
An Efficient Distributed Online Algorithm
to Detect Strong Conjunctive Predicates

Loon-Been Chen and I-Chen Wu

Abstract—Detecting strong conjunctive predicates is a fundamental problem in debugging and testing distributed programs. A strong

conjunctive predicate is a logical statement to represent the desired event of the system. Therefore, if the predicate is not true, an error

may occur because the desired event does not happen. Recently, several reported detection algorithms reveal the problem of

unbounded state queue growth since the system may generate a huge amount of execution states in a very short time. In order to

solve this problem, this paper introduces the notion of removable states which can be disregarded in the sense that detection results

still remain correct. A fully distributed algorithm is developed in this paper to perform the detection in an online manner. Based on the

notion of removable states, the time complexity of the detection algorithm is improved as the number of states to be evaluated is

reduced.

Index Terms—Conjunctive predicate, distributed debugging, distributed system, global predicate detection.

�

1 INTRODUCTION

WITH the rapid development of networks and distrib-
uted systems, programming in distributed environ-

ments has become quite common. However, the difficulty
associated with distributed programming is much higher
than that of sequential programming. This arises from the
fact that distributed debugging requires the capability to
analyze and control the execution of processors to be
running asynchronously. Also, within a distributed envir-
onment, stopping a program at a specific breakpoint is a
nontrivial task.

It is well-understood that distributed programs are
usually designed to obey certain conditions [1]. For
example, a distributed mutual exclusion program obeys
the condition “at any time, the number of processes in the
critical section is no more than one.” If this condition is
violated, an error (two or more processes are in the critical
section simultaneously) may occur. Typically, the condi-
tions are formulated as Boolean expressions, called global

predicates [2], [3]. Detecting whether or not a given global
predicate is satisfied is essential to debugging and testing
the distributed computations.

As the detection of general global predicate was proven
to be NP-complete [4], most researchers restricted their
research to a specific class of global predicates. In this
paper, the focus is on an important class of global
predicates, known as conjunctive predicate [5], [6], [7], [8],
which can be expressed as a conjunctive form of local
predicates. This local predicate is a Boolean expression

defined by the local variables of a process. At any time,
this process can evaluate its local predicate without the
necessity of communication.

In this paper, the problem of detecting whether a given
conjunctive predicate � is definitely true [3], [8] is consid-
ered. � is definitely true if, for all runs of the distributed
program, � is true at some time. Intuitively, detecting this
sort of global predicates is used to ensure that a certain
desired event would occur. For simplicity, we define
predicate DEFINITELY ð�Þ is true if and only if � is
definitely true. DEFINITELY ð�Þ is called a strong con-
junctive predicate in [6].

In [8], Venkatesan and Dathan proposed a distributed
algorithm to detect DEFINITELY ð�Þ. This algorithm
performs an offline evaluation of the predicates, i.e.,
predicates are evaluated after the program execution is
terminated. The analysis indicates that their algorithm uses
Oðp3MtÞ additional control messages with the size of each
being only Oð1Þ, where p is the number of processes and Mt

is the total number of truth value’s changes of local
predicates. In [6], Garg and Waldecker proposed an
algorithm that evaluates the predicate in an online manner,
i.e., predicates are evaluated immediately following each
instruction’s execution. This algorithm employs a central
debugger to collect debug information from application
processes and then performs the detection. The time
complexity of the detection algorithm is Oðp2mÞ, where m
is the maximum number of states in one application
process. In comparison with Venkatesan and Dathan’s
algorithm, this algorithm uses only OðMrÞ additional
control messages with the size of each being OðpÞ, where
Mr is the total number of messages that all application
processes receive.

One disadvantage of the above-mentioned algorithms is
that the debugger evaluates execution states, which are
collected from application processes, in a certain order.
Restated, before evaluating certain states, all other states are
queued. Since real systems can generate hundreds of states

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002 1077

. L.-B. Chen is with the Department of Information Management, Chin-Min
College, Tou-Fen, Miao-Li, Taiwan. E-mail: lbchen@csie.nctu.edu.tw.

. I.-C. Wu is with the Department of Computer Science and Information
Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan.
E-mail: icwu@csie.nctu.edu.tw.

Manuscript received 19 May 2000; revised 26 July 2001; accepted 22
Feb. 2002.
Recommended for acceptance by Luqi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112192.

0098-5589/02/$17.00 � 2002 IEEE

in a very short time, the queues may grow unbounded. To

solve this problem, in this paper, the notion of removable

states is introduced. By discarding the removable states, the

space requirement for each process can be minimized to

OðpÞ, where p is the number of processes. While minimizing

the memory space, time complexity is also improved to

OðpmÞ because the number of states that need to be

evaluated is reduced. Our algorithm does not require the

exchange of control messages during program execution

because all the debug information is piggybacked in normal

application messages.
The remainder of this paper is organized as follows: In

Section 2, model and notations are defined. In Section 3, we

shall introduce the notion of removable states and derive the

condition of identifying removable states. Based on this

result, Section 4 presents an efficient way to maintain

nonremovable states and then discusses a new detection

algorithm. Finally, a concluding remark is made in Section 5.

2 MODEL AND NOTATIONS

A distributed system consists of p processes denoted by

P1; P2; . . . ; Pp: These processes share no global memory and

no global clock. Message passing is the only way to

communicate for processes. The transmission delay of the

communication channel between each pair of processes is

random. However, we assume that no message in any

channel is lost, altered, or spuriously introduced.

2.1 States and Events

At a given time, the state of a process is defined by its

variable’s values. The states of processes can change only

when events are executed. There are three kinds of events:

an internal event, which performs a local computation, a send

event, which sends a message to another process, and a

receive event, which receives a message from another process

via the channel.
The xth event occurring in process Pi is referred to as ei;x.

The number x is called the sequence number of ei;x. Fig. 1

illustrates the events of the execution of a distributed

program. Event ei;x happens before event ej;y, denoted by

ei;x ! ej;y, if and only if one of the following conditions

holds [9]:

1. i ¼ j and x < y.
2. A message is sent from ei;x to ej;y.
3. Another event ek;z exists such that ei;x ! ek;z and

ek;z ! ej;y.

In this paper, the system is assumed to recognize the
happened-before relationships by using vector clocks [10]
(Fig. 1). With this approach, each process Pi maintains an
integer vector vectori½1::p�. Initially, each process Pi sets
vectori to ½0; 0; . . . ; 0� and vectori½i� ¼ 1. When a process Pi
executes an internal event, it increases vectori½i� by 1. When
process Pi sends out a message, it increases vectori½i� by 1

and then associates vectori within the message. When
process Pi receives a message associated with a vector, say
v, it sets vectori½k� ¼ maxðvectori½k�; v½k�Þ; 8k and then in-
creases vectori½i� by 1.

Let vectorðei;xÞ represent the value of vectori after
executing ei;x and before executing ei;xþ1. The following
properties can be seen from Fig. 1: For event ei;x,
vectorðei;xÞ½i� ¼ x represents the sequence number of ei;x
and vectorðei;xÞ½j� ¼ y, j 6¼ i, represents the sequence num-
ber of event ej;y, where ej;y ! ei;x and ej;yþ1 6! ei;x. There-
fore, the happened-before relationships can be determined
in time Oð1Þ by using vector clocks, as shown in Theorem 1.

Theorem 1 ([10]). For two events ei;x and ej;y, ei;x ! ej;y if and
only if vectorðei;xÞ½i�
 vectorðej;yÞ½i�.

2.2 Global States and Global Predicates

A global state is a collection of states, one from each process,
in which no happened-before relationship occurs. (Note
that the system cannot enter a state with a happened-before
relationship because messages cannot be received before
they are sent.) For example, in Fig. 2a, C1 is a global state,
but C2 is not. The set of all global states within a distributed
program forms a lattice [3]. In the lattice, a node (global
state) S1 is linked to another node S2 if the system can
proceed from S1 to S2 by executing only one event. Fig. 2
shows the space-time diagram of a distributed program and
the corresponding lattice. A possible run of a distributed

1078 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002

Fig. 1. Events and their time vectors.

Fig. 2. (a) Space-time diagram of a distributed program. (b) The lattice

of (a).

program can be viewed as a path in the lattice from the

initial node (initial global state) to the final node (final

global state). For example, the path depicted by bold lines in

Fig. 2b represents a possible execution order of the events

occurring in the program.
A local predicate is a Boolean expression of the process

states. At any time, the process can evaluate its local

predicate without communication. A global predicate is a

Boolean expression, which involves the states of several

processes. In this paper, we consider an important class of

global predicates, known as conjunctive predicate, which can

be expressed in a conjunctive form LP1 ^ LP1 ^ . . . ^ LPp,
where LPi is the local predicate of process Pi; i ¼ 1; 2; :::; p.

For simplicity, we use either � or LP1 ^ LP1 ^ . . . ^ LPp to

denote the conjunctive predicate.
In [8], Venkatesan and Dathan indicated that, in a typical

software development environment, developers may have

occasions to use the conjunctive predicate � in one or more

of the following ways:

. DEFINITELY ð�Þ is true if � is definitely true. �
is definitely true if, for every path from the initial
node to the final node in the lattice, � holds in
some node. Detecting this kind of global predicate
is usually used to ensure that a certain desired
event would occur. For example, we can consider
a distributed two-phase commit protocol (see
Fig. 3). When the master decides to commit the
transaction, it must assure that all the slaves are
prepared to commit. Assume that there are two
slaves, P1 and P2. Let � ¼ LP1 ^ LP2, where LP1 ¼
fP1 is committableg and LP2 ¼ fP2 is committableg.
In Fig. 3b, a path (depicted by bold lines) exists in
which � is not true in all nodes. Therefore, � is

not definitely true. This implies that an error may
occur because at least one slave process is not
ready to commit during the program execution
which corresponds to this boldface path.

. POSSIBLY ð�Þ is true if � is possibly true. � is possibly
true if a path exists in the lattice such that � holds in
some node. Detecting this kind of predicate is usually
used to ensure that certain undesired events would not
occur. For example, consider a mutually exclusive
program, which runs on a system with two processes
P1 and P2. Let � ¼ fðP1 is in the critical sectionÞg
^ ðP2 is in the critical sectionÞg. If � is possibly true,
the undesired event (both processes are in the critical
section) may occur in some run of the program.

2.3 Intervals

Researchers in [6], [8] proposed a necessary and sufficient
condition of whether DEFINITELY ð�Þ holds or not. This
condition uses the notion of intervals. An interval t is a pair
of events in the same process in which t:lo and t:hi are
referred to as its beginning event and ending event, respec-
tively. Furthermore, event t:lo turns the truth value of the
local predicate from false to true, events between t:lo and
t:hi do not change the truth value, and event t:hi turns the
truth value from true to false. Two intervals, t and t0, are
overlapped if t:lo! t0:hi and t0:lo! t:hi. For example, in
Fig. 4a, interval t2 and t4 are overlapped, but t2 and t3 are
not. A set of overlapping global interval (OGI-set) is a set of
intervals, one from each process, in which each pair of
intervals is overlapped. For example, interval set ft2; t4; t5g
in Fig. 4a is an OGI-set.

To simplify, the following notations are defined for two
interval sets I1 and I2:

. I1 ¼ I2: For all t 2 I1 and t0 2 I2 in the same process,
t:lo ¼ t0:lo.

CHEN AND WU: AN EFFICIENT DISTRIBUTED ONLINE ALGORITHM TO DETECT STRONG CONJUNCTIVE PREDICATES 1079

Fig. 3. An example of two-phase commit protocol. Let � ¼ LP1 ^ LP2,
where LP1 ¼ fP1is committableg and LP2 ¼ fP2is committableg. (a) In
process P1 (P2), a state is shaded if the local predicate LP1 (LP2) holds
within this state. (b) A global state is shaded if � holds (i.e., both P1 and
P2 are prepared to commit) within this global state.

Fig. 4. (a) Example of intervals. (b) A scenario that � is not definitely true

in intervals.

. I1 � I2: For all t 2 I1 and t0 2 I2 in the same process,
t:lo! t0:lo or t:lo ¼ t0:lo. For example, in Fig. 4a,
ft1; t3; t5g � ft2; t4; t5g.

. I1 ! I2: For all t 2 I1 and t0 2 I2, t:lo! t0:hi.

Fig. 4b illustrates an interesting scenario that
DEFINITELY ð�Þ does not hold. In this graph, t1 and t2
are not overlapped since there exists no message from t1:lo
to t2:hi. Thus, a program execution can be constructed such
that � is true from global states S1 to S3, but it is false in S4.
Theorem 2 generalizes this scenario.

Theorem 2 [6], [8] . For a distr ibuted program,
DEFINITELY ð�Þ holds if and only if there exists an
OGI-set.

2.4 Distributed Online DEFINITELY � Detecting
Problem

In a distributed environment, processes collect the execu-
tion states of other processes by exchanging messages. In
other words, when a process Pi executes an event ei;x, all the
events (and the associated states) that Pi can observe are
those that happen before ei;x. These events are denoted by
Ei;x, i.e., Ei;x ¼ fej;yjej;y ! ei;x or ej;y ¼ ei;xg. Ei;x is called
the E-set of ei;x. If Ei;x � Ej;y, then Ej;y is called a future E-set
of Ei;x. The following property can be verified easily:

P1 Event ei;x ! ej;y if and only if Ei;x � Ej;y.
In this paper, the distributed online DEFINITELY ð�Þ

detecting problem is that, whenever process Pi executes an
event, say ei;x, it tests whether or not DEFINITELY ð�Þ
holds for the debug information associated with E-set Ei;x.

3 IDENTIFYING REMOVABLE INTERVALS

According to Theorem 2, DEFINITELY ð�Þ holds if and
only if at least one OGI-set exists. To detect
DEFINITELY ð�Þ efficiently, the main idea of this paper
is to derive the minimum OGI-set only and treat the others
as removable. An OGI-set I in E-set Ei;x is minimum if I � I 0
for all OGI-sets I 0 in Ei;x. The minimum OGI-set in Ei;x is
given by F ðEi;xÞ.

To simplify our presentation, pseudoevent and volatile
interval are defined in Definition 1.

Definition 1. For an E-set Ei;x, the volatile interval btt for each
process Pj is defined as follows:

1. If an interval t exists in Pj, it satisfies t:lo 2 Ei;x
but t:hi 62 Ei;x (e.g., interval t in Fig. 5), then
btt:lo ¼ t:lo, and btt:hi is a pseudo event with
vectorðbtt:hiÞ ¼ ½1;1; . . . ;1�.

2. Otherwise, let ej;y 2 Ei;x be the last event from Pj
(e.g., event with vector clock ½3; 0; 0� in Fig. 5),
both btt:lo and btt:hi are pseudo events where
vectorðbtt:loÞ ¼ vectorðej;yÞ, b u t vectorðbtt:loÞ½j� ¼
vectorðej;yÞ½j� þ 1 and vectorðbtt:hiÞ ¼ ½1;1; . . . ;1�.

The interval without any pseudoevents is called nonvolatile.

This E-set contains all events in Ei;x and its pseudoevents are

denoted by bEEi;x. Notably, Ei;x � bEEi;x. The vector of volatile

intervals in bEEi;x is denoted by fð bEEi;xÞ.

An E-set Ei;x may not contain an OGI-set. However, bEEi;x
always contains an OGI-set because intervals in fð bEEi;xÞ are

pairwisely overlapped. This is due to vectorðv:hiÞ ¼
½1;1; . . . ;1� for any interval v 2 fð bEEi;xÞ. Intuitively,
fð bEEi;xÞ is a candidate of OGI-sets within future E-sets. The
following property is useful in the remainder of this paper:
P2 Let E-set Ei;x ¼ Ej;y [Ek;z. The events in Ei;x is from

either Ej;y or Ek;z. Hence, the interval t is nonvolatile in Ei;x
if and only if t is nonvolatile in either Ej;y or Ek;z.

Given an E-set Ei;x, intervals are said to be removable if
they do not belong to the minimum OGI-sets of any future
E-set of Ei;x because deriving the minimum is our only
concern. Specifically, an interval t 2 Ei;x is Ei;x-removable if
t 62 F ðEj;yÞ for all Ej;y, where Ei;x � Ej;y. Otherwise, t is
Ei;x-nonremovable. Note that a removable interval must be
nonvolatile. With this definition, the following property
holds:
P2 If interval t is Ei;x-removable, then t is Ej;y-removable

for all Ej;y where Ei;x � Ej;y.
Next, a necessary and sufficient condition to identify

removable intervals is derived in Theorem 3.

Theorem 3. In an E-set Ei;x, a nonvolatile interval t is
Ei;x-removable if and only if t 62 F ð bEEi;xÞ:

Proof. ð)Þ If t is Ei;x-removable, since bEEi;x is a future E-set
of Ei;x, t 62 F ð bEEi;xÞ can be derived (Property P3).

ð(Þ Let Ej;y be a future E-set of Ei;x. We shall prove

this direction by showing that if t 2 F ð bEEj;yÞ, then

t 2 F ð bEEi;xÞ. As illustrated in Fig. 6, partition F ð bEEj;yÞ into

S1 [S2, where S2 � bEEi;x and S1 ¼ F ð bEEj;yÞ n S2 (note that

S2 6¼ fg since x 2 S2). Since S1 ! t, we can derive that

there exists a set of volatile intervals in bEEi;x, say S0
1, such

that the sets of the beginning events of S1 and S0
1 are

identical.

The set S1
0 [S2 is an OGI-set in bEEi;x since S1

0 ! S2
and S2 ! S1

0 (because the intervals in S0
1 are volatile).

Next, we show that S1
0 [S2 is a minimum OGI-set of

bEEi;x, i.e., S0
1 [S2 ¼ F ð bEEi;xÞ. By contradiction, assume that

S1
0 [S2 � F ð bEEi;xÞ and S1

0 [S2 6¼ F ð bEEi;xÞ. As shown in

Fig. 6, partition F ð bEEi;xÞ into T1
0 [T2, where T1

0 and T2 are
sets with volatile and nonvolatile intervals, respectively.

Through Fig. 6, we can derive that T1
0 � S10 because

fT10 [T2g � fS10 [S2g and a volatile interval must be the

last interval in the process. Let T1 represent the set

containing nonvolatile intervals in S1, as shown in Fig. 6.

1080 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002

Fig. 5. Volatile intervals in E-set E3;7.

(Note that the set of beginning events of T1 and T 0
1 are

identical.) Then, T1 [T2 is an OGI-set in Ej;y because:

1. T1 ! T2 in Ej;y since T1
0 ! T2 in F ð bEEi;xÞ.

2. T2 ! T1 in Ej;y since T2 ! S2, S2 ! S1, and
T1 � S1.

Therefore, T1 [T2 is an OGI-set in Ej;y and

fT1 [T2g � fS1 [S2g. This derivation contradicts with

the fact that S1 [S2 is the minimum OGI-set in Ej;y.

Therefore, the theorem holds. tu
The following corollary extended from this theorem is

useful for the remaining part of this paper.

Corollary 1. If E-set Ej;y � Ei;x, then F ð bEEj;yÞ � F ð bEEi;xÞ.
Proof. Based on Theorem 3, this corollary is accurate

because removable intervals in the E-set Ej;y must also be

removable in its future E-sets. tu

4 DISTRIBUTED ONLINE ALGORITHM TO DETECT

DEFINITELY ð�Þ
4.1 Using the Notion of Removable States

This section shows the difference between the detection

algorithms with and without using the notion of removable

states. Fig. 7 illustrates the detection scenarios. In Fig. 7a,

when process Pi receives a message by executing event ei;x,

it first constructs the new E-set Ei;x from its old E-set Ei;x�1

and the newly received E-set Ej;y, i.e., Ei;x ¼ Ei;x�1 [Ej;y.
Then, it computes the set F ð bEEi;xÞ from the set Ei;x.

Unfortunately, this simple approach is intractable since

the E-sets grow each time as an instruction is executed. Part

b of Fig. 7b illustrates how the notion of removability can be

applied to improve the detection. It employs the minimum

OGI-set only rather than employing the whole E-set, based

on the concept depicted in Corollary 2. Clearly, this

approach incurs a very low overhead to the distributed

system because an OGI-set contains OðpÞ members only.

Corollary 2. Assume that process Pj sends a message, say m, to

process Pj, where the send event and receive event of m are ej;y

and ei;x, respectively. The intervals in F ð bEEi;xÞ must be from

either F ð bEEi;x�1Þ or F ð bEEj;yÞ.
Proof. E-set Ei;x is a future E-set of Ei;x�1 and Ej;y since

Ei;x ¼ Ei;x�1 [Ej;y. According to Theorem 3, the intervals

in F ð bEEi;xÞ must be from either F ð bEEi;x�1Þ or F ð bEEj;yÞ. tu

A naive approach to computing F ð bEEi;xÞ in Fig. 7b is to
apply the algorithms that were proposed in [6], [8] and let
F ð bEEi;x�1Þ and F ð bEEj;yÞ be the inputs of the algorithms. Their
algorithms are operated by testing overlap between inter-
vals and by removing useless intervals systematically.
However, in a worst case, in each run, it performs Oðp2Þ
testing to ensure that all of the p intervals (one from each
process) are pairwise overlapped. The total time is Oðp2mÞ
if the maximum number of events in one process is m. In
this section, a more efficient detection algorithm that runs in
time OðpmÞ is proposed.

In Section 4.2, we present an efficient approach to
maintain the minimum OGI-sets. Based on this result,
Section 4.3 presents our new detection algorithm and its
complexity and correctness are analyzed.

4.2 Maintain Minimum OGI-Sets Efficiently

Let X, Y , and Z be the E-sets satisfying the condition
Z ¼ X [Y . This section describes how to derive F ðZÞ from
F ðXÞ and F ðY Þ. Before describing our approach, some
notations used in this section are defined as follows: To
identify one interval t in different E-sets, let tðAÞ refer to t in

CHEN AND WU: AN EFFICIENT DISTRIBUTED ONLINE ALGORITHM TO DETECT STRONG CONJUNCTIVE PREDICATES 1081

Fig. 6. Illustration of the minimum OGI-sets of E-set bEEi;x and bEEj;y, where

Ei;x � Ej;y. Note that the messages are not drawn for clarity in this

figure.

Fig. 7. (a) Illustration of the detection without the notion of removable

states. (b) Illustration of the detection by discarding the removable

states.

E-set A (i.e., t:lo ¼ tðAÞ:lo). An interval tðAÞ is said to be
B-removable if tðBÞ exists in B and is B-removable.

The minimum OGI-set of Z can be derived by finding
that those intervals not removable in X or Y , but become
removable in Z ð¼ X [Y Þ. The following Lemma demon-
strates that the nonvolatile intervals remain nonremovable
until some volatile interval becomes removable.

Lemma 1. Let Z ¼ X [Y be the E-sets as described above. All
the nonvolatile intervals in F ð bXXÞ become Z-removable if and
only if some volatile interval in F ð bXXÞ becomes Z-removable.

Proof. ð(Þ Consider a nonvolatile interval tðXÞ and a
volatile interval vðXÞ in F ð bXXÞ. Assume that vðXÞ is in
process Pk. Fig. 8a illustrates that v is the last interval in
Pk that can overlap with t. (Otherwise, an interval v0

exists in Pk such that v:hi! v0:lo! t:hi; this contradicts
the condition that v is volatile inX:) This implies that, if v
becomes Z-removable, then t also becomes Z-removable.

ð)Þ By contradiction, assume that all volatiles in

F ð bXXÞ are Z-nonremovable whereas the nonvolatile t is

Z-removable. F ð bXXÞ ¼ F ð bZZÞ is proven as follows: For each

ordered pair of t1; t2 2 F ð bXXÞ (note that t
ðXÞ
1 ! t

ðXÞ
2), the

property t
ðZÞ
1 ! t

ðZÞ
2 holds because:

. If t
ðXÞ
2 is nonvolatile (Fig. 9a), then t

ðXÞ
1 ! t

ðXÞ
2

implies t
ðZÞ
1 ! t

ðZÞ
2 .

. If t
ðXÞ
2 is volatile and t

ðZÞ
2 remains volatile (Fig. 9b),

clearly, t
ðZÞ
1 ! t

ðZÞ
2 (see Definition 1).

. If t
ðXÞ
2 is volatile but t

ðZÞ
2 becomes nonvolatile

(Fig. 9c), the property t
ðZÞ
1 ! t

ðZÞ
2 is satisfied

because: t
ðXÞ
1 2 F ð bXXÞ, tðZÞ2 2 F ð bZZÞ (this is because

t
ðXÞ
2 i s volat i le in F ð bXXÞ and, thus , is

Z-nonremovable by assumption), and F ð bXXÞ �
F ð bZZÞ (see Corollary 1).

Therefore, F ð bXXÞ ¼ F ð bZZÞ, contradicts with the fact that
t 2 F ð bZZÞ is Z-removable. tu

Next, Lemmas 2 and 3 demonstrate the condition for
volatile intervals.

Lemma 2. Let Z ¼ X [Y be the E-sets as described above. If
neitherF ð bXXÞ � F ð bYY Þ norF ð bYY Þ � F ð bXXÞ, then,F ð bZZÞ ¼ fð bZZÞ.

Proof. If F ð bXXÞ 6� F ð bYY Þ and F ð bYY Þ 6� F ð bXXÞ, there exist

intervals t1; t2 2 F ð bXXÞ and u1; u2 2 F ð bYY Þ such that ft1g �
fu2g and fu1g � ft2g. Therefore, t1 and u1 are nonvolatile

in Z and are Z-removable. From Lemma 1, all nonvolatile

intervals in F ð bXXÞ and F ð bYY Þ are Z-removable. Thus,

F ð bZZÞ ¼ fð bZZÞ. tu

Lemma 3. Let Z ¼ X [Y be the E-sets as described above.

Furthermore, assume that F ð bYY Þ � F ð bXXÞ. A volatile interval

tðXÞ 2 F ð bXXÞ becomes Z-removable if and only if tðY Þ is

nonvolatile and the following properties are satisfied:

1. tðY Þ is Y -removable, or
2. tðY Þ is Y -nonremovable and some volatile interval u 2

F ð bYY Þ is X-removable.

Proof. In this proof, only the second case, i.e., t is

Y -nonremovable, is considered. (In the first case, clearly,

t is Y -removable implies that t is Z-removable.)
ð(Þ If u is X-removable, from Lemma 1, all the

nonvolatile intervals in F ð bYY Þ, including tðY Þ, are
Z-removable.

ð)Þ First, tðY Þ must be nonvolatile from Property P2. By

contradiction, assume that t is Z-removable but tðY Þ is

Y -nonremovable and all the volatile intervals u 2 F ð bYY Þ are

X-nonremovable. This assumption implies that F ð bXXÞ ¼
F ð bYY Þ (the detail is ignored since the proof is very similar to

Lemma 1). SinceZ ¼ X [Y ,F ð bXXÞ ¼ F ð bYY Þ is an OGI-set in

1082 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002

Fig. 8. A volatile interval v becomes removable implies that all of the

nonvolatile intervals become removable.

Fig. 9. Illustration of proof of Lemma 1.

Z. This implies that F ð bZZÞ ¼ F ð bXXÞ ¼ F ð bYY Þ, contradicting

with the fact that t 2 F ð bXXÞ ¼ F ð bZZÞ is Z-removable. tu

4.3 The New Detection Algorithm

In our new detection algorithm, each process only keeps

two p-tuple vectors F and f to represent its minimum OGI-

set and its volatile interval set, respectively. This algorithm

consists of the following procedures that are executed at

each process Pi:

. Procedure InternalEvent (to be called when Pi
executes an internal event, say ei;x):

1. After execution of event ei;x, the truth value of
LPi may change, as follows:

a. The truth value of LPi is unchanged: Both F
and f remain unchanged.

b. The truth value of LPi is in a false-to-true
transition: Modify f ½i� to the new volatile
interval with its beginning event being ei;x.

c. The truth value of LPi is in a true-to-false
transition: In this case, the current volatile
interval of process Pi is ended at event ei;x.
Modify f ½i� to the new volatile interval in
which both beginning and end events are
pseudo.

. Procedure SendEvent (to be called when Pi executes
a send event, say ei;xÞ:

1. Since the truth value of LPi is unchanged, both
F and f are also unchanged.

2. Piggyback F and f in the message and then
send it.

. Procedure ReceiveEvent (to be called when Pi
executes a receive event, say ei;x):

1. Assume that the sent event of this message is
ej;y. Receive the message and extract data F 0

(represent F ð bEEj;yÞ) and f 0 (represent fð bEEj;yÞ).
2. Let f ½k� ¼ max ðf ½k�; f 0½k�Þ, k ¼ 1; 2; . . . ; p.
3. (Based on Lemma 2) If F ð bEEi;x�1Þ 6� F ð bEEj;yÞ or

F ð bEEj;yÞ 6� F ð bEEi;x�1Þ, then F ¼ f . Go to Step 7.

4. If F ð bEEj;yÞ � F ð bEEi;x�1Þ, determine whether an
interval t is Ei;x-removable as follows:

a. (Based on Property P3) If t � F ð bEEi;x�1Þ then
t is removable.

b. (Based on Lemma 3) If t 2 F ð bEEi;x�1Þ and t is
volatile:

i. If the following properties are satisfied,
mark t as removable:

A. t is Ej;y-removable, or
B. t is Ej;y-nonremovable and some

volatile interval u 2 F ð bEEj;yÞ is
Ei;x�1-removable. For example, con-
sider an interval t2 illustrated in
Fig. 10. The interval t2 is Ej;y-
nonremovable and volatile interval
t1 2 F ð bEEj;yÞ is Ei;x�1-removable

(Fig. 10a and Fig. 10b). Hence, t2
is Ei;x-removable (Fig. 10c).

c. (Based on Lemma 1) If t 2 F ð bEEi;x�1Þ and t is
nonvolatile:

i. If any volatile interval is marked as
removable in step 4b, mark t as remo-
vable.

5. If F ð bEEi;x�1Þ � F ð bEEj;yÞ, repeat Step 4 except that
the roles of F ð bEEi;x�1Þ and F ð bEEj;yÞ are swapped.

6. Let F ð bEEi;xÞ be the set of intervals which have not
been marked as removable in previous steps.

7. I f F ð bEEi;xÞ c o n t a i n s n o v o l a t i l e , t h e n
DEFINITELY ð�Þ i s t r u e . O t h e r w i s e ,
DEFINITELY ð�Þ is false.

In this algorithm, a process cannot evaluate the global
predicate if there are no messages sent from other processes
to carry the debug information. To solve this problem, if
DEFINITELY ð�Þ is still false at the end of the program
execution, p extra messages are sent among all p processes
in a circular way to pass the debug information. However,

CHEN AND WU: AN EFFICIENT DISTRIBUTED ONLINE ALGORITHM TO DETECT STRONG CONJUNCTIVE PREDICATES 1083

Fig. 10. Illustration of (a) F ð bEEi;x�1Þ, (b) F ð bEEj;yÞ, and (c) F ð bEEi;xÞ.

as compared with the cost of the entire distributed
computation, these p messages incur a very low overhead.

The correctness of this algorithm can be verified easily
based on the theorems presented in Section 4.2. Before
analyzing the complexity of the algorithm, the implementa-
tion has to be explained. First, vectors F and f are
implemented by using vectors of integers: When
process Pi executes the event ei;x, the value F ½j� (resp.
f ½j�) equals the sequence number of the beginning event of
interval F ð bEEi;xÞ½j� (resp. fð bEEi;xÞ½j�). The operations of the
algorithm is implemented as follows:

. F ð bEEj;yÞ � F ð bEEi;x�1Þ if and only if F 0½k�
 F ½k� for all k
(assume that F 0 refers to F ð bEEj;yÞ and F refers to
F ð bEEi;x�1Þ). This operation takes OðpÞ time.

. Interval F ½k� is volatile if and only if F ½k� ¼ f ½k�. This
operation takes Oð1Þ time.

. Interval t with t:lo ¼ ek;z is Ei;x-removable if t is
nonvolatile and F ½k� 6¼ z, (assume that F refers to
F ð bEEi;xÞ). This operation takes Oð1Þ time.

Based on the above implementation, each invocation of the
procedures (InternalEvent, SendEvent, and ReceiveEvent)
requires OðpÞ time. Assuming that there are mi events for
process Pi, the total time complexity for the process is
OðpmiÞ.

5 DISCUSSION

This paper investigates the problem of detecting the
definitely true conjunctive predicates (DEFINITELY ð�Þ).
To solve the problem of unbounded queue growth resulting
from previous algorithms, in this paper, the notion of
removable states is introduced. By discarding the removable
states, the space requirement for each process can be
minimized to OðpÞ, where p is the number of processes.
While bounding the memory space, this analysis shows that
the time complexity of the proposed algorithm is only
OðpmÞ, which is faster than previous algorithms by a factor
of p.

Another related detection problem regarding the dis-
tributed debugging is to detect whether the conjunctive
predicates are possibly true (POSSIBLY ð�Þ) [5], [7], [8].
To enhance the performance of POSSIBLY ð�Þ detection
algorithms, Chiou and Korfhage [11] presented two
algorithms to remove some useless states for the detection.
However, their algorithms run in a centralized environ-
ment and identify the partial useless states only. For the
distributed detection of POSSIBLY ð�Þ, finding an effi-
cient approach to identify the removable states is still a
research topic.

ACKNOWLEDGMENTS

The authors would like to thank the National Science
Council of the Republic of China for financially supporting
this research under contract No. NSC-89-2213-E-243-001.
The authors would also like to thank the anonymous
referees for their valuable comments, which greatly
improved the presentation of this paper.

REFERENCES

[1] R. Copper and K. Marzullo, “Consistent Detection of Global
Predicates,” Sigplan Notices, pp. 167-174, 1991.

[2] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determin-
ing Global States of Distributed Systems,” ACM Trans. Computing
Systems, vol. 3, no. 1, pp. 63-75, Feb. 1985.

[3] R. Cooper and K. Marzullo, “Consistent Detection of Global
Predicates,” SIGPLAN Notices, pp. 167-174, 1991.

[4] C.M. Chase and V. K. Garg, “Efficient Detection of Restricted
Classes of Global Predicates,” Proc. Ninth Int’l Workshop Distributed
Algorithms, Sept. 1995.

[5] V.K. Garg and B. Waldecker, “Detection of Weak Unstable
Predicates in Distributed Programs,” IEEE Trans. Parallel and
Distributed Systems, vol. 5, no. 3, pp. 299-307, March 1994.

[6] V.K. Garg and B. Waldecker, “Detection of Strong Unstable
Predicates in Distributed Programs,” IEEE Trans. Parallel and
Distributed Systems, vol. 7, no. 12, pp. 1323-1333, Dec. 1996.

[7] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal, “Efficient
Distributed Detection of Conjunctions of Local Predicates,” IEEE
Trans. Software Eng., vol. 24, no. 8, pp. 664-677, Aug. 1998.

[8] S. Venkatesan and B. Dathan, “Testing and Debugging Distrib-
uted Systems Using Global Predicates,” IEEE Trans. Software Eng.,
vol. 21, no. 2, pp. 165-169, Feb. 1995.

[9] L. Lamport, “Time, Clocks and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[10] F. Mattern, “Virtual Time and Global States of Distributed
Systems,” Parallel and Distributed Algorithms: Proc. Int’l. Workshop
Parallel and Distributed Algorithms, pp. 215-226, 1988.

[11] H.K. Chiou and W. Korfhage, “Enhancing Distributed Event
Predicate Detection Algorithms,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 7, no. 7, pp. 673-676, July 1996

[12] P.Y. Chung, Y.M. Wang, and I.J. Lin, “Checkpoint Space
Reclamation for Uncoordinated Checkpointing in Message-Pas-
sing Systems,” IEEE Trans. Parallel and Distributed Systems, vol. 8,
no. 6, pp. 165-169, June 1997.

Loon-Been Chen received the BS degree
from Soochow University in September 1991,
the MS degree from National. Chung-Cheng
University in September 1993, and the PhD
degree from National-Chiao-Tung University in
January 1999, all in computer science.
Currently, he is an assistant professor of
information management at the Chin-Min
College, Miao-Li, Taiwan. His research inter-
ests include distributed computing, internet/

network computing, and XML documents processing.

I-Chen Wu received the BS degree in electrical
engineering from National Taiwan University in
1982, the MS degree in computer science from
National Taiwan University in 1984, and the PhD
degree in computer science from Carnegie
Mellon University in 1993. He is currently an
associate professor in the Department of Com-
puter Science and Information Engineering of
National Chiao-Tung University, Taiwan. His
research interests include internet computing,

distributed computing, and software engineering.

. For more information on this or any computing topic. please visit
our Digital Library at http://computer.org/publications/dilb.

1084 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

