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Abstract

A new structure of cross-coupling controller for precise tracking in motion control is proposed in this paper. When compared
with the conventional cross-coupling system, this new structure has the advantage that the compensators in CCC have a simpler
design process than conventional ones and so does its stability analysis. The proposed compensator (or controller) is evaluated and
compared experimentally with a traditional uncoupled controller on a microcomputer controlled dual-axis positioning system. The
experimental results show that the new structure of cross-coupling controller remarkably reduces contour error. In addition, this
new controller can be implemented easily on a majority of motion systems in use today via reprogramming the reference position
command subroutine.
 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Accurate trajectory control is a fundamental require-
ment for modern manufacturing systems, which is
especially true for CNC machine tools. One can improve
any single axial positioning accuracy by applying vari-
ous control strategies such as a large P gain controller,
a feed-forward controller [1] and a ZPETC (zero phase
error tracking controller) [2]. However, good tracking
performance for each individual axis does not guarantee
the reduction of the contour error for multi-axis motion
[3]. The term ‘contour error’ representing, for example,
the deviation of the cutter location from the desired con-
tour path in a CNC machine, is defined as the error
component orthogonal to the desired trajectory. Another
method to reduce the contour error is the cross-coupling
control. Koren [4] introduced a symmetrical structure of
cross-coupling controller to improve the contour accu-
racy. In his research, he considered the whole system as
a single unit, instead of individual loops, and as a result,
the influences of load disturbances and axis mismatch
on system performance can be reduced.
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A typical cross-coupling controller essentially consists
of an algorithm to calculate the contour error and a con-
trol law to eliminate the contour error. Many control
laws such as traditional PID control [3], optimal control
[5], adaptive control [6], fuzzy logic control [7], and
robust control (QFT design algorithm) [8] have been
proposed to implement the CCC.

A typical conventional cross-coupling control system
in the literature is shown in Fig. 1, where the CCC output
is generated to modify feed drive (velocity command
type). In this figure,Ke is a scaling factor related to the
encoder resolution and gear ratio;T is the sampling
time; Pdx and Pdy are the desired axial positions and
Pax and Pay are the actual positions forX and Y axes,
respectively;Gx and Gyare the position loop gains for
each axis.Ex and Ey are the tracking errors;Cx and Cy

are variable gains related to the geometry of contour;
e is the contour error calculated by geometric relation-
ship. In the design of this type of CCC, the output of
the CCC is decomposed and then injected into the loops
in order to reduce the contour error.

The servo drives used in industry nowadays can be
classified into three types of control mode: position
mode, velocity mode, and torque mode. Each mode
gives its merit and applicability and no one is dominant.
This is why most suppliers provide these three control
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Fig. 1. A typical structure of conventional CCC motion system.

modes for application engineers to choose. Although
various control modes are available, the classical CCC,
intending to modify the command of velocity-mode feed
drive, is not able to cope with systems using the position-
mode feed drive. In order to apply this advanced control
scheme, we need a more generalized CCC structure and
this becomes the motivation of this paper. Since the con-
tour error is function of axial tracking errors, the authors
believe that the modification of the position command
is also a feasible way to reduce contour error. Specifi-
cally, the output of the new CCC for each axis will
directly feed back to modify reference position com-
mand. As will be shown in later sections, the design of
the proposed CCC will introduce a ‘contour error trans-
fer function’ , or CETF with the characteristics of a high
pass filter. Its stop band should match to the bandwidth
of the original single-axis position loop. Since the cas-
cade compensation—the most commonly used controller
configuration in industry—is adopted here for the single-
axis position loop, the cut-off frequency of CETF is
determined accordingly. The whole design procedure
and stability analysis of the proposed CCC become very
simple. Also, we will discuss the conditions of feasible
cross-coupling controller and choose the pole-placement
method to design a simple permissible PI-type CCC,
which enables us to shape the dynamics of contour error.
Additional constraints given by Jury’ s criterion will limit
the corner frequency of the CCC and allow us to find
its stable region easily.

In the following, we will first derive different contour-
error estimation equations for linear and circular con-
tours according to the geometric relations between the
desired and actual positions. The performance of cross-
coupling controller will deteriorate when a path with a
large curvature (such as a small circle) or at a high feed-
rate occurs. Therefore, a more accurate contour error
estimation equation for the circular motion is developed

here to cope with this situation. Then we will discuss
how to determine of the stable region and to use the
pole-placement method to design a PI-type compensator
in consequence. Finally, the simulations and experiments
are performed and discussed. They show a good consist-
ency with each other and confirm the effectiveness of
this CCC design.

2. Contour errors

In this section, two kinds of contouring motion are
discussed here:

2.1. Linear contour [3]

The linear contour error can be determined by follow-
ing equation:

e � �Exsinq � Eycosq � �ExCx � EyCy (1)

where q is the angle between the line and the X-axis;
Ex and Eyare the tracking errors of X and Y axes, respect-
ively.

2.2. Circular contour

The contour error for circular contour is the difference
between the actual location to the center of the circle
and the radius of the circle, and can be defined as

e � �(Rsinq�Ex)2 � (�Rcosq�Ey)2�R (2)

where q is the angle between the instantaneous tangent
at reference position and the X-axis. Eq. (2) can be
further simplified by the Taylor series expansion as

e � �Ex�sinq�
Ex

2R� � Ey�cosq �
Ey

2R� (3)

�
1

2R
(Exsinq�Eycosq)2 �

f(Ex,Ey)
R2 � …

Generally, it is true that axial tracking errors are much
smaller than the radius of circle. Thus, the high-order
terms of Ex, Ey in Eq. (3) can be neglected, resulting in
Eq. (1). The same expression of contour error estimation
for both linear and circular contours is widely adopted
before [9,10]. But in the case of small radius or high
speed circular contouring, instead of Eq. (1), the follow-
ing Eq. (4) should be used to calculate the contour error.
Otherwise, the reduction of contour error cannot be achi-
eved. This is confirmed by simulation and experiment at
section 5.

e � �Ex�sinq�
Ex

2R� � Ey�cosq �
Ey

2R�
�

1
2R

(Exsinq�Eycosq)2 � �Ex�sinq (4)

�
Excosq � Eysinq

2R
cosq� � Ey�cosq
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�
Excosq � Eysinq

2R
sinq� � �ExCx � EyCy

i.e.,

Cx � sinq�
Excosq � Eysinq

2R
cosq. (5a)

Cy �
cosq � Excosq � Eysinq

2R
sinq (5b)

Eq. (4) is valid for both the linear and circular contours,
since, for linear contour case, we can let R in the above
equation be infinity.

3. Proposed CCC structure

In this section, the contour errors for both an
uncoupled system and a cross-coupled one are
developed. For ease of presentation, the notation of velo-
city loop together with the position integrator is defined
as Lv(z�1) in Fig. 2. The forward and feedback velocity
loop controllers, Cvfw(z�1) and Cvfb(z�1), are designed
to handle the velocity performance and disturbance

rejection; Gi(s) represents
Ke

s
shown in Fig. 1, and

Gp(s) is the mathematical model of plant. Note that the
following derivations are based on Z-domain analysis,
although all (z�1)s in the argument of functions are omit-
ted for clarity in expression.

3.1. The uncoupled motion control system

A dual-axis uncoupled motion control system is
presented in Fig. 3. The contour error defined for this
uncoupled (open) system is

eo � �ExCx � EyCy. (6)

From the figure, tracking errors Ex andEyfor the two axes
can be easily obtained by following deductions:

Fig. 2. The function block notation for velocity loop and the inte-
grator.

Fig. 3. An uncoupled motion control system.

Ex � Pdx�Pax � Pdx�
GxLvx

1 � GxLvx

Pdx (7a)

�
Pdx

1 � GxLvx

Ey �
Pdy

1 � GyLvy

. (7b)

Substituting Eq. (7) into Eq. (6), we obtain the contour
error of the uncoupled system, or

eo � �ExCx � EyCy � �
CxPdx

1 � GxLvx

(8)

�
CyPdy

1 � GyLvy

.

3.2. The proposed cross-coupled motion control
system

By using the cross-coupling controller Cc to couple
the two axes, we propose the structure as shown in Fig.
4, where Pmx and Pmy are the modified position com-
mands of each axis. The cross-coupling control forms
two extra position loops, which are used to modify the
position command of each axis. Based on the concept
of cascade control, it is clear that the design of original
tracking system does not affect these two outer loops.
The following equations can be easily obtained form
Fig. 4,

e � �ExCx � EyCy (9)

Ex � Pdx�Pax �
Pdx � eCcCxGxLvx

1 � GxLvx

. (10a)
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Fig. 4. The proposed structure of cross-coupled control system.

Similarly,

Ey �
Pdy�eCcCyGyLvy

1 � GyLvy

. (10b)

Substituting Eq. (10) into Eq. (9), we obtain

e � �ExCx � EyCy � �
CxPdx � eCcC2

xGxLvx

1 � GxLvx

(11)

�
CyPdy�eCcC2

yGyLvy

1 � GyLvy

.

Rewrite Eq. (11) to obtain e as

e �
�(1 � GyLvy)Cx

�
Pdx �

(1 � GxLvx)Cy

�
Pdy (12)

in which

� � (1 � GxLvx)(1 � GyLvy) � CcC2
xGxLvx(1 (13)

� GyLvy) � CcC2
yGyLvy(1 � GxLvx).

Substituting Eq. (12) into Eq. (10), we get the following
results, or

Ex �
Pdx

1 � GxLvx

�
CcC2

xGxLvx(1 � GyLvy)
(1 � GxLvx)�

Pdx (14a)

�
CcCxCyGxLvx

�
Pdy

Ey �
Pdy

1 � GyLvy

�
CcC2

yGyLvy(1 � GxLvx)
(1 � GyLvy)�

Pdy (14b)

�
CcCxCyGyLvy

�
Pdx.

Comparing Eq. (14) to Eq. (7), we find the last two terms
in Eq. (14) are induced by cross-coupling control. If gain
of Ccis small, the CCC will not influence the tracking

performance. How to design Cc to keep good contouring
performance will be discussed in the following section.

4. Design of the compensator of CCC

4.1. Design a PI compensator

Examining Eqs. (8) and (12), we can obtain the
relationship between the contour errors of the coupled
and un-coupled system, or

e �
(1 � GxLvx)(1 � GyLvy)

�
eo. (15)

Furthermore, Eq. (15) can be rearranged as,

e �
1

1 � CcP
eo (16)

where

P �
C2

xGxLvx(1 � GyLvy) � C2
yGyLvy(1 � GxLvx)

(1 � GxLvx)(1 � GyLvy)
. (17)

�
C2

xGxLvx

1 � GxLvx

�
C2

yGyLvy

1 � GyLvy

The similar functional relationship
1

1 � CcP
between the

coupled and uncoupled systems is defined as the contour
error transfer function (CETF) in Yeh and Hsu’s
research [8]. In order for us to design Cc, understanding
‘what is P?’ is the first thing to do. By the rule of the
cascade control, once the velocity controllers in Fig. 4
is tuned appropriately (i.e., the bandwidth of velocity
loop is at least three times larger than that of the position
loop and the step response behaves no oscillation), the
velocity control loop can be simplified as unit gain, and

Lvx � Lvy �
T

1�z�1. (18)

To simplify our analysis, let Gx � Gy � G, i.e., the two
axes have almost matched dynamics. We further define

Gv � C2
x � C2

y (19)

For linear contour, from Eq. (1) we get

Gv � C2
x � C2

y � sin2q � cos2q � 1. (20)

For circular contour, if tracking errors Ex and Ey are
much smaller than the radius of curvature R, from Eq.
(1), we get

Gv � C2
x � C2

y � 1. (21)

For small radius circular motion, from Eq. (5), we get

Gv � C2
x � C2

y � 1 � �Excosq � Eysinq
2R �2

. (22)
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Although the second terms in Eq. (5) play an important
role in contour error estimation under certain circum-
stances which will be shown in section 5, it is convenient
in the controller design phase to approximate Gv in Eq.
(22) to one. Thus, Eq. (17) can be reduced to

P �
G T Gv

1 � GT�z�1. (23)

When a matched but uncoupled system tracks a line
or circle, the contour error will approach a constant after
transience. Even if the dynamics of the two axial pos-
itioning systems are not so matched, the major part of
contour error still behaves like a low frequency signal.
In order to reduce the steady-state contour error or the

low frequency components, the CETF, or
1

1 � CcP
, is

required to have a very low gain at low frequency range,
which amounts to requiring |CcP| be maximum at low
frequency range. The simplest way is to let the control-
ler Cc contain an integrator, resulting in the general form

of
Q(z�1)
1�z�1, where Q(z�1) is used to shape the CETF

further to meet the designer’ s requirements. Since the P
is a first order rational function, the added integrator will
make CETF become a second order system. The per-
formance of this kind of system can be specified easily
by two parameters. In consequence, a PI controller is
chosen as the CCC compensator for the contour error
correction, i.e., Q(z�1)contains only one zero (In Appen-
dix A, the requirement and conditions forCc(s), F(s) and
P(s) are discussed in detail). The generalized character-
istic equation in Eq. (16) can be expressed as follows,

1 � Cc

GTGv

1 � GT�z�1 � 0. (24)

Let Kcp,Kci be the proportional and integral controller
gains respectively, then this standard discrete time con-
troller can be expressed as

Cc(z�1) � Kcp � Kci

1
1�z�1. (25)

By substituting Eq. (25) into (24), characteristic equation
is rewritten as

D(z) � z2�
2 � GT � GTGvKcp

1 � GT � GTGv(Kcp � Kci)
z (26)

�
1

1 � GT � GTGv(Kcp � Kci)
� 0.

For this second order system, we can design it by the
pole-placement method. Let x, wn be the two parameters
similar to damping ratio and natural frequency of a stan-
dard second order system, then the parameters of this
compensator are

Kcp �
2(ezwnT·cos(T·wn�1�z2)�1)�GT

GTGv

(27)

Kci �
e2zwnT�2ezwnT·cos(T·wn�1�z2) � 1

GTGv

. (28)

4.2. Stability analysis

The definition of BIBO stability as mentioned in
books written by Yeh [11] or Goodwin etc. [12] is: ‘For
internally connected systems, the input signals are
injected into each internal connection point to result in
the mixed output signals. The internally connected sys-
tems are internally stable if the set of all input signals
and output signals are bounded-input–bounded-output
(BIBO) stable.’ For our proposed structure shown in Fig.
4, suppose the individual axial tracking system is
designed internally stable by cascade control, and in
consequence its open-loop contour error is bounded.
From Eq. (16), the closed-loop contour error is bounded
if the CETF is stably designed. Also, the compensation
component injected into each axis is bounded if the com-
pensator of CCC (PI-type for our case) is stably
designed, which always does in realization. Addition-
ally, Ex and Eyare all bounded because of bounded inputs
(command plus or minus compensation component) and
individual stable axial tracking system. This point can
also be clearly observed from Eq. (10). It is concluded
from the above statement that the proposed cross-coup-
ling motion system is stable if (1) the individual axial
tracking system is stable, (2) the compensator of CCC
is stable, and (3) CETF is stable. Note that CETF plays
an important role in stability analysis and controller
design, which is pictorialized in Fig. 5.

Fig. 5. The equivalent contour error of the cross-coupled control sys-
tem.
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The cut-off frequency of the CETF is chosen to match
to the bandwidth of position loop (see appendix), i.e., at
least less than 1/3wvel, where wvel is the bandwidth of
the velocity loop (the inner loop). Furthermore, in order
to get a no oscillatory response, the parameter x should
be chosen between 0.707 and 1. For this second-order
system, the relation between CF (cut-off frequency) and
x, wn is CF � wn[(1�2x2) � √4x4�4x2 � 2]1/2. Let the
parameter x be one, then the CF will be about 0.6wn

[13]. Under constraint of wn and let x be one, we can
obtain the limitations of the compensator as

Kcp�

2�e
wvelT

1.8 �1��GT

GTGv

(29)

Kci�
e

2wvelT

1.8 �2e
wvelT

1.8 � 1

GTGv

. (30)

We can analyze the stability of the CETF by the Jury’ s
test on characteristic equation defined in Eq. (26). Sys-
tem will be stable if |P(0)| � 1, P(1) � 0, and P(-1)
� 0, which result in following three constraints

Kcp � Kci � �
1

Gv

(31)

Kci � 0 (32)

2Kcp � Kci �
�4�2GT

GTGv

. (33)

From Eqs. (20)–(23), without loss of generality, we can
let Gv � 1 in all equations. Fig. 6 shows the stable
region bounded by Eqs. (29)–(33).

Fig. 6. The bounded area for a stable PI CCC design.

5. Simulation and experimental results

A retrofitted milling machine is used to test the track-
ing performance of our proposed controller. The motion
system shown in Fig. 7 comprises two torque-mode feed
drives, 2:1 timing belts and pulleys, ball-screws and
guide-ways, a motion card and a personal computer. This
experimental servo system is built up in a so-called
semi-closed loop, i.e., feedback signal is from the enco-
der of servomotor. We use a PI velocity controller to
handle the velocity loop control and a proportional gain
in the position loop. The system modeling, identification
and multiple loop design followed the previous work by
the authors [14]. Both the simulation and experiment are
performed to validate the proposed design. Two CCC
designs are given for comparison, i.e.,

CCC1: x � 1, wn � 16 Hz (about 1/3 wvel)
CCC2: x � 1, wn � 8 Hz (about 1/6 wvel)

The corresponding Bode plots of CETF having high-
pass characteristics for these two designs are shown in
Fig. 8. It is clear from this figure that the wider the cut-
off frequency of CETF is, the better attenuation of con-
tour error can be achieved at low frequency. However,
a wider cut-off frequency of CETF also corresponds to

Fig. 7. The schematic diagram of the experimental setup.
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Fig. 8. The Bode diagram of CETF.

a larger gain and a wider corner frequency of this PI-
type cross-coupling controller, which may magnify the
measurement noise. To compromise the effect of cross-
coupling control and the influence of measurement noise,
the cut-off frequency, or the stop band, of the CETF is
chosen the same as bandwidth of the position loop.

Since the axial tracking controller is designed follow-
ing the rule of multi-loop cascade control, there is nearly
no servo mismatched between the two axes. No contour
error for linear contouring motion will exist. Therefore,
in the following discussions, we will focus on the circu-
lar contour. For comparison, the results of simulations
or experiments for three different cases are shown in one
figure, where ‘1’ represents result of contour motion
without CCC compensation and, ‘2’ and ‘3’ denote the
results of contour motion with CCC1 and CCC2,
respectively.

5.1. Circular motion with large radius

Two cases are conducted for comparison. The resol-
ution of encoder is used as the basic unit length (BLU).

(1) R � 50 mm (2 × 105BLU), Feedrate � 2.64 m/min
(circular frequency � 0.14 Hz)
(2) R � 50 mm (2 × 105BLU), Feedrate � 7.5 m/min
(circular frequency � 0.4 Hz)

In the simulation and experimental studies, the refer-
ence commands pass through an
acceleration/deceleration (Acc/Dec) mechanism [15]
before fed into the servo loop. This Acc/Dec mechanism
can provide a smooth motion profile to avoid undesirable
vibration. But it will also induce contour error during
transient periods at the initial and final moments. Once
the transient response dies out, the proposed method
generates very good results.

In case (1), since the tracking error is much smaller
than the radius (the tracking error is about 3% of the
radius), we obtain similar results by using the Eq. (1) or
Eq. (4) in contour errors calculation. The simulation and
experimental results in Fig. 9 confirm this point. How-
ever, the increase of feedrate will degrade the perform-
ance when Eq. (1) is used to estimate contour error, such
as in case (2) where the tracking error is about 8% of
the radius. The CCC needs a more accurate estimate of
contour error obtained from Eq. (4) to perform the con-
tour control. Fig. 10a shows that using Eq. (1) does not
give the convergence of contour error, whereas using Eq.
(4) does as shown in Fig. 10b. The experimental results
are presented in Fig. 10c.

5.2. Circular motion with small radius

There are two cases for this comparison,

(3) R � 2.5 mm (1 × 104BLU), Feedrate � 0.75
mm/min (circular frequency � 0.8 Hz)

Fig. 9. Results of case (1): (a) Result of simulation, (b) Result of
experiment.
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Fig. 10. Results of case (2): (a) simulation with Eq. (1), (b) simul-
ation with Eq. (4), (c) experiment with Eq. (4).

(4) R � 2.5 mm (1 × 104BLU), Feedrate � 3 mm/min
(circular frequency � 3.2 Hz)

In case (3), since the tracking error is not very small
when compared with the radius (the tracking error is
about 16% of the radius), we use Eq. (4) in calculating

the contour errors. The simulation and experimental
results are shown in Fig. 11. When the feedrate is
increased such as in case (4), the tracking error becomes
about 53% of the radius. The results shown in Fig. 12
demonstrated the effectiveness of our proposed design.

6. Conclusion

Combined with multiple-loop cascaded control design
method, a new CCC structure with compensation at its
reference position command is presented here, so is its
stability analysis. Since the new structure allows the
CCC to directly compensate the reference position com-
mands of both axes, it has the potential to be integrated
into any kind of axial tracking controller. In this paper,
a simple proportional position-loop controller is used to
demonstrate the feasibility of this kind of integration.
The concept of contour error transfer function is adopted
and the pole-placement method is used to design a PI-
type CCC compensator. If a more sophisticated control-

Fig. 11. Results of case (3): (a) simulation, (b) experiment.



1547Y.-T. Shih et al. / International Journal of Machine Tools & Manufacture 42 (2002) 1539–1548

Fig. 12. Results of case (4): (a) simulation, (b) experiment.

ler is employed in the position loop to improve single
axial positioning accuracy or measurement noise is much
concerned, Q(z�1) in Cc should be further shaped such
as adding more poles. Simulation and experimental
results of our study both show that this dual-axis motion
control system can achieve satisfactory contouring accu-
racy under different motion conditions, such as large
feedrate or small radius of curvature cases. Although it
is not shown in this paper for general nonlinear path,
Eq. (4) still valid if (R,q) are calculated on line, since
an arc can approximate nonlinear path locally. This new
controller can be easily implemented on a majority of
motion systems in use today via reprogramming the ref-
erence position command subroutine only without any
change in hardware of the motion systems.
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Appendix A

Discussion of a PI Controller as a Permissible
Controller for CCC

Without loss of the generality, the discussion in this
appendix is performed on S-domain. However, the
implementation in the context is performed in discrete
time or Z-domain. In the following, we will discuss the
requirement and conditions forCc(s), F(s) and P(s) and
show that PI controller is a permissible cross-coupling
controller.

The frequencies of contours under control are within
the low frequency range as compared with the bandwidth
of the servo system. In order to reduce the steady-state
contour error or those low frequency components, the

contour error transfer function (CETF), or
1

1 � CcP
, is

required to have a very low gain at low frequency range,
which amounts to requiring |CcP| be maximum at low
frequency range. Rewrite the CETF function in S-
domain, we obtain

F(s) �
1

1 � Cc(s)P(s)
. (A1)

The corresponding Bode plot of CETF will have high
pass characteristics, i.e., F(0)→0. From Eq. (A1), we
obtain Eq. (A2) as

F(s) � F(s)·Cc(s)·P(s) � 1 (A2)

and the conditions at low and high frequencies will be

F(0) � F(0)·Cc(0)·P(0) � 1 (A3a)

F(�) � F(�)·Cc(�)·P(�) � 1 (A3b)

The plant P(s) is user-designed and has low-pass charac-
teristics, or,

P(0) � const (A4a)

P(�) → 0 (A4b)

Because the compensator Cc(s) directly handles data
including possible measurement errors, it should have
low gain at high frequency to avoid amplifying the high
frequency noise. And from the viewpoint of implemen-
tation, Cc(s)should be a proper or bi-proper function and
thus Cc(�) is finite. Substitute these known conditions
and apply them to Eq. (A3), we obtain the following
equations easily,

F(0)→0 (A5a)
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F(�) � 1 (A5b)

and

Cc(0)→� (A6a)

Cc(�) is finite (A6b)

F(�) � 1 implies that F(s) is a bi-proper function, other-
wise, F(s) will diverge as s→�. From Eq. (A1), Cc(s)
can be represented as

Cc(s) �
1�F(s)

F(s)·P(s)
�

1�
Nf(s)
Df(s)

Nf(s)
Ff(s)

·
Np(s)
Dp(s)

(A7)

�
Dp(s)·(Df(s)�Nf(s))

Nf(s)·Np(s)
�

(Df(s)�Nf(s))
Nf(s)

·P�1(s)

where F(s) �
Nf(s)
Df(s)

and P(s) �
Np(s)
Dp(s)

, and Nf(s), Df(s),

NP(s) and Dp(s) are polynomials. Cc(s) is required to be
stable, thus, NP(s)and Nf(s) should not have roots with
positive real portions; that is, both F(s) and P(s) are of
non-minimum phase. Also, since F(s) is a bi-proper
function and F(�) � 1, the relative degree of
Df(s)�Nf(s)

Nf(s)
will be at least one, and generally be one.

From Eq. (A7), the relative degree of P(s) will be
required to be one or less. It is true in our case, since P(s)
is designed by cascade control to be a first order system.

When P(s) is determined and fixed, we can see from
Eq. (A1) that the cut-off frequency of F(s) is related to
the magnitude of Cc(s) at that frequency. In theory, the
larger the cut-off frequency of F(s) is, the better per-
formance the CCC system has. But a larger one will
cause the design of the magnitude of Cc(s) becomes
larger at corresponding larger cut-off frequency. It will
induce noise problem and degrade the performance of
the system. To compromise the control effect of cross-
coupling controller with the influence of measurement
noise, the cut-off frequency, or the stop band, of the
CETF is suggested to be the same as bandwidth of the
position loop.

The simplest controller Cc(s) that matches above
requirements is a pure I controller. In this paper, a PI

controller is chosen as the CCC compensator for its ease
on determining the transient response of the contour
error correction. Other forms of controller are possible
if the constraints of Eqs. (A5) and (A6) are satisfied.
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