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Blind Identification With Periodic Modulation:
A Time-Domain Approach

Ching An Lin and Jwo Yuh Wu

Abstract—We propose a method for blind identification of late the problem in the time domain and in terms of block sig-
finite impulse response (FIR) channels with periodic modulation. nals. The method exploits the linear relation between the prod-
The time-domain formulation in terms of block signals is simple ;5 of channel coefficients and the autocorrelation matrix of the
compared with existing frequency-domain formulations. It is . ) . .
shown that the linear equations relating the products of channel reC_eNed Slgna! and computes the pl'Od_U_CtS first by solving aset
coefficients and the autocorrelation matrix of the received signal Of linear equations. The channel coefficients are then obtained
can be further arranged into decoupled groups. The arrangement (to within a scalar ambiguity) by computing the dominant eigen-
reduces computations and improves accuracy of the solution; vector of an associated Hermitian matrix. We note that similar
it also leads to very simple identifiability conditions and a very “bilinear” approach is also used in [8]. We show that the set
natural formulation of the optimal modulating sequence selection . . . ) .
problem. The proposed optimal selection minimizes the effects of of linear equ.at'ons r?'a“”g the products of coeﬁjments and the
channel noise and error in autocorrelation matrix estimation; it autocorrelation matrix can be further arranged into decoupled
results in a consistent channel estimate when the channel noisegroups. The arrangement reduces computations and improves
is white. Simulation results show that the method yields good accuracy of the solution; it also leads to very simple identifi-
performance: It compares favorably with an existing subspace ability conditions, which depend on the modulating sequence
modulation-induced-cyclostationarity method, and it is robust ’ . . .
with respect to channel order overestimation. The effect of alone, and a very natural formulation of the optimal modulating

modulation period and threshold of the modulating sequence are Seguence selection problem. We note that identifiability condi-

also discussed. tions based on the modulating sequence alone are also reported
Index Terms—BIlind identification, periodic modulation pre- in [2]. The proposed optimal selection minimizes the effects of
coder, transmitter induced cyclostationarity. channel noise and error in autocorrelation matrix estimation.

Moreover, the resultant channel estimate is consistent when the
channel noise is white.

The paper is organized as follows. Section Il is the problem
LIND identification and equalization of finite-impulse-re-statement and preliminary. Section Ill establishes the identifia-
sponse (FIR) channels that exploit cyclostationarity dfility conditions, proposes an identification algorithm, and dis-

second-order statistics of the received data was first proposggses numerical aspects associated with it. In Section IV, the

by Tonget al.[16]. Various schemes have since been proposgtbblem of selecting the modulating sequence is formulated and

[2]-[5], [8], [11]-[15]. See [5] for detailed references. Cyclosolved. In Section V, simulation examples are given to illustrate

stationarity can be induced at the receiver or at the transmittée performance of the proposed method. Section VI contains

While receiver-induced cyclostationarity has always result@@nclusions.

from oversampling [11], many different schemes have been

proposed to induce cyclostationarity at the transmitter. They Il. PROBLEM STATEMENT AND PRELIMINARY

include periodic modulation [2], [12], repetition coding [15],

and combinations of repetition and modulation [4] and fiI'-A' Problem Statement

terbank precoding [13]. A general analysis of the precoding We consider the baseband transmission system. The source

frameworks is in [13]. A related performance analysis of thesymbol sequenca(n) is modulated by a (real) periodic se-

so-called transmitter-induced-cyclostationarity precoders c@encep(n) with period N to obtain the modulated sequence

be found in [3].

In this paper, we study the problem of blind channel identifi- w(n) = p(n)s(n) (2.1)

cation with periodic modulation of source symbols. In contrast

to the frequency-domain approaches in [2] and [12], we formuthich is then pulse shaped and transmitted through the “com-
posite” channel including the transmit filter, the channel, and the
receiving filter. The received continuous-time signal is sampled
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plx) vin) Toeplitz matrix with
0 --- Oh(L) --- h(1 2.9b
IR Chamel 2063) x(%) [ (L) (1] (2.9b)
) 1 » asits first row. We note that i) the input—output relation between
z(n) ands(n) are periodically time-varying, whereas (2.7), in

terms of block signals, is time-invariant; ii) the splitting B

and H; as lower triangular and upper triangular matrices, re-
spectively, is possible by the assumptin> L + 1.

where the sequendén) is the impulse response of the channel,

andL is the channel order. The received signal sequetiag I1l. CHANNEL |IDENTIFICATION

is the sum of filtered signal(») and an additive noise, that is

Fig. 1. Discrete-time baseband model.

A. ldentification Equations: Noise-Free Case

z(n) = 2(n) + v(n) (2.3) We will first consider the noise-free case, i.e(n) = z(n)

. ) ] ~_ for all n. We assume for the moment that the channel order
wherewv(n) is the channel noise. A schematic description of is known and consider the general case later. Siffeg =
(2.2) and (2.3) is shown in Fig. 1. z(n) and by assumption a), the autocorrelation matrixf)

In this paper, we propose a method for identifyi(@) using  js computed from (2.8) as
second-order statistics of the received data) and discuss an

optimal design of the modulating sequepte). The following ~ Rz(0) := EZ(n)z(n)* = HoG*Hj + HiG*H € CN*N
assumptions are made in the sequel. We note that essentially the (3.1)
same assumptions are made in [2] and [12].
a) The source sequensg) is zero mean, uncorrelated, an
Es(k)s(D)* = 6(k—1), whereE'y denotes the expectatio
of random variabley, and§( -) is the Kronecker delta

({vhere the matricefly andH1, defined in (2.9), contain the un-
nown channel impulse response to be identified. Given the ma-
trix R.(0), (3.1) defines a set d¥?2 nonlinear equations in the
function. unknownsh(0), .. .,h(_L_). However, if we consider the prod-
b) The channel noise(n) is stationary with zero mean and!cts of channel2 goeﬁment]s(_k)h(l)* as ur_lknowns, (3'1). be-
is uncorrelated with source sequence). comes a setaWV= linear equations. Hence, instead of solving for

c) An upper bound. on channel ordeF. is known, and the h(0), ..., h(L) directly, we propose to fir§t compute the prod-
period isN > I + 1. uctsh(k)h(l)*,0 < k,l < L. SlnceRi(O)_ is Hermitian, there
d) The receiver is synchronized with the transmitter. are onIyN(N +1)/2 mdependent equations in (3.1). Thu_s, we
will consider the upper triangular part &;(0). The Toeplitz
B. Preliminary structure of matriceél, and H; allows us to simplify the equa-
tions even further. We will see that thedg N + 1)/2 equa-
tions can be divided intd. + 1 decoupled groups of equations
of smaller dimensions. The reduction in dimension reduces the
amount of computations, especially whahis large, and im-
proves numerical robustness with respect to noise and error in
the estimation of?z(0).
Define the matrix

Define the block signal

z(n) = [z(Nn)z(Nn+1) - z(Nan+N-DF eV
(2.4)

and let the block signals(n), s(n), Z(n), andz(n) be similarly
defined. From (2.1), we have

0o 0 --- 0 O
w(n) = G3(n) (2.5) 10 0 0
J:=1]01 0 0 g pixN, (3.2)
whered is a diagonal matrix : :
G:=diag{p(0) --- p(N-1}eRMN  (26) 0o . 10

. . . ) Thus, for any: > 1, all entries ofJ* are zero, except that those
In terms of the block signals, we write the discrete-time m0d8|1 theith lower diagonal are equal to one. From (2.9), the ma-
(2.2) and (2.3) as trices Hy and H; can be, respectively, expressed as

Z(n) = Z(n) + v(n) (2.7) L L )
Ho=Y h(k)J* and Hy= )Y hm)(J")¥~™. (3.3)
where k=0 m=1
2(n) = HoGs(n) + HiGs(n—1), n>1 (2.8) From (3.3), it follows that

I I

inwhich Hy € C"> is alower triangular Toeplitz matrix with  HoG*Hg = > > h(k)h(1)* J*G*(JT)' (3.4a)
k=0 I=
[h(0) --- WL --- 0F (2.9a) L L

H\G’HY =Y h(m)h(n)"(J")N""G?IN ™" (3.4b)

as its first column, andd; € CV*¥ is an upper triangular

m=1ln=1
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From (3.4), the matrix®;(0) can be written as the weightedProposition 3.1, we have, feach0 < j < N — 1
sum of theknownmatrices/*G?(JT)t and(JT)N-*kG2 N,

with theunknownchannel coefficients of the ford( k)L (1)* as I [Ra(0)] =
weighting factors. In the following proposition, we will see that ** -
these two matrices are upper triangularfor k£ and lower tri- L L

angular with zero diagonal entries fox k. Thus, we only have + Z Z h(m)h(n)*T,;[(JT)N""G2 TN
to consider those terms in (3.4) with> %£. Moreover, all entries

>

(RO T [ G ()]

m=1n=1

of both matrices are zero, except those on one of the upper di- L
agonals. This allows us to rearrange the independent equations = Z h(k)h(k+ ) T, [J*G2(JTYM]
in the upper triangular part of (3.1) into decoupled sets of equa- k=0
tions. The proof of the proposition is given in Appendix A. L~

For any N x N complex matrixM = [muilo<ni<n—1, +Z h(m)h(m+j)*T;[(JTYN G2 TN ™).
define, for0 < j < N — 1,I';[M] = [mojmyigyr) -+ m=1
m(n—1-jv—n))F € CN77. Namely,I';[M] is the vector con- (3.9)

taining the entries on thgth upper diagonal ofi/. Here, we
identify the diagonal withy = 0.

Proposition 3.1: Let G and.J be theN x N matrices, re-
spectively, defined in (2.6) and (3.2). Let< %,1 < L be two

From (3.9), theV — j equations defined by thgh upper di-
agonal of R;(0) depend only on thé. — j + 1 unknowns of
the formh(k)h(k + j)*. Thus, ifj > L, that is, ifj is greater
i L ; than the channel order, thdh[Rz(0)] is a zero vector since
non nega‘uvemtegers. Forealc:hN. e have thefollovxllelngQreiuIlts. h(k)h(k + )" = 0 for all k > 0 andj > L. Hence, we only
1) fl =k +j, where0 < j < L —k, bothJ"G*(J7)"  haye to consided < 5 < L in (3.9). Combine the two summa-
and (JX)N-M@G2JN -t are upper triangular, with only ions on the RHS of (3.9) to obtain
the respectivgth upper diagonals nonzero, and '
Tj[R2(0)] = h(O)A(j) T [GA(JT)]
NIRAE O '
=0 - 0pO)? - p(N-1—k—j)Y" € RV,

(3.5) + I [(JT)N RGN R, (3.10)

L—j
+ > h(E)A(E + )" (DTG (T )]
k=1

and
L, [(JT)N kG2 N From (3.10), it follows that the vectdr,;[R5(0)] can be written
J

as a linear combination df — j + 1 columns of the forms (3.7)

=[p(N-k)? - p(N-1)% - 0 e RV and (3.8). To write (3.10) in matrix form, we define, for each
(36) 0<j<L
£ = ORG) RDRG+1)* - (L — HREL)TF

2) If I < k, both J*G?(JT)! and (JT)N-*G2JN=1 are

. . . . L—j+1
lower triangular with zero diagonal entries. eCT. (311

U Thus, f; contains all the unknown product coefficients of the

Comments: form h(k)h(k + 5)*,0 < k < L — 4. With (3.7) and (3.8),
1) Fork = 0, the right-hand side (RHS) of (3.5) becomes (3.10) can be expressed as
. . I;[R(0)] = M, f; (3.12)
p(0)* p(1)* .- p(N-2-j)° p(N-1-35)7" (3.7) ’ "

where, for0 < j < L,, we have (3.13), shown at the bottom of

whereas that of (3.6) is a zero vector. the next page. o _ _
2) We note that the vector on the RHS of (3.5) has the first Ve note that the matrid/ is anN' x (L +1) circulant matrix
k entries zero, whereas that in (3.6) has only the first With first column equal to
entries nonzero. Thus, there is no overlap between the _ 2 2 o2 _\2T
locations of nonzero entries of the vectors given in theg'_ (0" p(1) p(N—=2)" p(N-1)7]" (3.14)
RHS of (3.5) and (3.6). In particular, we have (3.8), showand, forl < j < L, M is obtained fromd, by deleting its
at the bottom of the page. O lastj rows and las} columns.
Proposition 3.1 enables us to divide the upper triangular partHence, the upper triangular part of matrix (3.1) is rearranged
of (3.1) intoL 41 decoupled groups of equations based on eaekL+1 decoupled groups of linear equations given in the matrix
upper diagonal of2;(0). More precisely, from (3.1), (3.4), andform (3.12), where thgth group of equations depends only on

LGN+ LD TGN = [p(N = k) - p(N=1)? p(0)* -+ p(N-1-k=-35)*". (3.8)
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the unknowns of the form(k)h(k+ j)*. The proposed channelL > L is available, withN > L + 1, (3.15) will give the

identification method is based on solving (3.12) and is discusseaduct coefficients (k) i(1)* for 0 < k < I < L. The associ-

next. ated(L + 1) x (L + 1) matrix @ constructed as in (3.16) will
Remark: Note that if the source sequenge) is correlated, theoretically have only one nonzero eigenvalue with the corre-

the equations defined by thih upper diagonal oR2:(0) will  sponding eigenvector given by

involve additional unknowna(k)h*(1) for I # k + j. In this i

situation, we can no longer arrange the- 1 equations defined afh(Q)h(1) --- ALY --- 0F eCcttt (3.18)

by the upper triangular part of the matr;(0) into L + 1

decoupled groups, as shown in (3.12). The computation of tlere« is a scalar. Thus, it follows from (3.18) that the ac-

product channel coefficients k)h*(1) instead requires solving tual channel order and impulse response can be determined by

a single least squares problem of relatively large dimendion. the most significant entries in the unit-norm eigenvector associ-

ated with the maximal eigenvalue &f. Hence, the proposed

B. Identifiability Condition method is applicable, as long as an upper boiind L is
Consider the. + 1 decoupled groups of equations in (3.12)known; channel order overestimation, however, does increase

SinceN > L + 1, each group of equations is overdetermineile amount of computations involved.

and consistentAssume that for each < j < L, the matrix

M; is of full column rank Then, the vectoy;, which contains D. Identification Algorithm and Computational Aspects

unknowns of the fornk(k)h(1)* withI = k+j, can be uniquely  We summarize the proposed channel identification method as

determined as an algorithm.

fi = (MIM;) ™ MITS[R:(0)]. (3.15) - .
Channel Identification Algorithm:
Successively using (3.15) for = 0,...,L, we can obtain 1) Select a modulating sequence p(n) such
h(k)h(1)*,0 < k < 1 < L. To identify the channel, that is, that each matrix M; defined in (3.13) is
to determine the unknowrig0), ..., (L) up to a scalar ambi-  of full column rank.

guity, form the(L + 1) x (L + 1) Hermitian matrix 2) Estimate the autocorrelation matrix
Rz(0) via the time average
Q = [grtlo<k,i<, Wheregy = h(k)h(l)". (3.16) 0) 9

We note that thgth upper diagonal vector of the matri} is i (0) 1 #(0)7(0)"
simply f;, thatis,I';[Q] = f; for 0 < j < L. In the ideal case,
the matrix@ is of rank one and can be factorized@s= hh*,
where where K is the number of data blocks.
T L1 3) Compute the product channel coeffi-
h:=[n0) - WL)] €C B17) cients  h(k)A(1)*,0 <k <1< L using (3.15).
is the vector containing the channel impulse response. Thus, fleForm the matrix ¢ as in (3.16), and
channel is identified, up to a scalar ambiguity, by computing tfR@MPute the channel impulse response
unit-norm eigenvector associated with the maximal eigenval¥ygctor /- as the unit-norm eigenvector
of the matrix(). Hence, a sufficient condition for channel identi@Ssociated with the maximal eigenvalue of
fiability is that eachld; defined in (3.13) is of full column rank. Q-
We note that the matrice; are completely determined by the
modulating sequenqggn). By appropriately selecting(r), we Some of computational aspects are discussed in the fol-
can makeM; full rank and well conditioned. lowing.
1) Least Squares Solution (3.158ince each group of equa-
tionsin (3.12) is overdetermined and consistent, (3.15) will give
The previous analysis is based on the assumption that the exact solution as long as the autocorrelation matsix0)
channel ordel. is known. In case that only an upper bounds obtainedexactlyand that there is no noise. In practice, when

(3.19)

C. On Channel Order Overestimation

r p(0)? p(N —1)? p(N-22% - p(N-L-j)? 1
p(1)? p(0)? p(N—-1*2 - p(N—-L-j+1)?
p(2)? p(1)? p(0)? oo p(N—L—j+2)?
M; = ; ; ; ; € RINV=IIx(L=j+1), (3.13)
p(N=3-4) p(N—-4-35)?° p(N-5-4)> --- p(N-3-1L)
p(N—2—j)% p(N—-3-34)? p(N—-4—-j)?* - pN-2-0L)?
Lp(N—1—-7)* p(N-2-5)? p(N-3—-35)? -~ pN—-1-L)* |
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only a time averagé?.i,(o) is available, thef; in (3.15) is the tions that are optimal for noise attenuation. Among this class
least squares solution of (3.12). of solutions, we then choose the “begtn) with which the
2) On Computation offy Using (3.15): We note that from channel coefficients can be most reliably computed. Finally, we
(3.11), the product coefficient vectgp contains unknowns of show that with the optimai(n), the resultant channel estimate
the form|h(k)|?, for 0 < k < L. However, the least squaresis consistent. Effects of the modulation period and the threshold
solution (3.15) forj = 0 does not necessarily yield gp with  of the modulating sequence are also discussed.
non-negative entries. If some entriesfgfcomputed by (3.15) o o
are negative, it is an indication that either the signal-to-noie Optimality Criteria
(SNR) ratio is fairly small or that the quality of the estimated Assume that the additive channel noise is white. Then, from
autocorrelation data is poor. A direct remedy for the latter cage7), (2.8), and assumption b), the autocorrelation matrix is
is to improve the quality of estimation by using more data sam-
ples. If, however, the cause is due to low SNR or a longer data R3(0) = R=(0) + o” Iy (4.1a)
record for improving the estimation quality is unavailable, an q'/\'/here
ternative is to computgy using the non-negative least squares
method [9] to remove the inconsistency. In such a situation, R.(0) = HyG?H} + H,G*H;. (4.1b)
however, our simulation results show that the non-negative least ) o ) _
squares method does not actually improve the overall estinid®Mm (4.1), noise has contribution to only the diagonal entries
tion accuracy. A plausible reason is that the available datadkfiz(0), and thus, we have
“inherently bad.” Hence, although this alternative avoids nega- o 2
tive values of the elements in the computed coefficient vector Lo[Rz(0)] = Lo[R=(0)] + 070 (4.2)
fo, it does not seem to be a good choice in practice since it dagisere
not seem to improve accuracy and increases the algorithm com- .
plexity. b=[1 - 1Fen?. (4.3)
3) On Selection of Modulation Perio¥: The number of
equations in each group of (3.12) increases with the pe¥ipd
the jth group hasV — j equations. If the equation errors in
(3.12) resulting from noise and imperfect estimationfgf(o)
can be modeled as a zero mean white noise with fixed vari- [o[Rz(0)] = Mo fo + o2b. (4.4)
ance, then the error covariance can be made arbitrary small if
the number of equations is sufficiently large [10, p. 178]. ThuSinceo” is unknown, the actual product coefficient vectfar
it seems desirable to choose large modulation period since mé#@not be determined using (4.4). Instead, givgidiz(0)], we
equations tend to improve the accuracy of the least squares3®@)ve the least squares solutign of the inconsistent equation
lutions (3.15). However, for a fixed number of data sampld[fz(0)] = Mo f. From (4.4),f, can be written as
S, the number of available data blocks for estimatitg0) is -1 -1
approximatelyS/N. Therefore, ifN is large, we wﬁazle a o= (Mg Mo) = M To[Re(0)]=fo+o® (Mg Mo) ~ Mgb.
small number of data blocks and, hence, usually a less accurate (4.5)

£(0). Simulations show that different choices®if(2 L +2) Thus, the least squares solutifinconsists of the actugh, plus

g\'fe? Sﬁlril|;\rtop?é?&?eagg;.;tl::tlﬁjnseemS reasonable to Chooasneadditional perturbation term due to noise. From (4.5), the

4) On Condition of the Matrix:The accuracy of solution noise contribution is eliminated, that iﬁo = fo, If and only

: . - e if MI'b =0, i.e., the vectob is orthogonal tak (M), which
(3.15) is determined by the numerical condition of the matrtlé the range space dfl.. Hence. if the modulating sequence
M;. Since the construction df; entirely depends op(n), the S ? d o hi ' he ab h ¢ Iq di
condition of M, is thus closely related to the selectionugf) p(n) can be selected to achieve the above orthogonality cond-
We discuss h(J)w to chooggn) to improve numerical robu:st- tion, the effect of noise is completely eliminated. This turns out

. . to be impossible since entries &f; are all non-negative. The
ness in the next section.

5) Computational ComplexityCompared with the struc- best we can hope is to choogen) as to make and & (Mo)

tured subspace method [2], [14] and the one-cycle subsp ?ﬁ?,!osg tgrsii:t?oﬁrg:;%%%f 2312;;2‘:3)"3- s suggesis e for
method [12], the proposed method requires fewer computation gop '

than the former and more computations than the latter. Detailei)eflne the quantity

With (4.1b) and (4.2), thé + 11 decoupled groups of equations
in (3.12) remains unchanged, except that the 0 group be-
comes

flop counts for these methods are given in Appendix E. ) (4.6)
SRR :
llgll2 - lI0]]2
IV. OPTIMAL SELECTION OF THE MODULATING where|| - ||» denotes the 2-norm, vectbis defined in (4.3), and
SEQUENCEp(n) g defined in (3.14) is the first column of the matt{,. Then,

from (3.14),7 > 0 is a function of the modulating sequence

we c0n3|de_r the general case, that |s,_the channel noise Qsz) Let ¢ be an arbitrary column ol rather than the first.
present, and discuss the problem of selecting the modulating §e- e N
Ince, from (3.13) M, is circulant, we havdlg||z = ||¢||2 and

qguencep(n). We first propose an optimality criterion to selec
p(n) to reduce the effect of noise. We will find a class of solu- without lose of generality, we assume that the channel diderknown.
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G¥'b = ¢¥'b. Thus, the quantity defined in (4.6) is the cosine of  Proposition 4.1: Let the integeid < m < N — 1 be fixed
the angle between the vectiopand any column ofi/y and can but arbitrary. Then, the vectgrwith entries
be viewed as a measure of orthogonality betweamd R (11 ).

If + is small for some choice qf(»), then with this choice, gm =N({1-6)+6, and
the correspondingi (Mo) is close to being orthogonal with =6 0<n<N-1 n#m
and, thus, will result in a small noise contributionfpin (4.5).
Smally also means that the projection bfonto 2 (Mo) iS s an optimal solution to problerP). 0

small. If we think of R (Mj) as the signal space, this would [Proof]: Definey := q — A, whereA = [§ --- §]7,
imply that the contribution of noise in the received data is smalhd lety,, be thenth component ofy. Then, the problem is
from the identification point of view. Therefore, we should keepquivalent to maximizingy + Al|» subject to

~ as small as possible. Specifically, we propose to select the

modulating sequenggn ) to minimizey with respect to alb(n) lyli = N(1—6) and g, >0. (4.11)
satisfying
Sincey,, > 0, we have
N-1
1 2
N 2 el =1 (@72 Iy + A = 1yl + 26 — N2,

and SinceN andé are fixed, our problem is the same as maximizing

lp(n)? >8>0, YO<n<N-1 (4.7b)  ||y|l2 subject to (4.11). Sincky||> < ||v||, for anyy, the max-
imum |||z is achieved if we can find somgthat satisfies (4.11)

Constraint (4.7a) normalizes the average transmission powegt@l with which the equality holds. This is the case if we choose,
unity since the sequenae(n) = p(n)s(n) is actually trans- for any fixedm,0 < m < N — 1,y,, = N(1-6)andy, =0
mitted, and the source sequenge) is with unit variance. The for » # m. The result thus follows. O
constraint (4.7b) is necessary for equalization since, at the refFrom Proposition 4.1, the optimal modulating sequence is im-
ceiver end, it is impossible to recover a source symbol thatrisediately given by, for any fixed < m < N — 1
modulated with a zero value since the symbols are uncorrelated.

Constraints (4.7) require that< 1. We note that these two con- lp(m)]=+/N(1-6)+6, and
straints are also used in [2], in which different optimality criteria p(n)| = V6 forn#m (4.12)
are used.

By definitions ofb andg, we have where the magnitudes of the sequence assumes two values with

N1 one and only one peak. We should note that the optimal mod-
Ty — 2 d bl = VN, 4.8 ulating sequence (4.12), which is obtained by minimizing the
e Z lp(m)l?, and [lofl: = VN 48) effect of (white) channel noise, is the same as the one reported
in [2, Prop. 3]. In [2], this solution is obtained by maximizing
With (4.7a) and (4.8), the quantity defined in (4.6) can be the so-called degree-of-cyclostationarjfih (k)| [2, p. 1577],

n=0

expressed as subject to the same constraints. Singe(k)| can be regarded
as a measure of SNR from a frequency domain point of view
VN N (large value of this quantity results in relatively large value of
T= lallz = EN—Ol (n)4- (4.9) the cyclic correlations coefficients with respect to noise level),

it is not unreasonable to expect that the two solutions should be
the same; the choices in (4.12) tend to keep the noise effect on

We note that the constraint (4.7a) is equivalent to . .
the signal component as small as possible.

N1 With (4.12), the minimal value of the orthogonality measure
lall: = > Ip(m)2 = N (4.10a) 7 is computed as
n=0
7:=1/y/N1 - 62 +6(2-9). (4.13)

where|| - |1 denotes the 1-norm. In addition, if we lgf :=
Ip(n)|? be thenth component of;,0 < n < N — 1, the con- We note thaty is indeed independent of the indexat which

straint (4.7b) can be rewritten as the peak occurs. We should note that different indgkhowever,
will result in different matrices\/; in (3.13). Hence, the choice
g >0>0, YVO<n<N-—-1. (4.10b) of mis crucial to the properties dff;. The issue of selecting

to obtain{; with good numerical property is addressed in the
SinceN is fixed, the proposed optimality criterion for selectingnext subsection.
p(n) is equivalent to the following quadratic optimization Note that if we modulate the soureén) with the optimal

problem. sequence (4.12), there will be periodic peak value in the trans-
(P): Maximize ||¢||2 subject to the constraints (4.10a) andnitting power. In case that the peak power due to modulation
(4.10b). is greater than the maximal allowable power provided by the

The optimal solution tgP) is given in the following proposition. transmitter, we can reduce this peak value by imposing an upper
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bound on the magnitude of the modulation sequence. This sbg-determined without computing,, forall0 <m < N — 1.
gests to us that we should modify constraint (4.7b) as followshe proof of lemma is given in Appendix C.

Forany0 < n < N -1 Lemma 4.2: Assume that the modulating sequenge) is
chosen asin (4.12). For< j < L, let M; € RN =< (E=i+1)
§ < |p(n)|? < p, forsomep > 1. (4.14) defined in (3.13) be the matrices associated with the index

In addition, lety,,, defined in (4.16) be the maximal condition
The resultant optimal modulating sequence can be obtainedriymber among th(MfMj matrices. Then, we have the fol-
solving problem(P) with constraint (4.10b) replaced by (4.14)Jowing results.
(recall thatg,, = [p(n)|?). We should note that when no upper 1) If 0 < m < N — L orm = N — 1, all the resultanf\/;

bound on|p(n)|* is imposed, (4.10a) and the conditién< are of full column rank.

[p(n)|? together imply|p(n)|* < N — (N —1)§,¥0 < n < 2) In particular, for eaclh < m < N — L — 1, the corre-
N —1. As aresult, for ayivend, if the upper boung in (4.14) spondingu., is completely determined by the matti,
is chosen such that > N — (N — 1), then it is inactive. andis equal tr,,, = 14+ ((L+1)8(2—6))/(N(1—6)?).
The optimization problem, in this case, reduces to the original 3) If N — L +1 < m < N — 2, at least onél/; is not of
one, and the solution is given as in Proposition 4.1. Assume  full column rank. O

p < N — (N —1)6. Forthe case oN = 2, itis easy to check  Erom Lemma 4.2, we should only consider thoge) in
that the optimal solution fo{p(0),p(1)} is {/p,v2 — p} Of  (4.12) With0 < m < N — L andm = N — 1. Sincepum, is
{V2 —p./p}. It appears that one component of the optimahe same fon <m < N — L — 1, we will simply identify e,y

solution attains the upper boungp. For the general case, weith 110 for all suchm. The optimabm,y, is thus given by
conjecture that the optimal» ) is given by

p(m) = /5, and Mopy = argmind fto, fiN L, N1} (4.17)
VIN=p)/(N—-1), 0<n<N-1, n#m  Henceforth, we will restrict the modulating sequep¢e) to be
(4.15) of the form (4.12) with the index: determined by (4.17).
Remark: If the noise is colored and has unknown nonzero
where0 < m < N — 1 is fixed but arbitrary. In fact, if we correlationss? for time lags0 < j < ji, then the firstj, + 1
form the Lagrangian function associated with the constraingfoups of equations in (3.12) becomes
optimization problem, it can be shown (see Appendix B) that
p(n) in (4.15) satisfies the first-order necessary condition. Nu- I;[Rz(0)] = T;[R=(0)] + 050
merical experiments (see Simulation 8) also tend to indicate that = M;f; + 0]2,57 0<j<ji. (4.18)
the two-level form solution in (4.15) is indeed the optimal solu-
tion. In this case, our choice @fr), although not optimal fo§ > 1,
) is still a good candidate selection for the least squares estimate

B. On Selection ofr (3.15). This is because all the resultav’ A; matrices still

Assume thap(n) is chosen as in (4.12). Feach0 < m < remain well conditioned. Thus, the corresponding estirﬁpts
N—1, consider the associated matridesin (3.13) for0 < j <  expected to be relatively insensitive to data errors due to noise.
L. For eacly, let x; be the condition number [7] of the matrixSimulation results (see Simulation 3) seem to indicate that at
M M. If s is large, the matrix/] M; is ill-conditioned, and reasonable levels of SNR, the proposed selectigirof indeed
the corresponding least squares estimate (3.15) is sensitivavtks well against color noise. O
data errors. Let

=
2
[

C. Consistency of Channel Estimation: White Noise Case
R (4.16) In this subsection, we will show that if the channel noise is
N _ white and the optimal modulating sequence givenin (4.12) (with
be the largest condition number among " M/; associated ;;, determined by (4.17)) is used, the resultant channel estimate
with m. If u,,, is large, then with this: in (4.12), we tend to have s consistent.
an ill-conditionedM ;" M; for some; and, hence, a less-accu- Recall that when there is no noise, the diagonal vector of the
rate I_east squares estimate (3.15). This suggests that we shesk-one matrixQ(=hh*) defined in (3.16) equalgy, that is,
considerachy,,0 < m < N —1, and among them, we selectr [)] = f,. When the channel noise is white, it follows from

the “optimal” m as the one whose correspondiag is min- (4 5) that the resultant “perturbed? matrix, say,Q.., is equal
imal. With the special form gf(n) in (4.12), the procedure for tg

finding the optimalm can be further simplified. Specifically,

we will see in the next lemma that there exist some choices Qu=Q+D (4.19)

of m such that at least one associafed will lose rank. Such

choices ofn should be excluded since they will prevent channgthereD € RV>* "V is a noise perturbation matrix that is diagonal
identifiability. Moreover, with the special form (4.12), it can besuch that

shown that for certain “feasible’, the corresponding,,, are

the same. With the aid of these facts, the optimal choiee cén Do[D] = o” (Mg Mo) M7 (4.20)
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It is shown in Appendix D that ip(n) is an admissibketwo- minimal valuey decreases asis decreased. We should also

level modulating sequence such that, for any fikeek &£ < note that at the equalization stage, small valuesmfy cause

N -1 large symbol error rate even if the channel is perfectly equalized
[2, p. 1578]. This imposes a tradeoff on the selection.of

lp(k)| = Ver, and
lp(n)| = /B, for0<n<N-1, n#k (421) V. SIMULATION RESULTS
then the corresponding,, matrix is of the form To illustrate the performance of the proposed channel identi-
¢ fication method, we consider the five-tap channel used in [2]
Quw=0Q+Ipy1 =hh" + (I (4.22)
M M h = [0.459 + 0.2657, —0.2078 — 0.12, —0.4677
for some( > 0. That is, as long ag(n) is chosen of the form —0.274,0.0953 + 0.0555, —0.0312 — 0.0185]7".

(4.21), the resultant (white) noise perturbation mablireduces
to a scalar multiple of théL + 1) x (L + 1) identity matrix. The input source symbols are drawn from an i.i.d. QPSK
Since such perturbations preserve eigenvectors, in particular go@stellation. The additive channel noigg:) is white with a
one associated with the largest eigenvalue, the channel ve@aiussian distribution. As channel identification performance
h can still be obtained, up to a scalar ambiguity, by computingeasure, we consider the normalized root-mean-squarée error
the eigenvector associated with the largest eigenvalue é§the (NRMSE) defined by [2]
matrix. The optimalp(n) in (4.12), which is a special case of

(4.21), hence yields the channel estimate consistent and, at the 1 10 9
same time, achieves the largest noise reduction. NRMSE:= ——,| = Z hi) —h (5.1
Remarks: IAll2 '\ £ = 2

a) We should note that is not of the form (4.21), then . n .
) Hi(n) (4.21) wherel! is the number of Monte Carlo runs, a8 is the esti-

the diagonal entries d will assumeat leasttwo values, . o ;
mate of the channel impulse response vectoitlintrial with

viz., the matrixD is no longer a scalar multiple of theA(i) 0 ,
identity matrix. Such a perturbation will not preserve th&:  as thelth component. Sincé™’ can only be estimated

eigenvectors of the (noise-fre€) matrix and, hence, re- within an unknown scalar ambiguity, for the purpose of com-

sults in an inconsistent channel estimate. puting NRMSE, we compute the unknown scalar by performing
b) If the channel noise is colored, the channel estimate 3d€ast square fit of the estimated channel to the actual one. This

inconsistent even if a modulating sequence of the forpﬁchnique is used in [8] to remove the scalar ambiguity. The

(4.21) is used. This is because the noise perturbation n¥ignal-to-noise-ratio (SNR) is defined as
trix D will contain nonzero off-diagonal entries [this fol- P .
lows from (4.18)] and does not preserve the eigenvectors SNR:= +/ X =0 E{l2(n)*} (5.2)
of @ either. In this case, however, the optimak:) in E{|v(n)|?

(4.12) still seems to be a good choice as far as noise effect . _ )
on the estimated channel is concerned. For Simulations 1-6, 100 Monte Carlo runs are conducted, i.e.,

I = 100.
D. Effects ofN andé$ 1) Simulation 1—Optimal Selection of Periodic Sequence

In this subsection, with optimal modulating sequence | (n): The effects of selecting(n) on the performance of the

(4.12), we discuss the effects of modulation percand the proposed channel identification method are demonstrated. In

. . e .~ the following two experiments, we s& = 6,6 = 0.5978,
Ezrig?dd& on the minimal orthogonality measufedefined in and SNR is fixed at 10 dB. In the first experiment, with

Suppos® < & < 1 is fixed. It follows from (4.13) thaty de- p(n) chosen as in (4.12), we illustrate the resultant perfor-

iodi [ [ . < < 5
creases as the periddincreases angl — 0 asN — oc. Thus, mances obtained from differemt. For each) < m < 5,

identification performance is improved as modulation pefbd form the associated matrice/;,0 < j < 4 according
o onp . pr penod 4, (3.13). Then, from (4.16) and by computation, we have
is increasing. However, witlp(n) in (4.12), large modulation

. v o st = {5.0713,5.0713109.9, 00, 00, 109.9}. Fig. 2
periodV leads to large transmission power peak. This is undé’—igwS tﬁe}resp;{ective channel NRMSE versus}nurgbers of
sirable since, in practice, there is a constraint on maximal aveuh .
' . . samples(S) for m = 0,1,4,5. Note that formm = 0 and

able power provided by the transmitter. Moreover, as discusse . : )
) . e m = 1, the corresponding performance is almost iden-
in Section llI-D, when the number of data samples is fixed, large >
i i - Ical and that the degradation in performance far =
N will lead to poor estimation of2;(0). Thus, a large modu- : . "

. . : . . . .4 and 5, owing to the ill-conditioned,. In the second
lation period should be avoided. Based on simulations, if the

channel order id., the selectionV = L + 2 suffices to yield a experlment, we wil see the effectlvenes_s of _the optimal
. noise-attenuation selection (4.12). We consiggr) in (4.12)
satisfactory performance.

L _ with m = 0, which is {p(0),...,p(5)} = {1.75,0.7665
To see the effect ofs, rewrite ¥ in (4.13) asy = . . . RANN o ’
1/\/N—(N—1)6(2—6). Foro < § < 1,82 — 8) is 0.7665,0.7665,0.7665, 0.7665} and another plausible

an increasing function i@. Thus, for a fixed periodV, the 3Another commonly used performance measure is the average bias [2]. In our
simulation, this quantity exhibits the same tendency as the NRMSE and, thus,
2By this, we mean the constraints (4.7a) and (4.7b) are satisfied. is not displayed.
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Fig. 5. Channel NRMSE versus SNR. Proposed method versus subspace

methods (white noise case).

two-level nonoptimal selection chosen af(0),..., S = 1000. The results show that the proposed method gives
p(5)} = {0.7665,1.0404,1.0404,1.0404,1.0404,1.0404}, better results when compared with the two subspace methods.
which also satisfies constraint (4.7) with the safne 0.5878 3) Simulation3—Robustness to Additive Color Noi¥ée
and is selected in analogous way as in [2]. We note that batbmonstrate the robustness of the proposed method when
the optimalp(n) and the comparative selection are of the forrthe channel noise is colored. In this simulation, the ad-
(4.21) and result in a consistent channel estimate. Fig. 3 shatditive color noisev(n) is generated by filtering a white
the corresponding NRMSE of the estimated channels verswsise sequences,(n) using the second-order FIR filter
numbers of samples. As one can see, the optima) gives C(z) = 0.6 + 0.6z~ + 0.5292272, that is,v = [C(2)]vy.
significantly better performance. Fig. 6 shows the NRMSE versus SNR, computed, respectively,
2) Simulation 2—Comparations With Existing Subspace Apsing the proposed method and the two subspace methods. The
proaches: The performance of the proposed method is conmumber of samples is fixed & =1000, and number of trials
pared with those of the one cycle subspace method [12] asd = 100. In all methods, we s&V = 6,6 = 0.5878 and
the structured subspace method [2], [14]. In all cases, we sbbosep(n) as in (4.12) withm = 0. The result shows that,
N = 6,6 = 0.5878, and choose(n) as in (4.12) with, = 0. for SNR < 5 dB, the subspace method in [2] achieves best
We note thatt = 0.5878 is the choice used for simulation inperformance. This is mainly because it provides a consistent
[2]. Fig. 4 shows the corresponding NRMSE versus numbersafannel estimate, irrespective of color noise, as opposed to
samples for fixed SNR= 10 dB. Fig. 5 shows the correspondingour method. We note that although the method in [12] also
NRMSE versus SNR, where the number of samples is fixedf@eserves consistency in the colored noise case, it exploits,
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Fig. 6. Channel NRMSE versus SNR. Proposed method versus subspace Fig- 8. Channel NRMSEN = 6 with different choices ob.
methods (color noise case).
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Fig. 7. Channel NRMSE versus overestimated channel order.

6 = 0.81,6 = 0.5878, andé = 0.25. For these threé, the
however, only the cyclic correlation of only one nonzeroespective minimal orthogonality measuresomputed using
cycle for identification and, hence, leads to degeneration {#.13) are 0.9204, 0.7353, and 0.5121. The result shows that
performance. For SNR> 5 dB, the proposed method resultsmall § indeed leads to improved performance. For fixee:
in better performance. A reasonable explanation is that th&878, Fig. 9 shows the channel NRMSE versus number of
well-conditioned}; matrices tend to reduce the noise effecdamples corresponding to modulation peridds= 6, N = 20,
on the estimated channel coefficients. and N = 50, with which the respective minimal are 0.7353,

4) Simulation 4—Robustness to Channel Order Overestinta4863, and 0.3275. From the figure, it can be seen that the per-
tion: We test the proposed method when channel order is ovesrmance corresponding to the three differdhare roughly the
estimated. For each upper bouhdd < I < 12, we choose same. This is because the estimation quaIiti}Z@{O) is poor as
the modulation perio?v = L + 2. The SNR is fixed at 10 dB, N increases. This demerit may cancel out the benefit from large
and number of samples at= 1000. Fig. 7 shows that the pro-noise attenuation when a largé is used. Since increasing
posed method is quite robust to channel order overestimatiavitl also increase the amount of computation and, at the same
the NRMSE increases less than 5 dBlasicreases from 4 to time, result in a large transmission power peak, the modulation
12. period N = L + 2 seems to be a desirable choice.

5) Simulation 5—Effects éfand V on Performance of the 6) Simulation 6—On Large Sample Performanda: this
Proposed Method: Forp(n) in (4.12) withim = 0, we illustrate  simulation, we demonstrate the behavior of the channel NRMSE
the effects ofs and V on the performance. We fix SNR 10 computed using the proposed method when the number of
dB. For fixed N = 6, Fig. 8 shows the channel NRMSE versusamplessS is large. Withé = 0.5878, Fig. 10 shows the
numbers of samples corresponding to three different threshodRMSE versus number of samplgs(for S = 1000-50 000)
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Fig. 11. Probability of symbol error. Proposed method versus subspacéid- 13. Probability of symbol error with different values#{0.5-0.9).
methods.

when different channel estimation schemes are used. We also
with respect to two different SNR (0 and 10 dB). We note frordemonstrate the effect of the threshéldn PSE. For both ex-
the figure that both the resultant NRMSE versusurves seem periments, the equalizer is the same 17-tap causal cyclic Wiener
to decay at a raté/+/S. This can be seen as follows. Consideiilter as that in [2] and [12] (with 12-tap reconstruction delay).
S = 10000 andS = 50000 on the SNR= 0 dB curve. The The number of samples is fixed &t= 1000. Foré = 0.5878,
latter S is five times as large as the former, and the respectitég. 11 shows the PSE versus SNR for the proposed method
NRMSE are—34.1549 and-27.4118 dB. The difference of and the two subspace-based methods in [2] and [12]. The PSE
the two NRMSE £-6.7431 dB) is approximately equal tois averaged over 500 independent Monte Carlo trials per SNR
20log,,(1/v/5) (=—6.9897 dB), viz., the latter NRMSE is point. The result shows that the proposed method leads to
roughly 1/v/5 times as small as the former. This phenonthe lowest PSE. Figs. 12 and 13 show the PSE versus SNR,
enon remains valid if, on each SNR curve, we consider twespectively, fo = 0.1-0.5 andé = 0.5-0.9. The channel is
arbitrary numbers of samples and compute the difference @atimated using the proposed method and PSE is averaged over
the respective NRMSE. Hence, although a precise asymptatie= 500 trials. Note that largé (~1) and smalb (=0.1) result
performance analysis is not established, this observation seémgoor performance. The former case is a consequence of poor
to indicate that the covariance of the estimated channel decalhsnnel estimation accuracy when lafgis used. A plausible
at a ratel/S. We note that the channel estimators in [2] andxplanation for the latter case is that, although the channel
[14] indeed exhibit this property. is better estimated with smadl, symbols modulated with a

7) Simulation 7—On Equalization Performanck this small value(\/E) would be more easily corrupted by noise and,

simulation, we compare the probability of symbol error (PSHience, are more likely to cause decision errors. This imposes a
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formulation in terms of block signals is simple compared with
existing frequency-domain approaches. The method exploits the
linear relation between the products of channel coefficients and
the autocorrelation matrix of the received signal as well as the
decoupled structure of the resulting linear system of equations.
The identifiability conditions so derived are particularly simple;
they depend on the modulating sequence alone. Indeed, with
the proposed metho@ny FIR channel is identifiable with an
appropriate choice of the periodic modulating sequence, pro-
vided that the modulation perio¥ > L + 2, whereL is the
channel order. In facglmostall periodic modulating sequences
yield channel identifiability. The optimal modulating sequence
selection problem formulated as one of minimizing the effects
of channel noise and error in estimating the autocorrelation ma-
trix is straightforward and easy to solve. The proposed optimal

Be o s o sw o 7 se  wo woo  Solution also results in a consistent channel estimate when the

Nomber of Samples S channel noise is white. Simulation results show that the method
Fig. 14. Channel NRMSE with different choices of upper boundi€lds good performance; it compares favorably with existing
p,6 = 0.5878. subspace modulation-induced-cyclostationarity methods, and it
is robust with respect to channel order overestimation.

Channel NRMSE (dB)

tho=3.6

tradeoff between PSE and accuracy of channel identification in
selecting the threshol@d We note that this phenomenon is also
observed in [2, p. 1584]. Based on these observations, it seems
that a good choice i8.4 < 6 < 0.6. From (3.2), we note that for any x N matrix M and integer
8) Simulation 8—On Imposing Upper Bounds on the Mag-> 1, the multiplication/* A7 moves the rows o/ to k places
nitude of Modulating Sequencen this simulation, we provide belowand leaves théirst k rows zero. In addition, for integer
numerical solutions to optimal modulating sequences when dif>> 1, the multiplicationM (J)* moves the rows ofi/ to
ferent choices of upper boundin constraint (4.14) are used.placesaboveand leaves thkast! rows zero. Equation (3.5) then
The optimization problem is solved usiMptlab Optimization follows sinceG is a diagonal matrix, anH> k. Equation (3.6)

APPENDIX A
PROOF OFPROPOSITION3.1

Toolbox With the computed solutions, the respective resultaahd 2) follow from similar arguments. U
identification performances are also illustrated. Pér= 6
andé = 0.5878, we use the algorithngp (see [6, p. 3—-38]) APPENDIX B

to compute the solutions with respect to five choicesof

1.2,1.8,2.4,3,3.6. Note that for the particular threshofd =

0.5878, the maximal feasible value ¢f(n)|?, when no upper

bound onp(n)|? is imposed, i$ — 5 x 0.5878 = 3.061. Hence,

the choicep = 3.6 is an inactive bound, and the correspondin

solution is expected to be the same as the one computed u iR

(4.12). By computations, it appears that the five solutions are all

of the two-level formp(0) = /a andp(n) = /3,1 <n < 5,

where the respectivéy, /3) pairs are (1.2, 0.96), (1.8, 0.84), Osn<N-1. (Al

ézetherIf; d(?r’lgfe);(?g&(%??hle, %Eg;g): zr'g’nl;zecrs;%last'eg “White the inequality constraints in (A.1) directly in terms of vec-
. . tors as

optimal sequence for eaghis the same as the one computedo

according to the coqjectured formula (4.15) thh: 0. The g—pb<Onx1 and —q+6b<Onxi. (A.2)

solution corresponding tp = 3.6, as expected, is indeed the

same as the one computed using (4.12) (witk- 0). Based on  The Lagrangian function associated with the problem is thus

the computed optimal modulating sequences, Fig. 14 shows the

respective channel NRMSE versus number of samflebhe  L(g, A, 1,¢) = —q g + A07 g — N) + ¥ (q — pb)

We setm = 0 without loss of generality. Lef € %%, which
is defined in (3.14), be the vector containing the squared magni-
tudes of the modulating sequence ard R%, which is defined
in (4.3), be the vector with all entries equal to one. Then, the
astrained optimization problem is

min —¢¥'q, subjecttob’ g =N, and §<q, <p

SNR is fixed at 10 dB, and the pumber of trialsfis= 100. +(T(—q+6b) (A3)
The NRMSE curve computed using the sequence (4.12) is also
shown. Fig. 14 also shows degeneration in performance asWitere A\ ¢ R,u = [uo --- pnx1]? € RV, and
upper boundg decreases toward unity. ¢=1[¢ -+ (vaa]" € RY. Let

VI. CONCLUSION q:= [p (N_p)/(N_]‘) T (N_p)/(N_l)]T (A4)

We propose a method for blind identification of FIR channeM/e will show thatg in (A.4) and, hencep(n) in (4.15) (with
with periodic modulation of source symbols. The time-domaim. = 0) satisfies the first-order necessary condition for opti-
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mality, that is, there exish € R, € RV, € RY with
it > Onx1 and¢ > Oy 1, Such that

and

Indeed, withg given in (A.4), (A.5) and (A.6) hold withh =
(N = p)/(N —1),¢F

1) 0

1)

—7 + 0"+t =T =01 (A5)

it (g — pb) + (=g + 6b) = 0. (A.6)

Defineb; =1 ---
vector

2887

APPENDIX D
PROOF OF(4.22)

1] € RE+L 1t suffices to show that the

To[D] = o2 (MIMo) ™" MTb=(h. (A9)

By definition of matrix A, [see (3.13)] and from constraint

= Onx1, andji = [N(p — 1)/(N —
()]T_ .

APPENDIX C
PROOF OFLEMMA 4.2

We first consider the casdés < m < N — L — 1.
Recall that for eaci < j < L, the matrixM; €

(4.7a), it follows immediately that

MEb = Nb,. (A.10)

Again, by definition ofA{,, it can be verified that

Mg Mo = (o= B)* - Inga
+ 208 4+ (N — 2)3%| - bTby € REFDXEHD (A 11)

RN - x(L-i+1) js obtained fromi/, by deleting its last From (A.11) and by the matrix inversion lemma [10, p. 306], it
j rows and las columns. It can be checked that eac/@n be shown that

suchif; contains an(L — j + 1) x (L — j + 1) square (MTMO)_l
: 0
submatrix (o )
2
Rj=(N(1=8) -Ip_js1+6-[1 e - 1] N 208+ (N —2)p e
(A7) (=Bt + (a—B)22a8 + (N —2)B2|(L+1) ~*
(A.12)
Sincekt; is symmetric and positive definitd/; is of full - ¢y (A.10), (A.12), and by rearrangement, (A.9) follows with
column rank. Forn = N — L(m = N — 1), it can be
checked that each associatefj has an(L — j + 1) x ¢ = No? O

2)

a = N?(1-6)?,

3)

(L — j + 1) square submatrix with all first lower (upper,
respectively) diagonal entries equalfgl—¢&)+6 and all
the other entries equal to It can be shown by induction

that these square matrices are nonsingular if and only if

6 # 0and N(1 — é) # 0. The conditions hold since
0 < 6 < 1, and hence); is of full column rank.

(a— 32+ 208+ (N -2)F2|(L+1)

APPENDIX E
FLoP COUNTS OFTHREE METHODS

The proposed algorithm is compared with the two subspace

To computgs,, for0 < m < N — L —1, with (4.12) and methods in [2], [12], and [14] in terms of computational com-
(3.13), direct multiplication shows that for eaglassoci- plexity. We define a “flop” to be a single complex multiply or ad-
ated with such am:, we have (A.8), shown at the bottomdition [8]. Assume that the channel orderis known, the length

of the page, where

of each data block i&v, and that the number of available data

blocks isK.

and J3; := 62N — (N + 5)b].

From (A.8), we know that the maximal and minimal
eigenvalues o/} M; are, respectivelyy+(L—j+1)-3;
and «. By definition, the condition number af/] M;

is thereforex; = 14+ (L — j + 1) - 3;/«, which is a
decreasing function of. Thus, by definition of.,, in
(4.16), we have,,, = ko = 1+ (L +1)39 /. The result
thus follows.

The result follows from the construction 84;. Specif-
ically, form = N — L +4,wherel < ¢ < L — 2,1t
can be checked that the matfiX; for j = i+ 1 is not of
full column rank since it has two columns both equal to
6 - &*. O

a) Proposed MethodEstimate the (Hermitian) autocorre-

lation matrix 2;(0) using (3.19); this require@K —
DN(N + 1)/2 + 1 flops. SolvingL + 1 linear least
squares problems, using the QR factorization method [7,
p. 226] required*(2N — L)/3 + L?(57N — 32L)/6 +
L(143N—67L)/6+(15N—7L/6)+5 flops. Compute an
eigenvector associated with the largest eigenvalue of the
(L+1)x (L+1) matrix ). Since@ is Hermitian and is

of rank-one, the computation of an eigenvector associated
with the largest eigenvalue can be done by fist computing
a tridiagonal form of?) using the algorithm in [7, p. 420]
followed by an inverse iteration; see ([7, p. 383]). This re-
quires4(L + 1)*/3 + 21(L +1)?/2 — 59(L +1)/6 — 6
flops.

MfMjIOé-IL_j+1 +/31[1 1]T[1

1] € READL=HD) - < j <L (A.8)
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b) Structured Subspace Method [2] and [14or1 < k <

N —-1land—L < 7 < L, estimate thé N — 1)(2L + 1)
cyclic correlation coefficients’,., (k; 7) using [14, Eq.
(20)], and this require@V —1)(2L+1)(2N K +1) flops.
Forl < k < N — 1, compute theV — 1 coefficients
L5(k) using [2, Eq. (5)], and this requiré8N — 1)(N —

1) + 1 flops. Based on [14, Egs. (15) and (17)], form the
two matricesI’(F'(c)) and P, which are, respectively, of
dimensiong3L + 1)(N —1)(N —2)/2 x (L + 1)(N —

1) and(L + 1)(N — 1) x (L + 1). Perform a matrix
multiplication to obtairil’( F'(c)) P, and the required flop
counts aréL + 1)(3L 4 1)(2N3 —9N? + 13N — 6)/2.
Compute an SVD of the matri¥'(F'(c))P, which is of
dimension(3L + 1)(N — 1)(N —2)/2 x (L 4+ 1). With
the algorithm in [7, p. 434], the approximate flop counts
for computing an SVD of am» x n matrix, when only

the singular values and an orthonormal basigbfare  [12]
required, aré4mn? + 8n?) [7, p. 239], that is[2(3L +
(N — 1)(N —2)+8(L + D])(L +1)*flops, as faras  [13]

the matrix7'(F(c)) P is concerned.

c) One Cycle Subspace Method [1Hor somel < ko <

(4]

(5]

(6]

(71
(8]

9]

(20]

(11]

N — 1, estimateC,,,(ko; 7) for —L < 7 < L, and the [14]
flop counts arg 2N K + 1). Computel(ko), and the

flop counts ar@XN + 1. Compute the matri$;, (L) with
dimension(3L.+1)x (L+1), using [12, Eq. (23)], and this  [15]

requires3L 4 1)(2L + 1) 4 (4L + 2) flops. Compute an

SVD of Sy, (L), and the approximate required flops are 14

(20L + 12)(L + 1)2.

We note the following.

i) In the subspace method [12], the flops cost required
for estimating the statistics of received data is relatively
small. This is because the method in [12] uses only the
cyclic correlation coefficients of only one nonzero cycle

(i.e., only oneC,, (ko; 7) for somekq # 0 is required).

P. Ciblat, A. Chevreuil, and P. Loubatony“repetition/modulation and
blind second order identification]EEE Trans. Signal Processingol.

48, pp. 3153-3161, Nov. 2000.

G. B. Giannakis, Y. Hua, P. Stoica, and L. Torfgignal Processing
Advances in Wireless and Mobil Communication Volume |: Trends in
Channel Identification and Equalization Englewood Cliffs, NJ: Pren-
tice-Hall, 2001.

A. Grace,Optimization Toolbox, for Use with Matlab Natick, MA:

The MathWorks, Inc., 1994.

G. H. Golub and C. F. Van LoanMatrix Computations 2nd

ed. Baltimore, MD: Johns Hopkins Univ. Press, 1989.

T. P. Krauss and M. D. Zoltowski, “Bilinear approach to multiuser
second-order statistics-based blind channel estimati®EE Trans.
Signal Processingvol. 48, pp. 2473-2486, Sept. 2000.

C. L. Lawson and R. J. HansorSolving Least Squares Prob-
lems Englewood Cliffs, NJ: Prentice-Hall, 1974.

L. Ljung, System Identification, Theory for the User€Englewood
Cliffs, NJ: Prentice-Hall, 1987.

E. Moulines, P. Duhamel, J. Cardoso, and S. Mayargue, “Subspace
methods for blind identification of multichannel FIR filters|EEE
Trans. Signal Processingol. 43, pp. 516-525, Feb. 1995.

E. Serpedin and G. B. Giannakis, “Blind channel identification and
equalization with modulation-induced cyclostationarityf?EE Trans.
Signal Processingvol. 46, pp. 1930-1944, July 1998.

A. Scaglione, B. Giannakis, and S. Barbarossa, “Redundant filterbank
precoders and equalizers. Part I: Unification and optimal design. Part
II: Blind channel estimation, synchronization, and direct equalization,”
IEEE Trans. Signal Processingol. 47, pp. 1988-2022, July 1999.

E. Serpedin, A. Chevreuil, G. B. Giannakis, and P. Loubaton, “Blind
channel and carrier frequency offset estimation using periodic modu-
lation,” IEEE Trans. Signal Processingol. 48, pp. 2389-2405, Aug.
2000.

M. Tsatsanis and G. B. Giannakis, “Transmitter induced cyclostation-
arity for blind channel equalizationJEEE Trans. Signal Processing
vol. 45, pp. 1785-1794, July 1997.

L. Tong, G. Xu, and T. Kailath, “A new approach to blind identification
and equalization of multipath channel,” Rroc. 25th Asilomar Conf.
Signals, Syst., CompuPacific Grove, CA, Nov. 1991.

Ching An Lin received the B.S. degree from the National Chiao Tung Univer-
sity, Hsinchu, Taiwan, R.O.C., in 1977, the M.S. degree from the University of
New Mexico, Albuquerque, in 1980, and the Ph.D. degree from the University

method in [14] is relatively high. This is because it reof california, Berkeley, in 1984, all in electrical engineering.

quires an SVD of the matrif’( F'(c))P (which is of di-
mension(3L + 1)(N — 1)(N —2)/2 x (L + 1)).

He was with the Chung Shan Institute of Science and Technology from 1977
to 1979 and with Integrated Systems Inc. from 1984 to 1986. Since June, 1986,
he has been with the Department of Electrical and Control Engineering, the

National Chiao Tung University, where he is a Professor. His current research

ACKNOWLEDGMENT

The authors thank Reviewer #1, whose very detailed com-
ments improve the paper.

REFERENCES

[1] K. Abed-Meraim, W. Qiu, and Y. Hua, “Blind system identification,” in

Proc. |IEEE vol. 85, Aug. 1997, pp. 1310-1322.

[2] A. Chevreulil, E. Serpedin, P. Loubaton, and G. B. Giannakis, “Blin

channel identification and equalization using periodic modulation prt
coders: Performance analysi$EEE Trans. Signal Processingol. 48,
pp. 1570-1586, June 2000.

[3] A. Chevreuil, P. Loubaton, and L. Vandendorpe, “Performance

general transmitter induced cyclostationarity precoder: Analysis bas
on MMSE-DF receiver,lEEE Trans. Signal Processingol. 48, pp.
3072-3086, Nov. 2000.

interests are in control and signal processing.

Jwo Yuh Wu was born in Tainan, Taiwan, R.O.C.,
on July 2, 1973. He received the B.S. and the M.S.
degrees, both in electrical and control engineering, in
1996 and 1998, from the National Chiao Tung Uni-
versity, Hsinchu, Taiwan, where he is currently pur-
suing the Ph.D. degree in electrical and control en-
gineering. His current research interests are in signal
processing.

Mr. Wu received the ZyXEL Communications
Corporation scholarship in 2001.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


