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Abstract

A program in FORTRAN 90 is developed which can adjust relative gravity measurements and solve for gravimeter

parameters using the weighted constraint and datum-free constraint models. The weighted constraint model is chosen

when there exist reliable a priori gravity values for use as supplementary data, or when it is required that a gravity

network be attached to an existing gravity network of a higher order. The datum-free model uniquely determines

relative gravity values among all stations without the need of a fixed gravity value, thus it is suitable for detecting

relative gravity change. The optional solve-for gravimeter parameters include drift coefficients, and coefficients of the

long wavelength and periodic components of calibration function. The program can also detect outliers in observations

using the t-test method. A set of relative gravity data in Taiwan was used to test this program using five different

choices of command-line arguments. The results show that there are no outliers in these data and that the estimated

reading accuracy of the LaCoste and Romberg G meter (serial number 838) is about 0.02mgal and the gravimeter drift

rate is 0.9mgal/month. The coefficients of the long wavelength and periodic components of calibration function are

statistically equal to zero. The result from the datum-free solution is used to detect gravity variation due to the 1999

Chi-Chi earthquake, concluding that only one station experiences a significant change.r 2002 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Relative gravity measurements are fundamental ob-

servations for determining gravity values. It is a

common practice to collect redundant observations to

ensure a better quality of gravity determination, and

hence gravity measurements need to be adjusted using

adequate mathematical and stochastic models. Gravity

measurements may contain gross, random and systema-

tic errors. Systematic errors are primarily due to

gravimeter drift and unmodeled calibration factors of

instrument reading (e.g., Torge, 1989). In some cases,

outliers (gross errors) are hidden in the data, and failure

to detect them will result in a false determination of

gravity values. Methods for adjusting observations and

detecting outliers are abundant in the geodetic literature,

e.g., Baarda (1966), Koch (1987), Caspary (1988), and

Dudewicz and Mishra (1988). Specific methods for

adjusting relative gravity measurements and estimating

gravimeter parameters can be found in, e.g., Torge

(1989), Lagios (1983), and Jiang et al. (1988).

This paper will first address the problem of rank

defect in adjusting relative gravity measurements and

then present two adjustment models. One model is called

the weighted constraint model, which introduces a priori
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gravity values at given stations as constraints. The other

model is called the datum-free model, which employs a

datum-free constraint. Methods for detecting outliers

will also be presented. Both adjustment models allow the

solution of gravimeter parameters such as drift coeffi-

cients and coefficients of periodic components. As a case

study, relative gravity data collected in a recent survey

campaign in Taiwan will be used to test the adjustment

program. This survey campaign is primarily for deter-

mining whether gravity changes have occurred at 16

gravity stations in Taiwan after the Chi-Chi earthquake,

which has a magnitude of 7.3 on the Richter scale (Wang

et al., 2000) and occurred on September 21, 1999.

All programs described in this paper are coded in

FORTRAN 90.

2. Adjustment theory

2.1. Observation equation of relative gravity

measurement

A reading of a relative gravimeter, l; at a gravity

station, z; after multiplying by a conversion factor and

correcting for environmental effects (e.g., solid earth

tide, ocean tide, air pressure, etc.; see, e.g., Torge, 1989),

can be used to form the following observation equation:

lðtÞ þ v ¼ gþN0 þ DF ðzÞ þDðtÞ; ð1Þ

where t is the time of measurement; lðtÞ the observed

gravity value from multiplication of the counter reading

(z) by a calibration factor and corrected for environ-

mental effect; v the residual of lðtÞ; g the gravity value at

the station; N0 the constant bias; DFðzÞ the calibration

function to correct for the error in reading calibration

factor; z the gravimeter reading, in counter units (CU);

DðtÞ the drift of gravimeter.

For the stochastic modeling, DF ðzÞ and DðtÞ in Eq. (1)

are termed ‘‘systematic errors’’ due to the gravimeter.

Mathematical models for DF ðzÞ and DðtÞ are well

established in the literature. In this paper, DFðzÞ is

modeled as (Torge, 1989)

DF ðzÞ ¼
Xr

l¼1

blz
l þ

Xs

l¼1

ðxl cosol zþ yl sinol zÞ; ð2Þ

where bl ; xl ; yl are coefficients, ol is the frequency of the

reading z; and r; s are the numbers of terms to model.

The first term on the right side of Eq. (2) is called the long

wavelength component, and the second term called the

periodic component. For the LaCoste and Romberg G

gravimeter, the frequency ol can be found in, e.g., Krieg

(1981), and Jiang et al. (1988). Furthermore, the drift of a

gravimeter DðtÞ can be modeled by a polynomial as

DðtÞ ¼
Xa
p¼1

dpðt� t0Þ
p; ð3Þ

where t0 is an initial epoch and a is the degree of

polynomial (a depends on the gravimeter characteristics,

but rarely exceeds 2). The relative gravity observation

between stations i and j; Dlij ; is then

Dli;j þ vi;j ¼ gj � gi þ ðDF ðzjÞ � DF ðziÞÞ

þ ðDðtjÞ �DðtiÞÞ; ð4Þ

where vi;j is the residual of Dlij ¼ lj � li; and ti; tj are the

measurement times. In Eq. (4), N0 has been eliminated

due to subtraction. Assuming that there are n measure-

ments, the matrix representation of the observation

equations is

Lb þ V ¼ AX; ð5Þ

where Lb is an n� 1 vector of relative gravity measure-

ments, weight matrix is P; V the n� 1 vector of residuals;

A the design matrix; X a u� 1 vector of unknowns, i.e.,

gravity values gi and gravimeter parameters bl ; xl ; yl and
dp for modeling DF ðzÞ and DðtÞ and u is the number of

unknowns.

2.2. Least-squares adjustment by weighted constraint

The standard least-squares solution of Eq. (5) can be

obtained by requiring

f ¼ VTPV ¼ a minimum; ð6Þ

where f is the target function. Using qf=qX ¼ 0; one
obtains the normal equations

ATPAX ¼ ATPLb or NX ¼ U: ð7Þ

Solution of X using Eq. (7) is not possible without

constraints because A (or N) has a rank defect of 1,

which can be explained below. First, let the unknown

vector X be split into the gravity-related part and the

gravimeter-related part, so that

X ¼
Xg

XI

" #
; ð8Þ

where Xg contains gravity values gi and XI contains

gravimeter parameters bl ; xl ; yl and dp: One can find a

non-zero vector y fulfilling

Ay ¼ 0: ð9Þ

By inspecting Eq. (4) and the structure of A; one finds

yT ¼ c 11?1|ffl{zffl}
k

00?0|ffl{zffl}
u�k

2
4

3
5; ð10Þ

where c is an arbitrary non-zero constant, k is the

number of gravity values and u� k is the number of

gravimeter parameters. Thus, y is the only element of the

null space of the column vectors of A (Lancaster and

Tismenetsky, 1985). So the u� u matrix ATPA has a

rank of (u� 1) and is not positive definite. Thus, there is
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an infinite number of solutions of X; which are all

statistically biased (e.g., Koch, 1987).

In order to obtain a solution of X; one must hold fixed

at least one gravity value during the adjustment, i.e.,

introduce a gravity datum (or a constraint). The

introduction of constraint can be generalized if more

than one a priori gravity value is given in the network,

i.e., the a priori gravity values can be treated as

additional observations so that

Lg þ Vg ¼ AgX ¼ I 0
� � Xg

XI

" #
; ð11Þ

where Lg contains a priori gravity values with weight

matrix Pg and is treated as additional observation vector

with residual vector Vg and covariance matrix Rg: In
Eq. (11), Pg is a diagonal matrix. Each of the diagonal

elements in Pg can be: (1) infinite, which means the

corresponding a priori gravity value will not be changed

after the adjustment, (2) zero, which means the

corresponding a priori gravity value is free for determi-

nation, and (3) the inverse of variance of the a priori

gravity value. That all diagonal elements of Pg are zero

is not acceptable, because this will render the same

normal equations as in Eq. (7).

Eqs. (5) and (11) can be used to form augmented

observation equations as

V ¼
V

Vg

" #
¼

A

Ag

" #
X�

Lb

Lg

" #
ð12Þ

with weight matrix=diag (P;Pg). By minimizing the new

target function

%f ¼ VTPVþ VT
gPgVg; ð13Þ

one obtains the following new normal equations:

ðATPAþ AT
gPgAgÞX ¼ ðATPLb þ AT

gPgLgÞ: ð14Þ

Now the normal matrix is positive definite and the

estimate of X can be computed by

#X ¼ ðATPAþ AT
gPgAgÞ

�1ðATPLb þ AT
gPgLgÞ: ð15Þ

After solving X; the residual vector V is then

estimated by Eq. (12), and the corrected observations

of relative gravity are computed by #L
a
¼ Lb þ V: The a

posteriori variance of unit weight is computed as

#s20 ¼
%f

nþ r� u
; ð16Þ

where r is the number of non-zero diagonal elements in

Pg: The a posteriori covariance matrix of #X is

#R #X
¼ #s20ðA

TPAþ AT
gPgAgÞ

�1: ð17Þ

This is called weighted constraint adjustment of relative

gravity measurements. The a priori gravity values with

non-zero weights are called constraining values. From

the definition of Ag and Pg; it is clear that A
T
gPgAg is also

a diagonal matrix, whose non-zero diagonal elements

are just the weights of the a priori gravity values. If there

is only one constraining gravity value, the adjustment is

called minimum constraint adjustment.

2.3. Least-squares solution by datum-free constraint

Another method to overcome the rank defect problem

in solving Eq. (7) is to introduce the so-called datum-free

constraint without the need of any a priori gravity

values:

STX ¼ 0; ð18Þ

where S is a vector satisfying the condition (Koch, 1987;

Caspary, 1988)

AS ¼ 0: ð19Þ

Thus the S vector is equal to y in Eq. (10). For

simplicity, we may set c ¼ 1 in Eq. (10) to get

ST ¼ 1 1 ? 1 0 0 ? 0
� �

: ð20Þ

With Eq. (5) as the observation equations, the least-

squares solution of X; subject to the constraint in

Eq. (18) is (Caspary, 1988; Koch, 1987)

#X
þ
¼ ðATPAþ SSTÞ�1ATPLb: ð21Þ

The a posteriori variance of unit weight is

#s20 ¼
VTPV

nþ 1� u
: ð22Þ

With Eq. (21) and the covariance matrix of Lb; #s20P
�1;

the a posteriori covariance matrix of Xþ can be obtained

by covariance propagation:

#S #x
þ ¼ #s20ðNþ SSTÞ�1NðNþ SSTÞ�1 ¼ #s20N

þ; ð23Þ

where Nþ is the pseudo-inverse of N (e.g., Caspary,

1988). It can be shown that the trace of Nþ is the

minimum among all generalized inverse of N: Because of
this property, the solution by Eq. (21) is called the

minimum-trace solution. In addition, the solution in

Eq. (21) is also called minimum norm solution because

the norm 8Xþ8 is minimum among all possible

solutions.

Eq. (18) can be written as

S
k

i¼1
#gi ¼ 0 ð24Þ

which means that the average of the estimated gravity

values is zero. To have a practical use of the solution of

Xþ; we recall that the residual vector V is estimable (or

unique) and hence Lb þ V; which contains the corrected

observations, is also estimable without bias. This means

that A Xþ ¼ Lb þ V is estimable. Recalling that

#X
þ
¼

#X
þ
g

#X
þ
I

2
4

3
5 ð25Þ
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and the definition of A matrix (see Eqs. (4) and (5)), it is

clear that the difference between any two estimated

gravity values (by Eq. (21)) is estimable. With this

understanding, the procedure of datum-free adjustment

is then: (a) solve Xþ by Eq. (21), (b) compute the

difference in gravity between any station and a station

with a known gravity value using the estimated values in

Xþ; and (c) for each of the stations add the difference

from (b) to get the desired gravity value at the station.

The gravimeter parameters are also uniquely determined

by the adjustment.

The advantages of using datum-free adjustment are

(a) The residuals and corrected observations can be

uniquely determined without using any datum

constraints such as in Eq. (11).

(b) Relative gravity between two stations can be

uniquely determined without datum constraints,

thus allowing for monitoring relative gravity

change.

2.4. Global model test and detection of outliers

The least-squares method is not resistant to outliers in

the data, which causes false results in adjustment

computations. The choice of mathematical and stochas-

tic models may be incorrect, again leading to false

results. Therefore, a global model test must be

performed as a routine part of the adjustment.

Specifically, if the following condition is met, then the

adjustment model is correct and complete:

w2 ¼
R

s20
ow2cð1� a; mÞ; ð26Þ

where s20 is the a priori variance of unit weight, R ¼ f
(for datum-free) or R ¼ %f (for weighted constraint), and

w2cð1� a;mÞ is the critical value of w2-distribution when

the confidence level of the model test is (1� a) and the

degree of freedom of adjustment is m: (Note: a is called

significance level and is the probability of committing a

Type I error). If the condition in Eq. (26) is not met, one

should check whether the mathematical and stochastic

models are adequate, as well as whether outliers exist in

the data. An approximate formula of w2cð1� a;mÞ is

given by Koch (1987)

w2cð1� a; mÞ ¼ m x1�a
2

9m

� �1=2

þ1�
2

9m

" #3

; ð27Þ

where x1�a is computed by (for 0oao0:5)

x1�a ¼ t�
2:515517þ 0:802853tþ 0:010328t2

1þ 1:432788tþ 0:189269t2 þ 0:001308t3

ð28Þ

and t ¼ ½2 lnð1=aÞ�1=2:

Several methods can be used to detect outliers in

observations, e.g., Baarda’s data snooping technique

(Baarda, 1968) and Pope’s t-test method (Pope, 1976).

According to Caspary (1988), these two methods are all

efficient in removing outliers. In this paper, Pope’s t-test
method is adopted. Pope’s t-test method requires the

covariance matrix of residuals, which can be easily

obtained by covariance propagation. First, Eq. (12) can

be expressed as

V ¼
A

Ag

" #
%N
�1

ATP AT
gPg

� �
� I

h i Lb

Lg

" #

¼ G
Lb

Lg

" #
; ð29Þ

where N ¼ ATPAþ AT
gPgAg: Thus the covariance ma-

trix of the combined residual vector z ¼ V Vg

� �T
in

the weighted constraint solution is

Sz ¼ #s20G
P�1 0

0 P�1
g

" #
;

GT ¼ #s20
P�1 � AN

�1
AT �AN

�1
AT

g

�AgN
�1
AT P�1

g � AgN
�1
AT

g

2
4

3
5: ð30Þ

In the datum-free solution, the residual vector can be

expressed as

Vþ ¼ ½AðNþ SSTÞ�1ATP� I�Lb ¼ KLb: ð31Þ

Using the fact that AS ¼ NS ¼ 0 and matrix equal-

ities (e.g., Lancaster and Tismenetsky, 1985), the

covariance matrix of Vþ is

SVþ ¼ #s20KP
�1KT ¼ #s20ðP

�1 � ANþATÞ

¼ #s20 P�1 � AðNþ SSTÞ�1AT
� �

: ð32Þ

Let vi be the residual of the ith observation. From

Eq. (30) or (32), the standard error of vi; svi ; can be

computed. If

vij j
svi

> tc 1�
a
n
; 1;m

� �
ð33Þ

then the ith observation is an outlier. In Eq. (33), n is

again the number of observations, a and m are the same

as those in Eq. (26), and tc is the critical t value

computed with a confidence level of ð1� a=nÞ and

degrees of freedoms of 1 and m (Pope, 1976). A Fortran

subroutine to compute tc can be found in Pope (1976).

For the weighted constraint solution, the test in Eq. (33)

can be used to see whether the constraining gravity

values are reasonable and do not damage the result. A

constraining value whose residual satisfies Eq. (33)

should be removed from the list of constraints.
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2.5. Test of gravity change

In this paper, gravity changes due to the Chi-Chi

earthquake of Taiwan will be investigated. Here, a

testing hypothesis is needed to test whether gravity

change is statistically significant at a given station. The

testing procedure below is derived from the general

hypothesis test in the Gauss–Markoff model, see, e.g.,

Koch (1987) and Caspary (1988). Let g1 and g2 be

the gravity values measured at two different epochs at

the same gravity station. To test whether g1 and g2 are

statistically different, namely, the gravity value has

changed from one epoch to another, one can employ the

following hypothesis test:

Null hypothesis H0: g2 � g1 ¼ 0;
Alternative hypothesis H1: g2 � g1a0:
If the test statistic T satisfies

T ¼
g2 � g1j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ s22

q > tcð1� a; mÞ; ð34Þ

then H0 is rejected and the change (g2 � g1) is

statistically significant. A typical value of a is 0.05. In

Eq. (34), s1 and s2 are the standard errors of g1 and g2;
respectively, m is the sum of the degrees of freedom in

determining g1 and g2; and tcð1� a;mÞ is the critical

t-value when the two-tailed significance level is a and the

degree of freedom is m: In many cases, the previous

gravity value g1 was determined long time ago and the

method to compute g1 is unclear, thus the degree of

freedom and the standard error associated with g1
cannot be well estimated and the testing result can be

unreliable.

3. FORTRAN 90 programs for adjustment and test of

gravity change

A program, called gravnet.f90, in FORTRAN 90 is

developed for adjustment of relative gravity measure-

ments and estimation of gravity values and gravimeter

parameters using weighted and datum-free constraints

(Section 2.2 and 2.3). This program accepts command-

line arguments and is suitable for the UNIX environ-

ment and the Microsoft DOS mode. A description of

this program, which also appears as comments in the

program unit, is presented below:

Name

gravnet-adjust relative gravity measurements and esti-

mate gravities and gravimeter parameters, in FOR-

TRAN 90

Synopsis

gravnet –Dname1.obs –Nname2 [-Aid –Ccdegree –

Ffixed stn file –Lsignificance level –Mmodel –Pperiod

file -Tdegree-Smjd0]

Description

D file of observations

N ‘‘name2’’ will be used as the prefix of the following

output files:

name2.gra: estimated gravity values and standard

deviations

name2.met: gravity meter drift and calibration

parameters

name2.res: residuals of observations and test result

name2.err: outliers (gross errors)

name2.sta: summary of residuals and standard

deviations of estimated gravities

name2.his: histogram of residuals

Options

A use id th station as the starting gravity for-M1–F

[default: 1]

C model long wavelength calibration function up to

degree cdegree, see ‘‘P’’; will model only long

wavelength part if P is not specified

[default: do not model calibration function]

F file of fixed stations, contains station name, gravity

value and standard deviation when choosing weighted

constraint model, this option must be activated

L significance level of global model test and t-test
of observations (typically 5%)

M type of adjustment model. 1= datum-free,

2= weighted constraint [default: 1]

P model the periodic components of calibration

function. This file contains the periods (in CU)

of the functions to be modeled.

[default: no such components]

S initial epoch in modified Julian Day (MJD)

for modeling drift [default: MJD at the first

measurement time]

T polynomial degree of gravity meter drift [default: 1]

Important notes on program gravnet.f90 are

(1) The contents of the file of relative gravity

measurements are

Record 1: maximum possible number of gravity

stations

Record 2: additional information

Record 3 to last record: All contain starting station

(start), ending station (end), difference (mGal), MJD

(start), MJD (end), reading (start), reading (end),

standard error of difference (mGal).

Here readings are in CU, MJD at measurement time

(see, e.g., Seeber, 1993), and difference (Dlij in Eq. (3)) is

relative gravity measurement as obtained by differencing

the reduced gravity values at the ending and starting

stations. Subroutine DATE2MJD in gravnet.f90 will

compute MJD based on the calendar date.

(2) The datum-free and minimum constraint solutions

will lead to the same result if the starting gravity value

for the former is the same as the constraining gravity

value for the latter.
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(3) To model the periodic components of calibration

function (the P option), the user must supply a file which

contains line-by-line the periods of reading in CU.

(4) The critical t value in Eq. (33) is automatically

computed by subroutine TAURE.

(5) When datum-free is chosen and a file of

constraining gravity values is specified (M1, F), the

estimated gravity values are derived from the first

gravity value (which is called starting gravity value) in

the file.

A program, called compare.f90, is also developed to test

whether the gravity change at a given station is statistically

significant. A description of this program is as follows:

Name

compare–compare gravity values at two epochs and test

whether change occurs

Synopsis

compare –Anew gravity -Bold gravity –Cdifference -

Lsig level –Idof

Description

A file of new gravity values

B file of old gravity values

C file of differences and test result

L significance level (two-tailed)

I degree of freedom

The critical t-value tcð1� a;mÞ in Eq. (34) is computed

by the function ‘‘TIN’’ from the IMSL numerical

libraries.

4. A case study in Taiwan

4.1. A recent survey campaign of relative gravity in

Taiwan

In order to determine the gravity changes at 16 gravity

stations in Taiwan thought to be due to the Chi-Chi

earthquake, the Ministry of Interior (MOI) of Taiwan

sponsored a survey campaign in late 2000 to determine

new gravity values at these 16 gravity stations. The

locations of the 16 stations are shown in Fig. 1. Before

September 21, 1999, the gravity values at six of the 16

gravity stations (Hsinchu, Taichung, Dashi, Hualien,

Fig. 1. Locations of 16 gravity stations where relative gravity measurements are collected. Star indicates the epicenter of Chi-Chi

earthquake. Lines connecting stations are primary routes of gravity survey.
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Liushuei and Fengshan) were measured using a FG5

absolute gravimeter (see http://www.microgsolution-

s.com/fg5.htm), with standard errors ranging from 2 to

3mgal (10�8m/s2). These stations are called absolute

gravity stations. The gravity values at the other 10

stations were determined by a LaCoste and Romberg G

gravimeter and their standard errors are about

30–50mgal (Chang, 1999).
In the MOI-sponsored campaign, a LaCoste and

Romberg G gravimeter (serial number 838) was used to

collect a total of 56 relative gravity values in about two

weeks. The raw gravity data were corrected for the

effects of solid earth tide, ocean tide, pressure change

and polar motion using the formulae found in Torge

(1989), Van et al. (1986), and Moritz, Mueller (1987).

Considering the 40 mgal accuracy of LaCoste and

Romberg G meter (LCR, 2001), only the solid earth

tide correction, which has a maximum absolute value of

about 0.3mgal, is significant. The other three corrections

amount to only few mgal, which is far smaller than the G

gravimeter measuring error. In particular, the effects of

pressure change and polar motion have periods longer

than a month, hence such effects will be largely

eliminated when forming relative gravity measurement

using Eq. (4). The measuring lines in this campaign form

a closed loop around Taiwan, with a line running

through the Central Range (see Fig. 2). Such a strong

geometry of measurements is expected to result in a

uniform accuracy of gravity values.

4.2. Results of adjustments

The 56 relative gravity measurements described above

have been used for data analysis. A total of five cases

were tested. A description of the five cases and the

command-line arguments associated with these cases are

as follows:

Case 1: datum-free, use the first gravity value in file

six.fix to the starting value, model drift to degree one

gravnet -Dtaiwan.obs -Ncase1 -M1 -Fsix.fix -T1.

Case 2: same as Case 1, but also model long

wavelength and periodic components of calibration

function with periods from file period.dat

gravnet -Dtaiwan.obs -Ncase2 -M1 -Fsix.fix -C1

-Pperiod.dat -T1.

Case 3: weighted constraint, use the six gravity values

in file six.fix as constraints, model long wavelength

component of calibration function and drift to degree one

gravnet -Dtaiwan.obs -Ncase3 -M2 -Fsix.fix -C1 -T1.

Case 4: weighted constraint, use the six gravity values

in file six.fix as constraints, model periodic components

of calibration function and drift to degree one

gravnet -Dtaiwan.obs -Ncase4 -M2 -Fsix.fix -Pperiod.

dat -T1

Case 5: weighted constraint, use the six gravity values

in file six.fix as constraints, model long wavelength and

periodic components of calibration function and drift to

degree one

gravnet -Dtaiwan.obs -Ncase5 -M2 -Fsix.fix -C1

-Pperiod.dat -T1.

The file taiwan.obs contains 56 observations, the file

period.dat contains two periods 36.67 and 73.33 (in CU),

which are taken from Jiang et al. (1988), and the file

six.fix contains the six a priori gravity values at the six

absolute gravity stations. Because of the relatively short

time of data collection, the gravimeter drift and long

wavelength components are modeled only up to degree

one. In Cases 1 and 2, the Dashi gravity value is used as

the starting gravity value to compute the gravity values at

the other stations using the estimated gravity differences.

The Dashi station is far from the epicenter of the Chi-Chi

earthquake (see Fig. 1) and its gravity value is assumed to

remain unchanged after this earthquake.

Table 1 summarizes the results from the five cases.

Since in Cases 1 and 2 the Dashi gravity value is

assumed to be errorless, the minimum standard errors

(for the estimated Dashi gravity value) in these cases are

of course zero. Table 2 summarizes the estimated

parameters of the LaCoste and Romberg G gravimeter

that was used in the data collection. All cases yield a

consistent accuracy of gravimeter reading of about

0.02mgal, which is better than the claimed accuracy of

0.04mgal by LCR (2001). In all cases, the gravimeter

drift is estimated to be about 0.9mgal/month, which is

consistent with the published drift by LCR (2001).

Results of global model tests by Eq. (26) show that all

cases use adequate adjustment models. Fig. 2 shows the

histograms of residuals from the five cases. The residuals

almost follow a normal distribution, which suggest that

in all cases there is no significant systematic effect in the

adjustment models.

For all cases, the t-tests show no outliers in the

relative gravity data, and the six constraining gravity

values are all adequate. However, the standard errors of

the estimated gravity values from Case 2 are relatively

large (see Table 2), which is caused by the high

correlation between coefficient bl (see Eq. (2)) and

estimated gravity values. Because of this high correla-

tion, it is difficult to separate coefficient bl and estimated

gravity values, and it is not recommended to use the

datum-free adjustment when coefficient bk is sought.

To see whether an estimated parameter p of the

gravimeter is statistically equal to zero, the following

hypothesis was tested:

Null hypothesis H0: p ¼ 0

Alternative hypothesis H1: pa0

Let #p and #s be the estimated value of a gravimeter

parameter and its standard error, a be the two-tailed

significance level. If

#pj j
#s
otcð1� a; mÞ ð35Þ
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then H0 is accepted and this gravimeter parameter is

statistically equal to zero. It was found that for all cases,

the estimated gravimeter parameters are statistically

equal to zero. This means that we do not need to model

gravimeter parameters for the current gravity data set

(except modeling drift, which is suggested by the

manufacturer of the G gravimeter). That is, for the

current data set, Case 1 will fulfill the goal of adjusting

relative gravity measurements and estimating gravity

values. However, for a large network and a long time

span of data collection, it is suggested to estimate

gravimeter parameters using the weighted constraint

model with constraining stations evenly distributed in

the network.

4.3. Result of testing gravity change

It is clear that if one wishes to detect gravity change in

a network, one cannot constrain any a priori gravity

value in the network during the adjustment, except one
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value that is for the starting value or for the minimum

constraint. Therefore, the result from Case 1 was

used to test whether the differences between the new

and the old gravity values at the 16 gravity stations

(see Fig. 1) are statistically significant. In the test, a

two-tailed significance level of a ¼ 0:05 was used.

Table 3 shows the result of the test, which is summarized

below.

(1) The gravity values at the six absolute gravity

stations remain unchanged (note: one absolute

gravity station, Dashi, has been assumed to be

unchanged in Case 1 and serves as the starting

gravity value). Therefore, use of any of the six

stations as the starting gravity value in Case 1 will

lead to the same conclusion of no gravity change.

(2) The gravity values at the Suao, Lishan, Keelung

and Shueishang stations are found to change. But

after a careful inspection, the changes at Suao,

Lishan, Keelung should be due to man-made

motions of gravity stations. This issue is currently

under investigation.

(3) The gravity change of 0.142mgal at Shueishang is

real and may be due to the aftershock (6.5 on the

Richter scale) of the Chi-Chi earthquake.

(4) Surprisingly, the gravity values at the Taichung and

Puli stations, which are quite close to the epicenter

of the Chi-Chi earthquake, remain unchanged. This

somewhat contradicts what has been expected of

gravity variation near the epicenter.

Regarding (4), Fig. 3 shows the horizontal velocities

measured after the Chi-Chi earthquake at selected

stations near central Taiwan. Such horizontal motions

may cause gravity changes. The relationship between

gravity changes and land deformations in central

Taiwan is currently under study. It must be emphasized

that the current result of gravity change detection is

Table 3

Differences between new and old gravity values and test result

Station Difference (mGal) Test statistica Significant change

Shueishang�0.1420 �2.860 Yes

Tainan �0.0315 �0.722 No

Launung 0.0053 0.092 No

Taichung �0.0289 �0.868 No

Puli �0.0370 �0.904 No

Lishan �0.3661 �6.013 Yes

Jrben �0.0282 �0.622 No

Guangfu 0.0283 0.647 No

Hualien �0.0332 �1.128 No

Liushuei �0.0062 �0.231 No

Suao �1.1115 �24.129 Yes

Fengshan �0.0096 �0.211 No

Keelung �1.0342 �27.446 Yes

Dashi 0.0000 0.000 No

Hsinchu �0.0586 �1.901 No

Fenggang 0.0123 0.225 No

aSee Eq. (34).

Table 2

Estimated parameters of LaCoste and Romberg G gravimeter (serial number 838) from five adjustment cases

Parameter Case 1 Case 2 Case 3 Case 4 Case 5

Single reading accuracy (mgal) 70.023 70.020 70.021 70.021 70.021

Linear drift (mgal/day) �0.03070.055 �0.03270.048 �0.03170.051 �0.03170.050 �0.03170.050

bl (mgal/CU) NC �0.00170.003 �0.00070.000 NC �0.00070.000

xl; yl (mgal) periods: 36.67, 73.33 (CU) NC �0.15170.215 NC 0.03970.017 0.01370.024

0.036 70.083 �0.04070.024 �0.00270.035

�0.02370.185 0.102 70.037 0.039 70.055

�0.57170.360 0.001 70.011 �0.01070.013

NC: not computed.

Table 1

Summary of results of five adjustment cases (units in mgal)

Case Global test Outlier Maximum residual Minimum residual Maximum std. Minimum std. RMS std. dev.

dev. of gravity dev. of gravity of gravity

1 Pass No 0.0550 �0.0567 0.0452 0.0000 0.0287

2 Pass No 0.0476 �0.0510 1.1519 0.0030 0.5911

3 Pass No 0.0560 �0.0500 0.0539 0.0025 0.0167

4 Pass No 0.0466 �0.0568 0.0536 0.0025 0.0223

5 Pass No 0.0487 �0.0526 0.0899 0.0024 0.0309

C. Hwang et al. / Computers & Geosciences 28 (2002) 1005–1015 1013



based on the data collected by a LaCoste and Romberg

G gravimeter, which has an accuracy of only 0.02mgal.

Gravity change below this value is unlikely to be

detected.

5. Conclusions

A self-contained program for adjusting relative

gravity measurements is developed in this paper. The

adjustment model can be either weighted constraint or

datum-free, depending on data and specific require-

ments. The weighted constraint model is chosen when

there exist reliable a priori gravity values for use as

additional data at stations in a network, or when it is

required that a gravity network be ‘‘attached’’ to an

existing gravity network of a higher order. The datum-

free model requires no gravity datum and uniquely

determines relative gravity values among all stations.

This program was used to adjust recently collected

relative gravity measurements in Taiwan. The adjust-

ment results indicate no significant drift and cali-

bration function error of the LaCoste and Romberg G

gravimeter used to collect the data. Comparison of

the new and old gravity values at 16 stations shows

no particular pattern of gravity change due to the

Chi-Chi earthquake. The computer programs and test

data set described in this paper are available at

the WWW site http://space.cv.nctu.edu.tw/Research/

moi gravity.htm.
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