detuningDv0 with repect to the dispersion relations. Th
hyperbolic curvesV6

0 indicate the original dispersion rela
tion of the PBG structure without dopants, andV6 indicate
the effective dispersion relation associated with the lin
terms of Eq.~3.4!, i.e., V6

0 are identical toV6uND50 . The

center of the original gap is located atvB , and this original
gap has a width equal to 2k/b1 . After we take into account
the effects from the resonant atoms, not only the Bragg
quency is shifted tovB8 , but also the width of this effective
gap is narrowed to 2k/b1

e because of the larger effectiv
index. The Bloch waves~linear eigenstates! corresponding to
V6 are exact solutions to the linear terms of Eq.~3.4!. In
addition, the group velocity of the Bloch wave on the upp
branch isng5]V1 /]Q; thus we haveV15kg/b1

e and Q
5nkg by definingn5b1

eng andg51/A12n2. The solution
to Eq. ~3.4! now can be treated as the envelope function
the Bloch wave corresponding to the upper band gap e
@4–5,11–15,31#. Such an envelope function expressed
E(z,t) describes how the positive nonlinearity weakly mod
lates the Bloch wave. Consequently, under the limitations
low intensity, the effective NLCMEs for

E6~j,t!'6S 16n

2 D 1/2

E~j,t!ei ~Qz2V1t !e2 i ~2DvBt !

~3.6!

can be well approximated by an effective NLS equati
@14,31#

i
]E

]j
2

1

2
b2

e ]2E

]t2 1GnuEu2E50, ~3.7!

FIG. 1. Frequency detuning ofE6 with respect to the original
dispersion relationV6

0 of the PBG structure, and the effective di
persion relationV6 for the linear terms of Eq.~3.4!.
6-4
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where t5t2z/ng and j5z are the moving frame coordi
nates, and the parameters of this NLS equation depend o
effective undoped PBG structure via

Gn5
32n2

2n
Ge , b2

e52~b1
e!2

1

kg3n3 . ~3.8!

Although Eq. ~3.7! has well-known Bragg-soliton solu
tions, the solution to Eq.~3.7! has to satisfy Eqs.~3.2! ob-
tained from the Bloch equations. Notice that the reduct
from Eq. ~3.4! to Eq. ~3.7! is valid at any soliton velocity
@15#. However, to satisfy Eqs.~3.2!, we use the slow-velocity
(n!1) limit @5# so thatE6(j,t) are written asE6(j,t)'
6E(j,t)exp@i(Qz2V1t)1iDvBt#/& approximately. In addi-
tion, we seek the solution in the form of

E~j,t!5a~t!exp@ iw~t!1 i j/~2LD!#, ~3.9!

where LD is the dispersion length representing the len
scale over which the dispersive effects are important. In
grating Eq. ~3.2a! and using a6(z,t)56E(j,t)u/&5
6a(t)/&, we obtain

]w1

]t
5

]w2

]t
5

c1

2c2
1

2c0

a~t!2 , ~3.10!

where c0 is an integration constant, and we setDv05
2DvB1V152c1 /(2c2) and ]w/]t52c0 /a(t)2. Equa-
tion ~3.10! describes the general phase modulation, or pu
chirping in the SIT. The constant2c1 /(2c2) indicates that
the carrier frequency of the optical field isvB2c1 /(2c2);
moreover, the instantaneous frequency is inversely pro
tional to the pulse intensity. Such a chirping relation has b
studied for the SIT in a nonlinear medium without the PB
structure @27#. Substituting Eq. ~3.10! and a6(z,t)5
6a(t)/& into Eq. ~3.2b!, and then substituting Eq.~3.9!
and ]w/]t52c0 /a(t)2 into Eq. ~3.7!, we find that both of
the resulting equations lead to

]2a

]t2 5
4c0

2

a3 1g1a1g3a3, ~3.11!

where

g1[
1

c2
2

c1
2

4c2
2 5

1

ub2
euLD

, g3[
3m2

4\2 5
2Gn

ub2
eu

. ~3.12!

For c0Þ0, Eq.~3.11! has a distortionless pulse-train solutio
given by the Jacobi elliptic function. Such pulse-train prop
gation results from the energy of resonant atoms periodic
oscillating between the ground state and the upper state
a resonance medium without PBG structure, a real sha
preserving pulse train has been observed in the experim
@30#. Here we focus our attention on a single-pulse solut
to Eq. ~3.11!. For c050, we obtaina(t)5A0 sech(t/T0),
whereA05Aub2

eu/(GnT0
2)52&\/()mT0) is the pulse am-

plitude andT051/Ag1 is the pulse width. Consequently, w
obtain
05660
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E6~j,t!56
A0

&
sechS t

T0
Dei @~j/2LD!1Qz2~2DvB1V1!t#,

~3.13!

where the dispersion length isLD5T0
2/ub2

eu. Because the
central frequencyv05vB2DvB1V1 of this optical field is
inherently located at the effective band gap edge, Eq.~3.13!
represent a Bragg soliton. This soliton undergoes the ef
tive third-order nonlinearity and quadratic grating dispers
expressed in Eq.~3.8!. Furthermore, such a soliton solutio
also satisfies the atomic Bloch equations. Hence it indica
the coexistence of a SIT soliton and a Bragg soliton. T
mixed state is referred to as a SIT-Bragg soliton. Note t
the characteristics of the effective PBG structure descri
by Eq. ~3.4! is not fixed by the associated medium para
eters. Such an effective model can be determined by
input pulse widthT0 incorporated with either the atomic fre
quency detuningDv r0 or the Bragg frequency detunin
Dv0 . Therefore, a SIT-Bragg soliton can exist deep ins
the original forbidden gap as long asDv052c1 /(2c2)
,k/b1 .

IV. CHARACTERISTICS OF SIT-BRAGG SOLITON

To examine the existence of a SIT-Bragg soliton, we stu
the soliton solution in an As2S3-based fiber Bragg grating
(As2S3-FBG) doped uniformly with Lorentzian line-shap
two-level atoms. The As2S3-based fiber is a type o
chalcogenide-glass fiber with the Kerr nonlinearity being t
orders of magnitude higher than the value of silica-glass fi
@32,33#. The fabrication of an As2S3-FBG has also been re
ported@34#. The material parameters for such an As2S3-FBG
are assumed to ben05n(v0)52.39, b055.93106 m21,
b157.931029 s/m, andn252.5310220 m2/V2 at 1550 nm
wavelength region. The coupling coefficient of the Bra
grating isk5100 cm21, corresponding to the index vibra
tion dng50.005 at the Bragg wavelengthlB51553 nm. For
the embedded resonant atoms, the Lorentzian line-sh
function is written as

g~Dv2Dv r0!5~Dva/2p!/@~Dv2Dv r0!21~Dva/2!2#,

where Dva52pD f a is the full width at half maximum
~FWHM! of g(Dv2Dv r0). We assume that D f a
51472 GHz, m51.4310232 C m, and ND58.0
31026 m23. Note that the largeD f a is realistic for erbium
atoms. In addition, to numerically solve the parameters o
SIT-Bragg soliton, we have to assumeDva@1/T0 , which
indicates that the spectral width of the pulse is much l
than the spectral width of the inhomogeneous-broaden
linewidth. Hence the soliton pulse width in our numeric
study must satisfyT0@0.1 ps.

The soliton pulse width and group velocity now can
numerically obtained according to the characteristic eq
tions for the SIT-Bragg soliton, which are rewritten as

Dv052DvB1V152c1 /~2c2!, ~4.1a!

A05Aub2
eu/~GnT0

2!52&\/~)mT0!, ~4.1b!
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where DvB52dbe /b1
e and V15kg/b1

e ; likewise g
51/A12n2 is approximated by 11n2/2 under the slow-
velocity limitation. Because these characteristic equati
strictly constrain the coexistence of a SIT and a Bragg s
ton, the soliton pulse width and group velocity are uniqu
determined for the Bragg detuning, atomic detuning, a
given material parameters. Figure 2 first shows the pu
width ~FWHM, TW'1.763T0) of the SIT-Bragg solitons as
function of atomic detuningdb r , when the carrier detuning
is located atdb0520 cm21 ~dotted line!, db0522 cm21

~dashed line!, and db0524 cm21 ~solid line!. The FWHM
curve for a fixeddb0 is symmetric todb05db r ; thus the
minimum pulse width required for a SIT-Bragg soliton o
curs on exact atomic resonancev05v r0 . The influence of
Bragg detuning on the required pulse width is further sho
in Fig. 3. For the atomic on-resonance case (db r50), Fig.
3~a! shows that a larger Bragg detuning implies a narrow
pulse width for the existence of a SIT-Bragg soliton. F
db0,40 cm21, the required pulse width rapidly increase
Figure 3~b! shows the corresponding peak intensity requi
for a SIT-Bragg soliton atdb r50 as a function ofdb0 . The
peak intensity of a SIT-Bragg soliton is defined byI P

5(n0/2)(A«0 /m0)A0
2, where«0 is the vacuum permittivity

@13,14#. Obviously, for db0.40 cm21, the intensity curve
shows the approximately linear dependence of the peak
tensity and the Bragg detuning of a SIT-Bragg soliton. N
tice that Fig. 3 does not exhibit the pulse width and pe
intensity for 0,db0,20 because the required pulse wid
for this range dramatically exceeds 1 ns that is not much
than the atomic relaxation times. The inset of Fig. 3~a! pre-
sents the remarkably increasing trend of the pulse width f
small carrier detuning. From an experimental viewpoint,
atomic relaxation processes would incoherently absorb
pulse energy for 0,db0,20.

Figure 4~a! shows the effective linear dispersion curv

FIG. 2. Pulse width of the SIT-Bragg solitons as a function
atomic detuningdb r at carrier detuningdb0520 cm21 ~dotted
line!, db0522 cm21 ~dashed line!, anddb0524 cm21 ~solid line!.
Note that the original band gap edge of the As2S3-based fiber grat-
ing is located at6k56100 cm21. The FWHM curve for a fixed
db0 is symmetric todb r5db0 . Thus the minimum pulse width
~maximum peak intensity! required for a SIT-Bragg soliton occur
on exact atomic resonancev05v r0 .
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and Fig. 4~b! shows the nonlinear dispersion curves@31# of
the effective PBG structure for a SIT-Bragg soliton with ca
rier detuning db05100 cm21, atomic detuning db r
50 cm21, and peak intensityI P56.70 GW/cm2. The dashed
curves show the original linear case. Because this solito
located at the original upper band gap edge (db05k
5100 cm21), the position of the effective upper band ga
edge remains unchanged at the original PBG edge. Howe
the width of the effective band gap has been narrowed fr
2k5200 cm21 to 133.33 cm21. When the effective nonlin-
earity is taken into account, the effective upper band g
edge has been down shifted to 45.58 cm21 due to the intense
peak intensity. By contrast, Fig. 4~c! also shows the effective
linear dispersion curves, and Fig. 4~d! shows the nonlinear
dispersion curves of the effective PBG structure for a S
Bragg soliton withdb0520 cm21, db r50 cm21, and I P
50.30 GW/cm2. The effective linear dispersion relatio
shows that the effective upper band gap edge has b
shifted to 20 cm21 and the width of the effective forbidde
band has become 57.12 cm21. Because the peak intensity i
this case is much smaller than that in Fig. 4~b!, the effective
upper band gap edge is down shifted only 6.51 cm21 from
the upper band gap edge of its linear dispersion relat

f

FIG. 3. ~a! Pulse width and~b! corresponding peak intensit
required for the SIT-Bragg solitons as a function of carrier detun
db0 on exact atomic resonancedb r50. The inset shows that the
pulse width rapidly increases as the carrier detuning decreases
6-6
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FIG. 4. ~a! Effective linear dis-
persion curves and~b! nonlinear
dispersion curves of the effectiv
PBG structure for a SIT-Bragg
soliton with carrier detuningdb0

5100 cm21 and peak intensity
I P56.70 GW/cm2. For compari-
son, we also show~c! effective
linear dispersion curves and~d!
nonlinear dispersion curves fo
another SIT-Bragg soliton with
db0520 cm21 and peak intensity
I p50.30 GW/cm2. Dashed curves
show the original linear case with
out resonant dopants.
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Consequently, a SIT-Bragg soliton is an optical pulse sa
fying the Bragg soliton propagation in an effective undop
PBG structure.

The group velocity of such a SIT-Bragg soliton in th
range of 20,db0,100 is shown in Fig. 5~a!. The quantity
of ng approximately corresponds to 1/250 of the speed
light in vacuum. This propagating delay originates from bo
the SIT effect and the multiple scattering due to the perio
structure. Furthermore, the relativistic velocityn5b1

eng is
shown in Fig. 5~b!. The magnitude ofn is less than 0.05
Thus the slow-velocity limit is valid for the SIT-Bragg sol
ton. It is well known that one of the attractive characterist
of a Bragg soliton is the reduction of its group velocity. T
experiments have shown that a Bragg soliton with 80
width can travel with the velocity as low as 50% of the lig
speed in an unprocessed fiber@14#. Hence all optical buffer
based on the slow propagation of a Bragg soliton is an
going challenge. Figure 6~a! shows the velocity of a SIT-
Bragg soliton as a function of the coupling coefficient
db0560 cm21 anddb r50 cm21. When the coupling coef-
ficient is increased, the group velocity of a SIT-Bragg solit
is smoothly decreased. It is obvious that a larger index va
tion of the periodic structure leads to the more serious Br
scattering. The magnitude of the soliton velocity mainta
its order at 106 m/s due to the SIT effect. The relativisti
velocity n5b1

eng is shown in the inset of Fig. 6~a!. The
slow-velocity limitation for our doped As2S3-based FBG
with coupling coefficient from k520 cm21 to k
5100 cm21 is also valid. Figure 6~b! shows the correspond
05660
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ing pulsed width required for the SIT-Bragg soliton. The r
lation between the pulse width and the PBG coupling co
ficient is approximately a linear dependence. We empha
that the slow-velocity limit is invalid for a SIT-Bragg solito
in an erbium-doped silica-based FBG. Consequently, in
paper we focus our numerical study on a doped As2S3-based
FBG to make the slow-velocity limit valid and reduce th
required peak intensity. Alternatively, an integrated AlGa
waveguide grating doped with resonant atoms could b
suitable PBG medium for the observation of a SIT-Bra
soliton, because the AlGaAs waveguides have suffici
power-handling capabilities to reduce the required peak
tensity @10#. A large coupling coefficient of the AlGaAs
waveguide grating also can be easily achieved for the sl
velocity limitation of a SIT-Bragg soliton.

Finally, we stress that although our results for a SIT-Bra
soliton in a doped As2S3-based FBG are realistic, the dopin
concentration adopted in the numerical study is two order
magnitude larger than the value of a typically erbium-dop
fiber. Figure 7 shows the soliton pulse width as a function
the doping concentration atdb0560 cm21 and db r
50 cm21. It presents the remarkably increasing trend of t
pulse width for a small doping concentration. From an e
perimental viewpoint, the atomic relaxation processes wo
incoherently absorb the pulse energy for low concentrati
Nevertheless, it will be interesting to study the suitable m
terial, for example, an erbium-doped AlGaAs wavegui
grating with high doping density, to experimentally inves
gate the existence of a SIT-Bragg soliton.
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V. DISCUSSION AND CONCLUSIONS

In this paper, we adopt a uniformly doped nonlinear PB
model to study the SIT effect deep inside the forbidden ba
The fundamental work of SIT in such a uniformly dope
PBG structure has been studied in Ref.@22#. In this previous
study, the authors reduce the NLCMEs with polarization
velopes by directly expanding the dispersion relation of
pure grating. Hence their model represented by our notat
can be written as

i
]E

]t
2

1

2
b2

G ]2E

]j2 1GuEu2E1
m0vB

2

2b0
P50, ~5.1!

where b2
G is quadratic dispersion for pure grating. Figu

8~a! shows the pure grating dispersion@14,31# of an
As2S3-based FBG as a function of carrier detuning. The in
shows that when the carrier is near the original band
edge (k5100 cm21), the pure grating dispersion trends
infinity. Therefore, a SIT-gap soliton is a distortionless op
cal pulse resulting from this pure grating dispersion, bala

FIG. 5. ~a! Group velocity and~b! relativistic velocity n
5b1

eng of the SIT-Bragg solitons as a function of carrier detuni
db0 on exact atomic resonancedb r50. Notice that the trends o
the group velocity curve and the relativistic velocity curve are o
posite, because the effective group velocity 1/b1

e describing the ve-
locity of each optical frequency component~CW case! also varies
with the Bragg detuning. The relativistic velocity shows that t
slow-velocity limit is valid for a SIT-Bragg soliton in a dope
As2S3-based PBG structure.
05660
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ing with both the material Kerr nonlinearity and the resona
effects determined by the Bloch equations. Because of
balance based on the pure grating dispersion, the doping
centration and the atomic detuning frequency can dram
cally change the characteristics of a SIT gap soliton when
carrier detuning is close to the original band gap edge.
contrast, in our study, the NLCMEs with polarization env
lopes are first reduced to effective NLCMEs, and these
fective NLCMEs are subsequently reduced to effective N
equation. On the basis of such reduction, our effective mo
completely involves the dispersion due to the polarization
particular, our model simplifies the resonant effects to eff
tive dispersion and effective nonlinearity, even if the atom
line shape is inhomogeneously broadening. Figure 8~b!
shows our effective grating dispersion of an As2S3-based
FBG uniformly doped with resonant atoms as a function
carrier detuning. Because the resonant effects have b
taken into account and a SIT-Bragg soliton is inherently
cated at the effective band gap edge, such an effective
dratic dispersion is much larger than the pure grating disp
sion for a fixed carrier detuning. Furthermore, the slo
propagation caused by the SIT effect can lead to the S
induced dispersion@23,29#. This induced dispersion shoul
be considered by keeping the second derivative of the e
tromagnetic field with respect to the propagation distan
The SIT-induced dispersion can be written as

-

FIG. 6. ~a! Group velocity and~b! pulse width of the SIT-Bragg
solitons as functions of the coupling coefficient of a dop
As2S3-based PBG structure.
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b2
SIT52~Db1

212b1Db1!/b0 , ~5.2!

whereDb151/ng2b1 . Figure 8~c! shows the SIT-induced
dispersion based on the group velocity shown in Fig. 5~a!.
Obviously, the SIT-induced dispersion is much smaller th
the effective quadratic dispersion originating from the effe
tive periodic structure. Hence this induced dispersion du
the slow propagation is negligible for a SIT-Bragg soliton

According to Sec. IV and the above-mentioned disc
sion, the physical interpretation for a SIT-Bragg soliton c
be described as follows: A uniformly doped PBG structu
can be regarded as an effective undoped PBG structure.
resonant atoms lead to the effective grating dispersion
resonant enhanced nonlinearity. Hence the original forbid
band has been shifted. Furthermore, an instantaneous no
earity response due to the intense pulse also shifts the
band. As a result, a nonlinear optical pulse that satisfies
soliton pulse shape and obeys the SIT chirping relation r
ders the PBG ‘‘transparent.’’ In particular, for distortionle
propagation in the uniformly doped nonlinear PBG structu
the effective quadratic dispersion has to balance with
effective third-order nonlinearity. Although our results e
hibit such a SIT soliton, we emphasize that the populat
difference w5w012w1 cos@2c(z,t)12bgz# is a basic as-
sumption. We use this assumption to get a closed se
atomic Bloch equations. Strictly speaking, we have neglec
all higher-order spatial harmonics of the population diffe
ence. Hence the theoretical model and its analytic soluti
in our work are constrained by this assumption. On the ot
hand, such an assumption can be avoided by assuming
the resonant atoms are periodically doped in a host med
@16–21#. However, from a practical viewpoint, the fabrica
tion of a uniformly doped PBG model is simple. It would b
interesting to study the impacts of the higher-order spa
harmonics on the stability of the solitary propagation. Co
sequently, the experimental observation of a SIT-Bragg s

FIG. 7. Pulse width of a SIT-Bragg solitons as a function of t
doping concentration of the erbium atoms atdb0560 cm21 and
db r50 cm21. Because the pulse width should be much less t
the atomic relaxation times, the doping concentration adopted in
numerical study is two orders of magnitude larger than the valu
typically erbium-doped fiber.
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ton in a doped nonlinear PBG medium would be an attrac
subject, which can lead to the practical expansions of Br
grating solitons in the vast area of light wave systems.

In summary, we have found an approximate soliton so
tion to the Bloch-NLCMEs, and studied the characteristics
such solitons in an As2S3-based PBG structure doped un
formly with Lorentzian line-shape two-level atoms. Our r

n
e

of

FIG. 8. ~a! Pure grating dispersion adopted in Ref.@22# for
balancing with the material Kerr nonlinearity and resonant effe
The inset shows that when the carrier is near the original band
edge (k5100 cm21), the pure grating dispersion trends to infinit
~b! Effective grating dispersion adopted in our study for balanc
with the effective nonlinearity.~c! SIT-induced dispersion resulting
from the slow propagation.
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sults indicate the existence of a SIT-Bragg soliton ev
within the forbidden band of the PBG structure. Such co
istence originates from the offset of the stop band due to
effective quadratic dispersion and the resonant enhan
nonlinearity. The intense optical pulse also shifts the ba
gap by nonlinear response and therefore propagates thr
the original forbidden band. Consequently, the SIT rend
the periodic structure ‘‘transparent,’’ and facilitates the effe
.
rke

.

n

o

o

05660
n
-
e
ed
d
gh

rs
-

tive Bragg-soliton propagation in this uniformly doped no
linear PBG structure.
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@22# N. Aközbek and S. John, Phys. Rev. E58, 3876~1998!.
@23# H. Y. Tseng and S. Chi, IEEE J. Sel. Top. Quantum Electron8,

681 ~2002!.
@24# S. L. McCall and E. L. Hahn, Phys. Rev. Lett.18, 908 ~1967!.
@25# J. H. Eberly, Phys. Rev. Lett.22, 760 ~1969!.
@26# M. D. Crisp, Phys. Rev. Lett.22, 820 ~1969!.
@27# L. Matulic and J. H. Eberly, Phys. Rev. A6, 822 ~1972!.
@28# M. Nakazawa, Y. Kimura, K. Kurokawa, and K. Suzuki, Phy

Rev. A45, 23 ~1992!.
@29# S. Chi, T. Y. Wang, and S. Wen, Phys. Rev. A47, 3371~1993!.
@30# J. L. Shultz and G. J. Salamo, Phys. Rev. Lett.78, 855~1997!.
@31# G. P. Agrawal,Applications of Nonlinear Fiber Optics~Aca-

demic, San Diego, 2001!.
@32# M. Asobe, T. Kanamori, and K. Kubodera, IEEE Photoni

Technol. Lett.4, 362 ~1992!.
@33# M. Asobe, T. Kanamori, and K. Kubodera, IEEE J. Quantu

Electron.29, 2325~1993!.
@34# M. Asobe, T. Ohara, I. Yokohama, and T. Kaino, Electron. Le

32, 1611~1996!.
6-10


