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Phase-retrieval problems in infrared–visible
sum-frequency generation spectroscopy

by the maximum-entropy method
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A phase-retrieval procedure based on the maximum-entropy method is applied to infrared–visible sum-
frequency generation spectroscopy. Several typical effects on the error phase are also examined with the aid
of a known theoretical model. The interference between the resonant and the nonresonant parts changes the
behavior of the error phase. Even in some cases when the nonresonant part is complex, the error phase be-
comes like a step function. This result contradicts the smoothness assumption for the error phase, and the
whole phase-retrieval procedure breaks down in these cases. A comparison of the results of phase-retrieval
procedures between infrared–visible sum-frequency generation and coherent anti-Stokes Raman scattering
spectra is made. Some ideas that worked well in previous analyses of coherent anti-Stokes Raman scattering
spectra become inapplicable in the infrared–visible sum-frequency generation spectra in spite of the resem-
blance of their line shape functions. © 1997 Optical Society of America [S0740-3224(97)01510-5]
1. INTRODUCTION
The maximum-entropy method1 (MEM) is a useful tech-
nique for solving an inverse problem with insufficient in-
formation. The result obtained by maximum entropy
corresponds to the most probable result in the space of all
possible outcomes that satisfy the known information.
Such a method has been applied extensively in many dis-
ciplines, such as the study of the interior structure of the
Earth,1 image restoration in astronomy,2 and the phase-
extension problem for determining the structures of
macromolecular crystals.3

Recently there has been some success4–6 in using the
MEM to solve the phase-retrieval problem in nonlinear
optical spectroscopy. The maximum-entropy phase-
retrieval procedure (MEPRP) is fascinating because it can
extract the phase information from an intensity spectrum
without knowledge of the theoretical model of the pro-
cesses concerned. The MEPRP can be regarded as an im-
proved method compared with the Kramers–Kronig rela-
tions method7,8 because the information needed for the
MEPRP to improve the accuracy can be found inside the
measured range, whereas the Kramers–Kronig relations
method needs data that must be extrapolated beyond the
spectral range of measurements. In addition, the
MEPRP can be applied to cases of harmonic-frequency
generation in which the phase reduction from the
Kramers–Kronig relations method is shown to be
unreliable.4 The phase-retrieval problem with the MEM
can be reduced to estimation of the error phase. In most
cases the error phase is a smooth function; polynomial in-
terpolation of few known error-phase points will give a
reasonable estimate. For example, in the analysis of the
third-order susceptibility spectrum of a poly(dihexylsi-
lane) film, linear interpolation with two known error-
phase points will give a satisfactory result,5 and even in
the analysis of coherent anti-Stokes Raman scattering
0740-3224/97/102443-06$10.00 ©
(CARS) spectra, a constant-error-phase assumption can
work very well.6 Although the MEPRP works so well in
the cases mentioned above, the basic assumption, the
smoothness of the error phase, is so far only illustrated by
several examples rather than being strictly justified. It
is still questionable why the error phase should be so
smooth.

In this paper we apply the MEPRP to infrared–visible
sum-frequency generation (IVSFG) spectroscopy,9 which
has proved to be a useful tool for studying surfaces and
interfacial phenomena because the process involved is
surface specific in the dipole approximation and sensitive
to the polar ordering of adsorbed molecules on the sur-
face. IVSFG is a second-order nonlinear-optical process
in which two input beams, one at the infrared frequency
vIR and the other at the visible frequency vv , interact
and generate an output at the sum frequency vs in the
visible spectrum of light. Here the infrared light source
is tunable across some vibrational absorption bands of the
adsorbed molecules and the visible light is fixed at some
frequency. The spectral line shape of IVSFG resembles
that of CARS and can be described by

I~vs! } uxs
~2 !~2vs ; vv , vIR!u2

5 uxNR
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~2 !u
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where Aq , vq , and gq are the resonant strength, the reso-
nant frequency, and the damping constant for the qth vi-
brational mode and the nonresonant part in Eq. (1) can be
complex:

xNR
~2 ! 5 uxNR

~2 ! uexp~iu!. (2)
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From the microscopic expression of nonlinear susceptibil-
ity, the resonant strength Aq is nonvanishing only if this
mode is infrared and Raman active,10 that is,

F]mgg

] Qq
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G

0

Þ 0, (3)

where mgg and ag are the ground-state dipole momentum
and the conventional optical polarizability, respectively,
and they can depend on the normal mode coordinate of
the qth mode, Qq . From Eq. (1) the line shape of IVSFG
can be described by the interference between the nonreso-
nant part xNR

(2) and the resonant part xR
(2) . Unlike in

CARS, which usually has a large nonresonant back-
ground, the nonresonant part for IVSFG may be quite
small. For example, in IVSFG spectra the nonresonant
part of the alkylsilane adsorbed on the fused silica is
negligible.11 Moreover, some IVSFG spectra of diamond
films have shown that the nonresonant background xNR

(2)

can have a relative phase shift (u Þ 0) with respect to the
resonant strength Aq , as the sum frequency is near the
resonances of surface electronic states and the ratio of
uAqu to uxNR

(2) u can be changed by different coverage.12

Therefore IVSFG spectra are quite diverse. Before the
MEM can be employed as a phase-retrieval technique for
IVSFG spectra we should carefully examine whether the
error phase is still smooth in every case. In this paper
we first theoretically examine several typical effects on
the error phase to see whether the smoothness assump-
tion for the error phase is still valid. Owing to the re-
semblance in the line-shape function between CARS and
IVSFG, we are also curious to see whether those ideas
that work well in analyzing CARS spectra are still useful
in IVSFG.

This paper is organized as follows: In Section 2 we
give a brief review of the procedure of phase-retrieval by
the MEM. Our results are presented and discussed in
Section 3. The conclusion is given in Section 4.

2. PHASE-RETRIEVAL PROCEDURE
The entropy for a power spectrum S( f ) in the frequency
interval @ f1 ,f2# is defined as

h } E
f1

f2

log S~ f !df. (4)

In the MEPRP a normalized frequency variable v 5 ( f
2 f1)/( f2 2 f1) is introduced to project the frequency
@ f1 , f2# onto [0, 1] to facilitate the calculation. By varia-
tional calculus with the Lagrange multiplier method one
can find the solution that maximizes the spectral entropy
with constraints (known spectral points). The solution
for 2M 1 1 spectral points is
Ŝ~v ! 5
ubu2

U1 1 (
k51

M
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where the coefficients ak and ubu2 can be determined from
a Toeplitz system:
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where R(m) is the autocorrelation function, which is the
Fourier transform of power spectrum S(v):

R~m ! 5 E
0

1

S~v !exp~2i2pmv !dv. (7)

By the same reasoning, the solution of x (2)(v) with maxi-
mum entropy is

x̂~2 !~v ! 5
ubuexp@if~v !#

1 1 (
k51
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. (8)

The solution implies that the process with maximum en-
tropy is a regressive progress. Because coefficients ub u
and ak can be obtained by Eq. (6), the error phase f(v) is
the only quantity in Eq. (8) that cannot be deduced from
the power spectrum S(v). The difficulty with the prob-
lem of phase-retrieval by the MEM is therefore reduced to
find the corresponding error phase f(v). There is an
one-to-one correspondence between the error phase and
the real phase, arg@ x(2)(v)#. Given a measured phase
value at some frequency, we can find the corresponding
error phase value at the same frequency. It has been il-
lustrated that f(v) is a smooth function, unlike the real-
phase behavior, which usually contains step jumps as the
frequency is scanned across the resonant frequencies.
Usually, linear interpolation of two known error-phase
values f(v1) and f(v2), which can be given by two mea-
sured real-phase data points, will lead to a good estimate.
If more phase values are known, a better estimate can be
obtained by polynomial interpolation.

In the MEPRP one can artificially make the error
phase more linear by performing a frequency-squeezing
procedure.5,6 For a spectrum measured in a finite range
v P @v1 , v2#, the squeezed spectra, characterized by a
squeezing parameter K, are given by
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Thus, choosing the parameter K . 0, we transform the
original spectrum into a narrower range of normalized
frequency. The frequency-squeezing procedure will help
to increase the reliability of the linear estimate for the er-
ror phase and is usually used in the MEPRP.

3. RESULTS AND DISCUSSIONS
A. Theoretical Analysis of the Error-Phase Behavior in
IVSFG Spectroscopy
The effect on the error phase of changing the nonresonant
strength is shown in Fig. 1. The filled circles in the fig-
ures at the left denote the input theoretical spectrum, and
the solid curves are the interpolating curves predicted by
the MEM, i.e., Eq. (5). The nonresonant strength is char-
acterized by the value of uxNR

(2) u/uAqu, which decreases from
top to bottom in Figs. 1(a), 1(b), 1(c), 1(d), and 1(e), with
values of 1, 0.5, 0.1, 0.05, and 0.01, respectively. The fig-
ures at the right show the corresponding error phases
with (K 5 1) and without (K 5 0) the frequency-
squeezing procedure. Figure 1(a) shows that, for a large
nonresonant background, the error phase is really flat ex-
cept for slight deviation that occurs near the spectral
boundaries. Such flat behavior can explain why the
constant-error-phase assumption can work successfully in
the phase-retrieval procedure for CARS spectra. The
frequency-squeezing procedure can improve the result be-
cause it can reduce the deviation from a constant value
near the boundaries. However, as the nonresonant
strength decreases from Fig. 1(a) to Fig. 1(e), the devia-
tion around the boundaries is reduced, and the behavior
becomes inclined. This means that the constant-error-
phase assumption, which works well in analyzing CARS
spectra, will become inapplicable in IVSFG spectra if the
nonresonant background becomes negligible. We can see
that the error phase is still smooth, and the linear inter-
polation will give a good estimate. Thus in the cases
with negligible nonresonant contributions one must know
at least two phase values to get a good estimate of the er-
ror phase. We believe that the same problem will occur
in the analysis of polarization CARS spectra because in
the polarization CARS, with an appropriate polarization
arrangement in the detection scheme, the nonresonant
background is largely suppressed to yield good
sensitivity.13

Figure 2 shows the effect on the error phase of chang-
ing the nonresonant phase. The nonresonant phase is in-
creasing from Fig. 2(a) to Fig. 2(e). The corresponding
nonresonant phase values in Figs. 2(a), 2(b), 2(c), 2(d),
and 2(e) are 45°, 90°, 180°, 225°, and 270°, respectively,
with the value of uxNR

(2) u/uAqu fixed at 0.6. We can see that
the error phase varies considerably from one nonresonant
phase value to another. Even the error phases for the
spectra of Figs. 2(d) and 2(e) become like step functions.
This result conflicts with the assumption of the smooth-
ness for the error phase, and the MEPRP becomes inap-
plicable in these cases. We also find that the frequency-
squeezing procedure cannot lessen the abrupt change in
the error phase for Figs. 2(d) and 2(e). Looking at the er-
ror phase of Fig. 2(e), we see that the frequency-squeezing
procedure causes negligible change in the error phase
(the open circles almost overlap the filled circles). The

Fig. 1. Effect on the error phase of changing nonresonant
strength, illustrated with different uxNR

(2) u/uAqu values. The val-
ues of uxNR

(2) u/uAqu are (a) 1, (b) 0.5, (c) 0.1, (d) 0.05, and (e) 0.01.
The filled circles in the left-hand figures denote the simulated
squared modulus ux (2)u2, and the corresponding MEM approxi-
mations are shown by the solid curves. The nonresonant
strength is decreasing from the top to the bottom. The figures
at the right show the corresponding error phases with (K 5 1)
and without (K 5 0) the frequency-squeezing procedure. SFG,
sum-frequency generation.
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diplike spectra shown in Fig. 2(e) have been observed in
some experimental IVSFG spectra from the polymer-
surfactant adsorbate at the hydrophobic surface.14

Figure 3 demonstrates how the error phase is affected
as two peaks move toward overlapping. Our result
shows that the peaks’ overlapping does not have a signifi-
cant effect on the error-phase behavior. This result is in-
teresting because our previous results illustrated that the
interference between a resonant peak and the constant
nonresonant background does change the error-phase be-
havior; here we show that the interference between two
resonant peaks has a negligible effect on the error phase.

In the expression of Eq. (1), the effect of vibrational
dephasing and relaxation on the linewidth is incorporated
through gq , and we have not taken the inhomogeneous
broadening of the resonant frequencies into account yet.
However, some spectra obtained from silver15 have shown
that the inclusion of inhomogeneous broadening did im-
prove the fit around the resonant frequencies. With the
inclusion of inhomogeneous broadening, the nonlinear-
optical phenomenon can be described by an effective
nonlinear-optical susceptibility:

Fig. 2. Effect on the error phase of changing nonresonant
phase, illustrated with the values of nonresonant phase of (a)
45°, (b) 90°, (c) 180°, (d) 225°, and (e) 270° and the value of
uxNR

(2) u/uAqu fixed at 0.6. The filled circles in the left-hand figures
denote the simulated squared modulus ux (2)u2, and the corre-
sponding MEM approximations are shown by the solid curves.
The nonresonant phase is increasing from the top to the bottom.
The figures at the right shows the corresponding error phases
with (K 5 1) and without (K 5 0) the frequency-squeezing pro-
cedure.
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Here we assume that the vibrational frequencies vq have
a Gaussian distribution about a central frequency vq

0,
with standard deviation s. In Fig. 4 we show the inho-
mogeneous broadening effect on the error phase for an
isolated spectral peak. The values of s/g used in Figs.
4(a), 4(b), 4(c), and 4(d) are chosen to be 0.1, 0.2, 1, and 2,
respectively. According to our result, the inhomogeneous
broadening seems not to influence the error phase. For
different s/g values the error phase remains almost un-
changed, even in the cases when the spectral response
has been considerably broadened, as shown in Fig. 4(d).
Thus we conclude that inhomogeneous broadening plays a
minor role in the determination of an error phase and
that it will not affect the phase-retrieval procedure.

Fig. 3. Effect of peak overlapping on the error phase. The
filled circles in the left-hand figures denote the simulated
squared modulus ux (2)u2, and the corresponding MEM approxi-
mations are shown by the solid curves. The two spectral peaks
are getting progressively closer from (a) to (d), and the corre-
sponding error phases with (K 5 1) and without (K 5 0) the
frequency-squeezing procedure are shown at the right.
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B. Analysis of an Experimental Result
Now we apply the MEPRP to an experimental spectrum
from a compact monolayer of pentadecanoic acid with
some available phase data.16,17 We carried out the phase
measurement for IVSFG by analyzing the interference
patterns from quartz and a monolayer sample. The filled
squares in Fig. 5(a) denote the measured IVSFG spec-
trum versus vIR for the symmetric CH3 stretch of penta-
decanoic molecules. The measured phase data are given
by the filled squares with error bars in Figs. 5(b)–5(d).
Because the measured spectral data points in Fig. 5(a)
are few, we apply the cubic spline fit to interpolate the
raw data to get more data points. The MEM estimate for
the spectrum is represented by the solid curve in Fig. 5(a).
We estimate the error phase in Fig. 5(b) by a constant
value, which is the error-phase value that corresponds to
the measured phase indicated by the arrow. The phase
predicted from the MEPRP is shown by the solid curve.
We find that the constant-error-phase assumption, which
works well in CARS, does not predict other measured
phase points well. In Figs. 5(c) and 5(d) the error phase
is estimated by the linear interpolation of two error phase
points, which are obtained from two measured phase

Fig. 4. Effect on the error phase of inhomogeneous broadening
for an isolated spectral peak. The filled circles in the left-hand
figures denote the simulated squared modulus ux (2)u2, and the
corresponding MEM approximations are shown by the solid
curves. The values of s/g are 0.1, 0.2, 1, and 2 in (a), (b), (c),
and (d), respectively. The figures at the right show the corre-
sponding error phases with (K 5 1) and without (K 5 0) the
frequency-squeezing procedure.
points indicated by the arrows. Figure 5(c) also shows
that the MEPRP may not well predict the phase far away
from the two points used for linear interpolation if the
points are too close to each other. From the result in Fig.
5(d) we can see that the MEPRP does predict phase well
by the linear interpolation of the error phase. This result
is consistent with our previous theoretical analysis of the
effect of nonresonant strength on the error phase, in
which we found that the constant-error-phase assumption
will break down as the nonresonant background becomes
negligible and that a linear interpolation can give a good
estimate of the error phase. Comparing Fig. 5(c) with
Fig. 5(d), we also find that the intrapolation will give a
better estimate of error phase than will extrapolation.

C. Problems with Phase Retrieval by Some a priori
Information for IVSFG Spectra
According to the phase-retrieval procedure in CARS, the
MEPRP can be achieved only by a single piece of a priori
information (i.e., without measuring any phase point ex-
perimentally) about the complex function x (3). One can
obtain such information by adjusting the constant value
of the error phase such that the position of a maximum of
the imaginary part of x (3) merges with that of the local
resonant frequency. The above idea really gives a good
prediction of the real and the imaginary parts of x (3) in
CARS, except that some deviation occurs in the imagi-
nary part near the boundaries. It was also shown that
the deviation near the boundaries can be reduced by a
frequency-squeezing procedure.

Fig. 5. (a) Measured IVSFG spectrum (filled squares) of the CH3
symmetric stretch of the pentadecanoic acid monolayer on the
water surface and its MEM interpolation (solid curve). (b)–(d)
Measured phase values (filled squares) and the estimated phases
(solid curves) from the MEPRP. The error phase in (b) is esti-
mated by a constant value that is the error-phase value corre-
sponding to the measured phase value indicated by an arrow.
The error phases in (c) and (d) are estimated by linear interpola-
tion of two error-phase values corresponding to the measured
phase values shown by the arrows.
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From our previous theoretical analysis of error-phase
behavior, for the cases with negligible nonresonant back-
ground, at least two pieces of a priori information must be
known to give a good estimate of the error phase. In
such cases we can first assume that the error phase is a
linear function, f(v) 5 f0 1 f1v, and then solve the two
unknown constants, f0 and f1 , by applying the same cri-
teria as used in CARS to two peaks in the spectra; that is,

]

]v $Im@x~v !#%v5vR1
5 0,

]

]v $Im@x~v !#%v5vR2
5 0. (11)

Therefore we can hope to apply the MEPRP to IVSFG
spectra without measuring any phase values. However,
because the IVSFG signal is sensitive to the polar order-
ing of the adsorbed molecules on the surface, the signal
will be vanishing for samples composed of randomly ori-
ented molecules if there is no nonresonant background.
For some ordered monolayer, if we reverse all polar orien-
tation of all adsorbed molecules, the second-order nonlin-
ear susceptibility x (2) for the system before and after the
reversing operation is applied will have opposite sign but
the same modulus. Thus two systems with reversed mo-
lecular orientation will result in the same power spec-
trum, so we cannot distinguish one polar orientation from
its reversed orientation purely from the power spectrum.
That is, one cannot use the phase obtained from the
MEPRP by some a priori information to determine the ab-
solute polar orientation of the adsorbed molecules. It is
easy to see that the failure in determining the absolute
polar orientation can be regarded as a 180° ambiguity in
the error phase or in the real phase, which one can solve
only by carrying out the absolute phase measurement17 or
by a circular-dichroism type experiment if the adsorbed
molecules are chiral.18

4. CONCLUSION
We have used the MEM to study the phase-retrieval prob-
lem for IVSFG spectra. Several typical effects on error-
phase behavior were examined with the known theoreti-
cal model. We found that the error phase is not
influenced by the overlapping of the peaks and inhomoge-
neous broadening effects but can be affected by changes
in the nonresonant amplitude and the nonresonant
phase. For spectra with small nonresonant backgrounds,
at least two pieces of phase information are needed to
yield a good estimate of the error phase; we verified this
fact by analysis of an experimental result. In some cases
when the nonresonant part is complex, the error phase
will contain a step-jump behavior. Such a result conflicts
with the smoothness assumption for the error phase and
makes the MEPRP inapplicable. We also discussed the
problem of phase retrieval by some a priori information.
We found that there is an ambiguity in the final result if
only the intensity spectra are known at first. That is,
one cannot use the phase obtained by some a priori infor-
mation to determine the absolute polar orientation of the
adsorbed molecules.
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