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Blind Identification With Periodic Modulation:
A Time-Domain Approach

Ching An Lin and Jwo Yuh Wu

Abstract—We propose a method for blind identification of
finite impulse response (FIR) channels with periodic modulation.
The time-domain formulation in terms of block signals is simple
compared with existing frequency-domain formulations. It is
shown that the linear equations relating the products of channel
coefficients and the autocorrelation matrix of the received signal
can be further arranged into decoupled groups. The arrangement
reduces computations and improves accuracy of the solution;
it also leads to very simple identifiability conditions and a very
natural formulation of the optimal modulating sequence selection
problem. The proposed optimal selection minimizes the effects of
channel noise and error in autocorrelation matrix estimation; it
results in a consistent channel estimate when the channel noise
is white. Simulation results show that the method yields good
performance: It compares favorably with an existing subspace
modulation-induced-cyclostationarity method, and it is robust
with respect to channel order overestimation. The effect of
modulation period and threshold of the modulating sequence are
also discussed.

Index Terms—Blind identification, periodic modulation pre-
coder, transmitter induced cyclostationarity.

I. INTRODUCTION

B LIND identification and equalization of finite-impulse-re-
sponse (FIR) channels that exploit cyclostationarity of

second-order statistics of the received data was first proposed
by Tonget al. [16]. Various schemes have since been proposed
[2]–[5], [8], [11]–[15]. See [5] for detailed references. Cyclo-
stationarity can be induced at the receiver or at the transmitter.
While receiver-induced cyclostationarity has always resulted
from oversampling [11], many different schemes have been
proposed to induce cyclostationarity at the transmitter. They
include periodic modulation [2], [12], repetition coding [15],
and combinations of repetition and modulation [4] and fil-
terbank precoding [13]. A general analysis of the precoding
frameworks is in [13]. A related performance analysis of these
so-called transmitter-induced-cyclostationarity precoders can
be found in [3].

In this paper, we study the problem of blind channel identifi-
cation with periodic modulation of source symbols. In contrast
to the frequency-domain approaches in [2] and [12], we formu-
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late the problem in the time domain and in terms of block sig-
nals. The method exploits the linear relation between the prod-
ucts of channel coefficients and the autocorrelation matrix of the
received signal and computes the products first by solving a set
of linear equations. The channel coefficients are then obtained
(to within a scalar ambiguity) by computing the dominant eigen-
vector of an associated Hermitian matrix. We note that similar
“bilinear” approach is also used in [8]. We show that the set
of linear equations relating the products of coefficients and the
autocorrelation matrix can be further arranged into decoupled
groups. The arrangement reduces computations and improves
accuracy of the solution; it also leads to very simple identifi-
ability conditions, which depend on the modulating sequence
alone, and a very natural formulation of the optimal modulating
sequence selection problem. We note that identifiability condi-
tions based on the modulating sequence alone are also reported
in [2]. The proposed optimal selection minimizes the effects of
channel noise and error in autocorrelation matrix estimation.
Moreover, the resultant channel estimate is consistent when the
channel noise is white.

The paper is organized as follows. Section II is the problem
statement and preliminary. Section III establishes the identifia-
bility conditions, proposes an identification algorithm, and dis-
cusses numerical aspects associated with it. In Section IV, the
problem of selecting the modulating sequence is formulated and
solved. In Section V, simulation examples are given to illustrate
the performance of the proposed method. Section VI contains
conclusions.

II. PROBLEM STATEMENT AND PRELIMINARY

A. Problem Statement

We consider the baseband transmission system. The source
symbol sequence is modulated by a (real) periodic se-
quence with period to obtain the modulated sequence

(2.1)

which is then pulse shaped and transmitted through the “com-
posite” channel including the transmit filter, the channel, and the
receiving filter. The received continuous-time signal is sampled
at the symbol rate. A commonly used discrete-time model of the
channel characteristic is an FIR filter [1]. The input–output re-
lation is described by

(2.2)
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Fig. 1. Discrete-time baseband model.

where the sequence is the impulse response of the channel,
and is the channel order. The received signal sequence
is the sum of filtered signal and an additive noise, that is

(2.3)

where is the channel noise. A schematic description of
(2.2) and (2.3) is shown in Fig. 1.

In this paper, we propose a method for identifying using
second-order statistics of the received data and discuss an
optimal design of the modulating sequence . The following
assumptions are made in the sequel. We note that essentially the
same assumptions are made in [2] and [12].

a) The source sequence is zero mean, uncorrelated, and
, where denotes the expectation

of random variable , and is the Kronecker delta
function.

b) The channel noise is stationary with zero mean and
is uncorrelated with source sequence .

c) An upper bound on channel order is known, and the
period is .

d) The receiver is synchronized with the transmitter.

B. Preliminary

Define the block signal

(2.4)

and let the block signals , and be similarly
defined. From (2.1), we have

(2.5)

where is a diagonal matrix

diag (2.6)

In terms of the block signals, we write the discrete-time model
(2.2) and (2.3) as

(2.7)

where

(2.8)

in which is a lower triangular Toeplitz matrix with

(2.9a)

as its first column, and is an upper triangular

Toeplitz matrix with

(2.9b)

as its first row. We note that i) the input–output relation between
and are periodically time-varying, whereas (2.7), in

terms of block signals, is time-invariant; ii) the splitting of
and as lower triangular and upper triangular matrices, re-
spectively, is possible by the assumption .

III. CHANNEL IDENTIFICATION

A. Identification Equations: Noise-Free Case

We will first consider the noise-free case, i.e.,
for all . We assume for the moment that the channel order

is known and consider the general case later. Since
and by assumption a), the autocorrelation matrix of

is computed from (2.8) as

(3.1)

where the matrices and , defined in (2.9), contain the un-
known channel impulse response to be identified. Given the ma-
trix , (3.1) defines a set of nonlinear equations in the
unknowns . However, if we consider the prod-
ucts of channel coefficients as unknowns, (3.1) be-
comes a set of linear equations. Hence, instead of solving for

directly, we propose to first compute the prod-
ucts . Since is Hermitian, there
are only independent equations in (3.1). Thus, we
will consider the upper triangular part of . The Toeplitz
structure of matrices and allows us to simplify the equa-
tions even further. We will see that these equa-
tions can be divided into decoupled groups of equations
of smaller dimensions. The reduction in dimension reduces the
amount of computations, especially whenis large, and im-
proves numerical robustness with respect to noise and error in
the estimation of .

Define the matrix

...
...

. . .
...

...

(3.2)

Thus, for any , all entries of are zero, except that those
on the th lower diagonal are equal to one. From (2.9), the ma-
trices and can be, respectively, expressed as

and (3.3)

From (3.3), it follows that

(3.4a)

(3.4b)
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From (3.4), the matrix can be written as the weighted
sum of theknownmatrices and ,
with theunknownchannel coefficients of the form as
weighting factors. In the following proposition, we will see that
these two matrices are upper triangular for and lower tri-
angular with zero diagonal entries for . Thus, we only have
to consider those terms in (3.4) with . Moreover, all entries
of both matrices are zero, except those on one of the upper di-
agonals. This allows us to rearrange the independent equations
in the upper triangular part of (3.1) into decoupled sets of equa-
tions. The proof of the proposition is given in Appendix A.

For any complex matrix ,
define, for

. Namely, is the vector con-
taining the entries on theth upper diagonal of . Here, we
identify the diagonal with .

Proposition 3.1: Let and be the matrices, re-
spectively, defined in (2.6) and (3.2). Let be two
non-negative integers. For each, we have the following results.

1) If , where , both
and are upper triangular, with only
the respectiveth upper diagonals nonzero, and

(3.5)

and

(3.6)

2) If , both and are
lower triangular with zero diagonal entries.

Comments:

1) For , the right-hand side (RHS) of (3.5) becomes

(3.7)

whereas that of (3.6) is a zero vector.
2) We note that the vector on the RHS of (3.5) has the first

entries zero, whereas that in (3.6) has only the first
entries nonzero. Thus, there is no overlap between the
locations of nonzero entries of the vectors given in the
RHS of (3.5) and (3.6). In particular, we have (3.8), shown
at the bottom of the page.

Proposition 3.1 enables us to divide the upper triangular part
of (3.1) into decoupled groups of equations based on each
upper diagonal of . More precisely, from (3.1), (3.4), and

Proposition 3.1, we have, foreach

(3.9)

From (3.9), the equations defined by theth upper di-
agonal of depend only on the unknowns of
the form . Thus, if , that is, if is greater
than the channel order, then is a zero vector since

for all and . Hence, we only
have to consider in (3.9). Combine the two summa-
tions on the RHS of (3.9) to obtain

(3.10)

From (3.10), it follows that the vector can be written
as a linear combination of columns of the forms (3.7)
and (3.8). To write (3.10) in matrix form, we define, for each

(3.11)

Thus, contains all the unknown product coefficients of the
form . With (3.7) and (3.8),
(3.10) can be expressed as

(3.12)

where, for , we have (3.13), shown at the bottom of
the next page.

We note that the matrix is an circulant matrix
with first column equal to

(3.14)

and, for is obtained from by deleting its
last rows and last columns.

Hence, the upper triangular part of matrix (3.1) is rearranged
as decoupled groups of linear equations given in the matrix
form (3.12), where theth group of equations depends only on

(3.8)
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the unknowns of the form . The proposed channel
identification method is based on solving (3.12) and is discussed
next.

Remark: Note that if the source sequence is correlated,
the equations defined by theth upper diagonal of will
involve additional unknowns for . In this
situation, we can no longer arrange the equations defined
by the upper triangular part of the matrix into
decoupled groups, as shown in (3.12). The computation of the
product channel coefficients instead requires solving
a single least squares problem of relatively large dimension.

B. Identifiability Condition

Consider the decoupled groups of equations in (3.12).
Since , each group of equations is overdetermined
and consistent.Assume that for each , the matrix

is of full column rank. Then, the vector , which contains
unknowns of the form with , can be uniquely
determined as

(3.15)

Successively using (3.15) for , we can obtain
. To identify the channel, that is,

to determine the unknowns up to a scalar ambi-
guity, form the Hermitian matrix

where (3.16)

We note that the th upper diagonal vector of the matrix is
simply , that is, for . In the ideal case,
the matrix is of rank one and can be factorized as ,
where

(3.17)

is the vector containing the channel impulse response. Thus, the
channel is identified, up to a scalar ambiguity, by computing the
unit-norm eigenvector associated with the maximal eigenvalue
of the matrix . Hence, a sufficient condition for channel identi-
fiability is that each defined in (3.13) is of full column rank.
We note that the matrices are completely determined by the
modulating sequence . By appropriately selecting , we
can make full rank and well conditioned.

C. On Channel Order Overestimation

The previous analysis is based on the assumption that the
channel order is known. In case that only an upper bound

is available, with , (3.15) will give the
product coefficients for . The associ-
ated matrix constructed as in (3.16) will
theoretically have only one nonzero eigenvalue with the corre-
sponding eigenvector given by

(3.18)

where is a scalar. Thus, it follows from (3.18) that the ac-
tual channel order and impulse response can be determined by
the most significant entries in the unit-norm eigenvector associ-
ated with the maximal eigenvalue of. Hence, the proposed
method is applicable, as long as an upper bound is
known; channel order overestimation, however, does increase
the amount of computations involved.

D. Identification Algorithm and Computational Aspects

We summarize the proposed channel identification method as
an algorithm.

Channel Identification Algorithm:
1) Select a modulating sequence such
that each matrix defined in (3.13) is

of full column rank.
2) Estimate the autocorrelation matrix

via the time average

(3.19)

where is the number of data blocks.
3) Compute the product channel coeffi-
cients using (3.15).
4) Form the matrix as in (3.16), and
compute the channel impulse response
vector as the unit-norm eigenvector
associated with the maximal eigenvalue of

.

Some of computational aspects are discussed in the fol-
lowing.

1) Least Squares Solution (3.15):Since each group of equa-
tions in (3.12) is overdetermined and consistent, (3.15) will give
the exact solution as long as the autocorrelation matrix
is obtainedexactlyand that there is no noise. In practice, when

...
...

...
... (3.13)
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only a time average is available, the in (3.15) is the
least squares solution of (3.12).

2) On Computation of Using (3.15): We note that from
(3.11), the product coefficient vector contains unknowns of
the form , for . However, the least squares
solution (3.15) for does not necessarily yield an with
non-negative entries. If some entries ofcomputed by (3.15)
are negative, it is an indication that either the signal-to-noise
(SNR) ratio is fairly small or that the quality of the estimated
autocorrelation data is poor. A direct remedy for the latter case
is to improve the quality of estimation by using more data sam-
ples. If, however, the cause is due to low SNR or a longer data
record for improving the estimation quality is unavailable, an al-
ternative is to compute using the non-negative least squares
method [9] to remove the inconsistency. In such a situation,
however, our simulation results show that the non-negative least
squares method does not actually improve the overall estima-
tion accuracy. A plausible reason is that the available data is
“inherently bad.” Hence, although this alternative avoids nega-
tive values of the elements in the computed coefficient vector

, it does not seem to be a good choice in practice since it does
not seem to improve accuracy and increases the algorithm com-
plexity.

3) On Selection of Modulation Period : The number of
equations in each group of (3.12) increases with the period;
the th group has equations. If the equation errors in
(3.12) resulting from noise and imperfect estimation of
can be modeled as a zero mean white noise with fixed vari-
ance, then the error covariance can be made arbitrary small if
the number of equations is sufficiently large [10, p. 178]. Thus,
it seems desirable to choose large modulation period since more
equations tend to improve the accuracy of the least squares so-
lutions (3.15). However, for a fixed number of data samples

, the number of available data blocks for estimating is
approximately . Therefore, if is large, we will have a
small number of data blocks and, hence, usually a less accurate

. Simulations show that different choices of
yield similar performance. It thus seems reasonable to choose

to reduce computation.
4) On Condition of the Matrix:The accuracy of solution

(3.15) is determined by the numerical condition of the matrix
. Since the construction of entirely depends on , the

condition of is thus closely related to the selection of .
We discuss how to choose to improve numerical robust-
ness in the next section.

5) Computational Complexity:Compared with the struc-
tured subspace method [2], [14] and the one-cycle subspace
method [12], the proposed method requires fewer computations
than the former and more computations than the latter. Detailed
flop counts for these methods are given in Appendix E.

IV. OPTIMAL SELECTION OF THE MODULATING

SEQUENCE

We consider the general case, that is, the channel noise is
present, and discuss the problem of selecting the modulating se-
quence . We first propose an optimality criterion to select

to reduce the effect of noise. We will find a class of solu-

tions that are optimal for noise attenuation. Among this class
of solutions, we then choose the “best” with which the
channel coefficients can be most reliably computed. Finally, we
show that with the optimal , the resultant channel estimate
is consistent. Effects of the modulation period and the threshold
of the modulating sequence are also discussed.

A. Optimality Criteria

Assume that the additive channel noise is white. Then, from
(2.7), (2.8), and assumption b), the autocorrelation matrix is

(4.1a)

where

(4.1b)

From (4.1), noise has contribution to only the diagonal entries
of , and thus, we have

(4.2)

where

(4.3)

With (4.1b) and (4.2), the 1 decoupled groups of equations
in (3.12) remains unchanged, except that the group be-
comes

(4.4)

Since is unknown, the actual product coefficient vector
cannot be determined using (4.4). Instead, given , we
solve the least squares solutionof the inconsistent equation

. From (4.4), can be written as

(4.5)

Thus, the least squares solutionconsists of the actual plus
an additional perturbation term due to noise. From (4.5), the
noise contribution is eliminated, that is, , if and only
if , i.e., the vector is orthogonal to , which
is the range space of . Hence, if the modulating sequence

can be selected to achieve the above orthogonality condi-
tion, the effect of noise is completely eliminated. This turns out
to be impossible since entries of are all non-negative. The
best we can hope is to choose as to make and
as close to being orthogonal as possible. This suggests the fol-
lowing optimization scheme to select .

Define the quantity

(4.6)

where denotes the 2-norm, vectoris defined in (4.3), and
defined in (3.14) is the first column of the matrix . Then,

from (3.14), is a function of the modulating sequence
. Let be an arbitrary column of rather than the first.

Since, from (3.13), is circulant, we have and

1Without lose of generality, we assume that the channel orderL is known.
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. Thus, the quantity defined in (4.6) is the cosine of
the angle between the vectorand any column of and can
be viewed as a measure of orthogonality betweenand .

If is small for some choice of , then with this choice,
the corresponding is close to being orthogonal with
and, thus, will result in a small noise contribution toin (4.5).
Small also means that the projection ofonto is
small. If we think of as the signal space, this would
imply that the contribution of noise in the received data is small
from the identification point of view. Therefore, we should keep

as small as possible. Specifically, we propose to select the
modulating sequence to minimize with respect to all
satisfying

(4.7a)

and

(4.7b)

Constraint (4.7a) normalizes the average transmission power to
unity since the sequence is actually trans-
mitted, and the source sequence is with unit variance. The
constraint (4.7b) is necessary for equalization since, at the re-
ceiver end, it is impossible to recover a source symbol that is
modulated with a zero value since the symbols are uncorrelated.
Constraints (4.7) require that . We note that these two con-
straints are also used in [2], in which different optimality criteria
are used.

By definitions of and , we have

and (4.8)

With (4.7a) and (4.8), the quantity defined in (4.6) can be
expressed as

(4.9)

We note that the constraint (4.7a) is equivalent to

(4.10a)

where denotes the 1-norm. In addition, if we let
be the th component of , the con-

straint (4.7b) can be rewritten as

(4.10b)

Since is fixed, the proposed optimality criterion for selecting
is equivalent to the following quadratic optimization

problem.
(P): Maximize subject to the constraints (4.10a) and

(4.10b).
The optimal solution to(P) is given in the following proposition.

Proposition 4.1: Let the integer be fixed
but arbitrary. Then, the vectorwith entries

and

is an optimal solution to problem(P).
[Proof]: Define , where ,

and let be the th component of . Then, the problem is
equivalent to maximizing subject to

and (4.11)

Since , we have

Since and are fixed, our problem is the same as maximizing
subject to (4.11). Since for any , the max-

imum is achieved if we can find somethat satisfies (4.11)
and with which the equality holds. This is the case if we choose,
for any fixed and
for . The result thus follows.

From Proposition 4.1, the optimal modulating sequence is im-
mediately given by, for any fixed

and

for (4.12)

where the magnitudes of the sequence assumes two values with
one and only one peak. We should note that the optimal mod-
ulating sequence (4.12), which is obtained by minimizing the
effect of (white) channel noise, is the same as the one reported
in [2, Prop. 3]. In [2], this solution is obtained by maximizing
the so-called degree-of-cyclostationarity [2, p. 1577],
subject to the same constraints. Since can be regarded
as a measure of SNR from a frequency domain point of view
(large value of this quantity results in relatively large value of
the cyclic correlations coefficients with respect to noise level),
it is not unreasonable to expect that the two solutions should be
the same; the choices in (4.12) tend to keep the noise effect on
the signal component as small as possible.

With (4.12), the minimal value of the orthogonality measure
is computed as

(4.13)

We note that is indeed independent of the indexat which
the peak occurs. We should note that different index, however,
will result in different matrices in (3.13). Hence, the choice
of is crucial to the properties of . The issue of selecting
to obtain with good numerical property is addressed in the
next subsection.

Note that if we modulate the source with the optimal
sequence (4.12), there will be periodic peak value in the trans-
mitting power. In case that the peak power due to modulation
is greater than the maximal allowable power provided by the
transmitter, we can reduce this peak value by imposing an upper
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bound on the magnitude of the modulation sequence. This sug-
gests to us that we should modify constraint (4.7b) as follows.
For any

for some (4.14)

The resultant optimal modulating sequence can be obtained by
solving problem(P) with constraint (4.10b) replaced by (4.14)
(recall that ). We should note that when no upper
bound on is imposed, (4.10a) and the condition

together imply
. As a result, for agiven , if the upper bound in (4.14)

is chosen such that , then it is inactive.
The optimization problem, in this case, reduces to the original
one, and the solution is given as in Proposition 4.1. Assume

. For the case of , it is easy to check
that the optimal solution for is or

. It appears that one component of the optimal
solution attains the upper bound . For the general case, we
conjecture that the optimal is given by

and

(4.15)

where is fixed but arbitrary. In fact, if we
form the Lagrangian function associated with the constrained
optimization problem, it can be shown (see Appendix B) that

in (4.15) satisfies the first-order necessary condition. Nu-
merical experiments (see Simulation 8) also tend to indicate that
the two-level form solution in (4.15) is indeed the optimal solu-
tion.

B. On Selection of

Assume that is chosen as in (4.12). Foreach
, consider the associated matricesin (3.13) for

. For each , let be the condition number [7] of the matrix
. If is large, the matrix is ill-conditioned, and

the corresponding least squares estimate (3.15) is sensitive to
data errors. Let

(4.16)

be the largest condition number among all associated
with . If is large, then with this in (4.12), we tend to have
an ill-conditioned for some and, hence, a less-accu-
rate least squares estimate (3.15). This suggests that we should
considereach , and among them, we select
the “optimal” as the one whose corresponding is min-
imal. With the special form of in (4.12), the procedure for
finding the optimal can be further simplified. Specifically,
we will see in the next lemma that there exist some choices
of such that at least one associated will lose rank. Such
choices of should be excluded since they will prevent channel
identifiability. Moreover, with the special form (4.12), it can be
shown that for certain “feasible” , the corresponding are
the same. With the aid of these facts, the optimal choice ofcan

be determined without computing for all .
The proof of lemma is given in Appendix C.

Lemma 4.2:Assume that the modulating sequence is
chosen as in (4.12). For , let
defined in (3.13) be the matrices associated with the index.
In addition, let defined in (4.16) be the maximal condition
number among the matrices. Then, we have the fol-
lowing results.

1) If or , all the resultant
are of full column rank.

2) In particular, for each , the corre-
sponding is completely determined by the matrix
and is equal to .

3) If , at least one is not of
full column rank.

From Lemma 4.2, we should only consider those in
(4.12) with and . Since is
the same for , we will simply identify
with for all such . The optimal is thus given by

(4.17)

Henceforth, we will restrict the modulating sequence to be
of the form (4.12) with the index determined by (4.17).

Remark: If the noise is colored and has unknown nonzero
correlations for time lags , then the first
groups of equations in (3.12) becomes

(4.18)

In this case, our choice of , although not optimal for ,
is still a good candidate selection for the least squares estimate
(3.15). This is because all the resultant matrices still
remain well conditioned. Thus, the corresponding estimateis
expected to be relatively insensitive to data errors due to noise.
Simulation results (see Simulation 3) seem to indicate that at
reasonable levels of SNR, the proposed selection of indeed
works well against color noise.

C. Consistency of Channel Estimation: White Noise Case

In this subsection, we will show that if the channel noise is
white and the optimal modulating sequence given in (4.12) (with

determined by (4.17)) is used, the resultant channel estimate
is consistent.

Recall that when there is no noise, the diagonal vector of the
rank-one matrix defined in (3.16) equals , that is,

. When the channel noise is white, it follows from
(4.5) that the resultant “perturbed” matrix, say, , is equal
to

(4.19)

where is a noise perturbation matrix that is diagonal
such that

(4.20)
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It is shown in Appendix D that if is an admissible2 two-
level modulating sequence such that, for any fixed

and

for (4.21)

then the corresponding matrix is of the form

(4.22)

for some . That is, as long as is chosen of the form
(4.21), the resultant (white) noise perturbation matrixreduces
to a scalar multiple of the identity matrix.
Since such perturbations preserve eigenvectors, in particular the
one associated with the largest eigenvalue, the channel vector

can still be obtained, up to a scalar ambiguity, by computing
the eigenvector associated with the largest eigenvalue of the
matrix. The optimal in (4.12), which is a special case of
(4.21), hence yields the channel estimate consistent and, at the
same time, achieves the largest noise reduction.

Remarks:

a) We should note that if is not of the form (4.21), then
the diagonal entries of will assumeat leasttwo values,
viz., the matrix is no longer a scalar multiple of the
identity matrix. Such a perturbation will not preserve the
eigenvectors of the (noise-free)matrix and, hence, re-
sults in an inconsistent channel estimate.

b) If the channel noise is colored, the channel estimate is
inconsistent even if a modulating sequence of the form
(4.21) is used. This is because the noise perturbation ma-
trix will contain nonzero off-diagonal entries [this fol-
lows from (4.18)] and does not preserve the eigenvectors
of either. In this case, however, the optimal in
(4.12) still seems to be a good choice as far as noise effect
on the estimated channel is concerned.

D. Effects of and

In this subsection, with optimal modulating sequence in
(4.12), we discuss the effects of modulation periodand the
threshold on the minimal orthogonality measuredefined in
(4.13).

Suppose is fixed. It follows from (4.13) that de-
creases as the period increases and as . Thus,
identification performance is improved as modulation period
is increasing. However, with in (4.12), large modulation
period leads to large transmission power peak. This is unde-
sirable since, in practice, there is a constraint on maximal avail-
able power provided by the transmitter. Moreover, as discussed
in Section III-D, when the number of data samples is fixed, large

will lead to poor estimation of . Thus, a large modu-
lation period should be avoided. Based on simulations, if the
channel order is , the selection suffices to yield a
satisfactory performance.

To see the effect of , rewrite in (4.13) as
. For is

an increasing function in . Thus, for a fixed period , the

2By this, we mean the constraints (4.7a) and (4.7b) are satisfied.

minimal value decreases as is decreased. We should also
note that at the equalization stage, small values ofmay cause
large symbol error rate even if the channel is perfectly equalized
[2, p. 1578]. This imposes a tradeoff on the selection of.

V. SIMULATION RESULTS

To illustrate the performance of the proposed channel identi-
fication method, we consider the five-tap channel used in [2]

The input source symbols are drawn from an i.i.d. QPSK
constellation. The additive channel noise is white with a
Gaussian distribution. As channel identification performance
measure, we consider the normalized root-mean-square error3

(NRMSE) defined by [2]

NRMSE (5.1)

where is the number of Monte Carlo runs, and is the esti-
mate of the channel impulse response vector inth trial with

as the th component. Since can only be estimated
within an unknown scalar ambiguity, for the purpose of com-
puting NRMSE, we compute the unknown scalar by performing
a least square fit of the estimated channel to the actual one. This
technique is used in [8] to remove the scalar ambiguity. The
signal-to-noise-ratio (SNR) is defined as

SNR (5.2)

For Simulations 1–6, 100 Monte Carlo runs are conducted, i.e.,
.

1) Simulation 1—Optimal Selection of Periodic Sequence
: The effects of selecting on the performance of the

proposed channel identification method are demonstrated. In
the following two experiments, we set ,
and SNR is fixed at 10 dB. In the first experiment, with

chosen as in (4.12), we illustrate the resultant perfor-
mances obtained from different . For each ,
form the associated matrices according
to (3.13). Then, from (4.16) and by computation, we have

. Fig. 2
shows the respective channel NRMSE versus numbers of
samples for . Note that for and

, the corresponding performance is almost iden-
tical and that the degradation in performance for
4 and 5, owing to the ill-conditioned . In the second
experiment, we will see the effectiveness of the optimal
noise-attenuation selection (4.12). We consider in (4.12)
with , which is

and another plausible

3Another commonly used performance measure is the average bias [2]. In our
simulation, this quantity exhibits the same tendency as the NRMSE and, thus,
is not displayed.
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Fig. 2. Channel NRMSE.p(n) in (4.12) with different choices ofm.

Fig. 3. Channel NRMSE. Different selections ofp(n).

two-level nonoptimal selection chosen as
,

which also satisfies constraint (4.7) with the same
and is selected in analogous way as in [2]. We note that both
the optimal and the comparative selection are of the form
(4.21) and result in a consistent channel estimate. Fig. 3 shows
the corresponding NRMSE of the estimated channels versus
numbers of samples. As one can see, the optimal gives
significantly better performance.

2) Simulation 2—Comparations With Existing Subspace Ap-
proaches: The performance of the proposed method is com-
pared with those of the one cycle subspace method [12] and
the structured subspace method [2], [14]. In all cases, we set

, and choose as in (4.12) with .
We note that is the choice used for simulation in
[2]. Fig. 4 shows the corresponding NRMSE versus numbers of
samples for fixed SNR 10 dB. Fig. 5 shows the corresponding
NRMSE versus SNR, where the number of samples is fixed at

Fig. 4. Channel NRMSE. Proposed method versus subspace methods (white
noise case).

Fig. 5. Channel NRMSE versus SNR. Proposed method versus subspace
methods (white noise case).

1000. The results show that the proposed method gives
better results when compared with the two subspace methods.

3) Simulation3—Robustness to Additive Color Noise:We
demonstrate the robustness of the proposed method when
the channel noise is colored. In this simulation, the ad-
ditive color noise is generated by filtering a white
noise sequence using the second-order FIR filter

, that is, .
Fig. 6 shows the NRMSE versus SNR, computed, respectively,
using the proposed method and the two subspace methods. The
number of samples is fixed at 1000, and number of trials
is 100. In all methods, we set and
choose as in (4.12) with . The result shows that,
for SNR 5 dB, the subspace method in [2] achieves best
performance. This is mainly because it provides a consistent
channel estimate, irrespective of color noise, as opposed to
our method. We note that although the method in [12] also
preserves consistency in the colored noise case, it exploits,
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Fig. 6. Channel NRMSE versus SNR. Proposed method versus subspace
methods (color noise case).

Fig. 7. Channel NRMSE versus overestimated channel order.

however, only the cyclic correlation of only one nonzero
cycle for identification and, hence, leads to degeneration in
performance. For SNR 5 dB, the proposed method results
in better performance. A reasonable explanation is that the
well-conditioned matrices tend to reduce the noise effect
on the estimated channel coefficients.

4) Simulation 4—Robustness to Channel Order Overestima-
tion: We test the proposed method when channel order is over-
estimated. For each upper bound , we choose
the modulation period . The SNR is fixed at 10 dB,
and number of samples at 1000. Fig. 7 shows that the pro-
posed method is quite robust to channel order overestimation;
the NRMSE increases less than 5 dB asincreases from 4 to
12.

5) Simulation 5—Effects ofand on Performance of the
Proposed Method:For in (4.12) with , we illustrate
the effects of and on the performance. We fix SNR
dB. For fixed , Fig. 8 shows the channel NRMSE versus
numbers of samples corresponding to three different thresholds

Fig. 8. Channel NRMSE.N = 6 with different choices of�.

Fig. 9. Channel NRMSE.� = 0:5878 with different choices ofN .

, and . For these three, the
respective minimal orthogonality measurescomputed using
(4.13) are 0.9204, 0.7353, and 0.5121. The result shows that
small indeed leads to improved performance. For fixed

, Fig. 9 shows the channel NRMSE versus number of
samples corresponding to modulation periods ,
and , with which the respective minimal are 0.7353,
0.4863, and 0.3275. From the figure, it can be seen that the per-
formance corresponding to the three differentare roughly the
same. This is because the estimation quality of is poor as

increases. This demerit may cancel out the benefit from large
noise attenuation when a large is used. Since increasing
will also increase the amount of computation and, at the same
time, result in a large transmission power peak, the modulation
period seems to be a desirable choice.

6) Simulation 6—On Large Sample Performance:In this
simulation, we demonstrate the behavior of the channel NRMSE
computed using the proposed method when the number of
samples is large. With , Fig. 10 shows the
NRMSE versus number of samples(for – )
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Fig. 10. Channel NRMSE for large numbers of data samples.

Fig. 11. Probability of symbol error. Proposed method versus subspace
methods.

with respect to two different SNR (0 and 10 dB). We note from
the figure that both the resultant NRMSE versuscurves seem
to decay at a rate . This can be seen as follows. Consider

and on the SNR dB curve. The
latter is five times as large as the former, and the respective
NRMSE are 34.1549 and 27.4118 dB. The difference of
the two NRMSE ( 6.7431 dB) is approximately equal to

( 6.9897 dB), viz., the latter NRMSE is
roughly times as small as the former. This phenom-
enon remains valid if, on each SNR curve, we consider two
arbitrary numbers of samples and compute the difference in
the respective NRMSE. Hence, although a precise asymptotic
performance analysis is not established, this observation seems
to indicate that the covariance of the estimated channel decays
at a rate . We note that the channel estimators in [2] and
[14] indeed exhibit this property.

7) Simulation 7—On Equalization Performance:In this
simulation, we compare the probability of symbol error (PSE)

Fig. 12. Probability of symbol error with different values of� (0.1–0.5).

Fig. 13. Probability of symbol error with different values of� (0.5–0.9).

when different channel estimation schemes are used. We also
demonstrate the effect of the thresholdon PSE. For both ex-
periments, the equalizer is the same 17-tap causal cyclic Wiener
filter as that in [2] and [12] (with 12-tap reconstruction delay).
The number of samples is fixed at . For ,
Fig. 11 shows the PSE versus SNR for the proposed method
and the two subspace-based methods in [2] and [12]. The PSE
is averaged over 500 independent Monte Carlo trials per SNR
point. The result shows that the proposed method leads to
the lowest PSE. Figs. 12 and 13 show the PSE versus SNR,
respectively, for – and – . The channel is
estimated using the proposed method and PSE is averaged over

trials. Note that large and small result
in poor performance. The former case is a consequence of poor
channel estimation accuracy when largeis used. A plausible
explanation for the latter case is that, although the channel
is better estimated with small, symbols modulated with a
small value would be more easily corrupted by noise and,
hence, are more likely to cause decision errors. This imposes a
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Fig. 14. Channel NRMSE with different choices of upper bound
�; � = 0:5878.

tradeoff between PSE and accuracy of channel identification in
selecting the threshold. We note that this phenomenon is also
observed in [2, p. 1584]. Based on these observations, it seems
that a good choice is .

8) Simulation 8—On Imposing Upper Bounds on the Mag-
nitude of Modulating Sequence:In this simulation, we provide
numerical solutions to optimal modulating sequences when dif-
ferent choices of upper boundin constraint (4.14) are used.
The optimization problem is solved usingMatlab Optimization
Toolbox. With the computed solutions, the respective resultant
identification performances are also illustrated. For
and , we use the algorithmqp (see [6, p. 3–38])
to compute the solutions with respect to five choices of

. Note that for the particular threshold
, the maximal feasible value of , when no upper

bound on is imposed, is . Hence,
the choice is an inactive bound, and the corresponding
solution is expected to be the same as the one computed using
(4.12). By computations, it appears that the five solutions are all
of the two-level form: and ,
where the respective pairs are (1.2, 0.96), (1.8, 0.84),
(2.4, 0.72), (3, 0.6), and (3.061, 0.5878). From the results, it can
be checked that except for the choice , the computed
optimal sequence for eachis the same as the one computed
according to the conjectured formula (4.15) with . The
solution corresponding to , as expected, is indeed the
same as the one computed using (4.12) (with ). Based on
the computed optimal modulating sequences, Fig. 14 shows the
respective channel NRMSE versus number of samples. The
SNR is fixed at 10 dB, and the number of trials is .
The NRMSE curve computed using the sequence (4.12) is also
shown. Fig. 14 also shows degeneration in performance as the
upper bound decreases toward unity.

VI. CONCLUSION

We propose a method for blind identification of FIR channels
with periodic modulation of source symbols. The time-domain

formulation in terms of block signals is simple compared with
existing frequency-domain approaches. The method exploits the
linear relation between the products of channel coefficients and
the autocorrelation matrix of the received signal as well as the
decoupled structure of the resulting linear system of equations.
The identifiability conditions so derived are particularly simple;
they depend on the modulating sequence alone. Indeed, with
the proposed method,any FIR channel is identifiable with an
appropriate choice of the periodic modulating sequence, pro-
vided that the modulation period , where is the
channel order. In fact,almostall periodic modulating sequences
yield channel identifiability. The optimal modulating sequence
selection problem formulated as one of minimizing the effects
of channel noise and error in estimating the autocorrelation ma-
trix is straightforward and easy to solve. The proposed optimal
solution also results in a consistent channel estimate when the
channel noise is white. Simulation results show that the method
yields good performance; it compares favorably with existing
subspace modulation-induced-cyclostationarity methods, and it
is robust with respect to channel order overestimation.

APPENDIX A
PROOF OFPROPOSITION3.1

From (3.2), we note that for any matrix and integer
, the multiplication moves the rows of to places

belowand leaves thefirst rows zero. In addition, for integer
, the multiplication moves the rows of to

placesaboveand leaves thelast rows zero. Equation (3.5) then
follows since is a diagonal matrix, and . Equation (3.6)
and 2) follow from similar arguments.

APPENDIX B

We set without loss of generality. Let , which
is defined in (3.14), be the vector containing the squared magni-
tudes of the modulating sequence and , which is defined
in (4.3), be the vector with all entries equal to one. Then, the
constrained optimization problem is

subject to and

(A.1)

Write the inequality constraints in (A.1) directly in terms of vec-
tors as

and (A.2)

The Lagrangian function associated with the problem is thus

(A.3)

where , and
. Let

(A.4)

We will show that in (A.4) and, hence, in (4.15) (with
) satisfies the first-order necessary condition for opti-
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mality, that is, there exist with
and , such that

(A.5)

and

(A.6)

Indeed, with given in (A.4), (A.5) and (A.6) hold with
, and

.

APPENDIX C
PROOF OFLEMMA 4.2

1) We first consider the cases .
Recall that for each , the matrix

is obtained from by deleting its last
rows and last columns. It can be checked that each

such contains an square
submatrix

(A.7)

Since is symmetric and positive definite, is of full
column rank. For , it can be
checked that each associated has an

square submatrix with all first lower (upper,
respectively) diagonal entries equal to and all
the other entries equal to. It can be shown by induction
that these square matrices are nonsingular if and only if

and . The conditions hold since
, and hence, is of full column rank.

2) To compute for , with (4.12) and
(3.13), direct multiplication shows that for eachassoci-
ated with such an , we have (A.8), shown at the bottom
of the page, where

and

From (A.8), we know that the maximal and minimal
eigenvalues of are, respectively,
and . By definition, the condition number of
is therefore , which is a
decreasing function of. Thus, by definition of in
(4.16), we have . The result
thus follows.

3) The result follows from the construction of . Specif-
ically, for , where , it
can be checked that the matrix for is not of
full column rank since it has two columns both equal to

.

APPENDIX D
PROOF OF(4.22)

Define . It suffices to show that the
vector

(A.9)

By definition of matrix [see (3.13)] and from constraint
(4.7a), it follows immediately that

(A.10)

Again, by definition of , it can be verified that

(A.11)

From (A.11) and by the matrix inversion lemma [10, p. 306], it
can be shown that

(A.12)

From (A.10), (A.12), and by rearrangement, (A.9) follows with

APPENDIX E
FLOP COUNTS OFTHREE METHODS

The proposed algorithm is compared with the two subspace
methods in [2], [12], and [14] in terms of computational com-
plexity. We define a “flop” to be a single complex multiply or ad-
dition [8]. Assume that the channel orderis known, the length
of each data block is , and that the number of available data
blocks is .

a) Proposed Method:Estimate the (Hermitian) autocorre-
lation matrix using (3.19); this requires

flops. Solving linear least
squares problems, using the QR factorization method [7,
p. 226] requires

flops. Compute an
eigenvector associated with the largest eigenvalue of the

matrix . Since is Hermitian and is
of rank-one, the computation of an eigenvector associated
with the largest eigenvalue can be done by fist computing
a tridiagonal form of using the algorithm in [7, p. 420]
followed by an inverse iteration; see ([7, p. 383]). This re-
quires
flops.

(A.8)
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b) Structured Subspace Method [2] and [14]:For
and , estimate the

cyclic correlation coefficients using [14, Eq.
(20)], and this requires flops.
For , compute the coefficients

using [2, Eq. (5)], and this requires
flops. Based on [14, Eqs. (15) and (17)], form the

two matrices and , which are, respectively, of
dimensions

and . Perform a matrix
multiplication to obtain , and the required flop
counts are .
Compute an SVD of the matrix , which is of
dimension . With
the algorithm in [7, p. 434], the approximate flop counts
for computing an SVD of an matrix, when only
the singular values and an orthonormal basis ofare
required, are [7, p. 239], that is,

flops, as far as
the matrix is concerned.

c) One Cycle Subspace Method [12]:For some
, estimate for , and the

flop counts are . Compute , and the
flop counts are . Compute the matrix with
dimension , using [12, Eq. (23)], and this
requires flops. Compute an
SVD of , and the approximate required flops are

.
We note the following.

i) In the subspace method [12], the flops cost required
for estimating the statistics of received data is relatively
small. This is because the method in [12] uses only the
cyclic correlation coefficients of only one nonzero cycle
(i.e., only one for some is required).

ii) For large channel order , the computational cost of the
method in [14] is relatively high. This is because it re-
quires an SVD of the matrix (which is of di-
mension ).
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