
A genetic algorithm for solving dual-homing cell assignment problem of

the two-level wireless ATM network

D.-R. Dina, S.S. Tsengb,*

aDepartment of Computer Science and Information Management, Hung-Kuang Institute of Technology, Taichung 433, Taiwan, ROC
bDepartment of Computer and Information Science, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC

Received 3 September 2001; revised 11 March 2002; accepted 27 March 2002

Abstract

In this paper, we investigate the optimal assignment problem, which assigns cells in Personal Communication Service to switches on

Asynchronous Transfer Mode network in an optimum manner. The cost has two components: one is the cost of handoffs that involve two

switches, and the other is the cost of cabling. This problem is model as dual-homing cell assignment problem, which is a complex integer

programming problem. Since finding an optimal solution of this problem is NP-hard, a stochastic search method, based on a genetic

approach, is proposed to solve this problem. In this paper, domain-dependent heuristics are encoded into crossover operations, mutations of

genetic algorithm (GA) to solve this problem. Simulation results show that GA is robust for this problem. q 2002 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Recently there has been some interest in extending

Asynchronous Transfer Mode (ATM) technology to the

wireless environment [1–10]. The motivation behind this

extension (termed wireless ATM ) includes the desire for

seamless interconnection of wireless and ATM networks,

and the need to support emerging mobile mutilated services.

However, due to some inherent differences between these

two types of networks, the introduction of ATM into the

wireless environment presents many interesting challenges

[7,10]. These include support for an end-to-end ATM

connection with user mobility, handling high error rate

performance of wireless links, grouping cells into LAs

(location area or cluster), and assigning clusters to switches

in an optimum manner.

The cell assignment problem in Personal Communication

Service (PCS) network was proposed by Merchant and

Sengupta in Ref. [7], which assigns each cell in PCS

network to only one switch on ATM network such that the

total (the sum of cabling and handoff) cost can be

minimized. The problem was formulated as an integer

programming problem and a heuristic algorithm was

proposed to solve it. They [7] also discussed the dual-

homing cell assignment problem in PCS network by

considering that the calling patterns at different times of

the day could be different. In the dual-homing cell

assignment problem, each cell will be assigned to two

switches and they allowed one to reduce the cost of handoff

by increasing the cost of cables.

If the ATM backbone network is integrated with the PCS

network, the handoff cost considered in Ref. [7] which only

depends on the frequency of handoff between two switches

is not realistic. Since the switch of ATM backbone is widely

spread, the communication cost between two switches

should be considered in calculating the handoff cost. In

Refs. [11–14], the cell assignment problem considered in

Ref. [1] was extended to cell assignment problem in

wireless ATM environment. A solution model [12,14]

consists of five three-phase heuristic algorithms (NSF,

LHWF, GHWF, MLCF, and MCMLCF), two genetic

algorithms (GA) [11] (SGA and EGA), and a simulated

annealing algorithm [13] were proposed to solve the cell

assignment problem in wireless ATM environment. Exper-

imental results showed that these algorithms have good

efficiency.

In the designing of traditional network, robustness of

networks, the ability to perform required communications
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after a specified set of components becomes unavailable

[15], may be enhanced by various technical solutions.

However, it cannot be fully met without having a sufficient

level of structural redundancy. The most effective and

straightforward means for structural redundancy would be

provided more than one path between any pair of cell and

switches. There exists some network design studies in which

each terminal (user) node is to be provided with redundant

connections to the main hub network for backup services,

this can be viewed as variants of the facility location

problem. Prikul et al. [16] have investigated the concen-

trator location problem where each terminal should be

connected to two different concentrators. Tang et al. [17]

and Narasimhan [18] have dealt with the concentrator

location problem where each terminal has multiple connec-

tions to several concentrators.

In this paper, we are dealing with the topological design

of the two-level hierarchical network, where the upper

network is the ATM backbone network, and the lower level

is the PCS network. The problem of multi-homing cell

assignment problem is assigning each cell in PCS network

to more than one switches on ATM network. In such a

problem, each cell ci will be assigned to Ki (Ki $ 1 and

integer) switches and the corresponding Ki disjoint links

will be created. If Ki is set as 1 for all cells, the problem is

reduced to the cell assignment problem [11,12]. In this

paper, we are concerned about the dual-homing cell

assignment problem where Ki was fixed at 2 for all cells.

That is, there are two assignments of each cell in PCS

network, one is the primary assignment and the other is the

secondary assignment.

Under normal circumstances, each cell uses its primary

assignment to communicate. If that connection between cell

and the corresponding switch of the primary assignment

becomes unavailable, the secondary assignment is used.

Such additional switches assignment (hence, reliability and

availability) comes at a cost. The increased cost arises and

also due to the additional switch capacity due to the

additional cabling costs of connecting the cells to their

assigning switches.

In this paper, we are given a group of cells in PCS

network and a group of switches in an ATM network (whose

locations are fixed and known). The problem is to assign

cells to switches in the ATM network in an optimum

manner. We consider the topological design of a two-level

hierarchical network. The objective cost has two com-

ponents. One is the inter-switch handoff cost that involves

two different switches and the other is the cost of cabling

that connects cells to switches of ATM network. We try to

assign cells to switches such that the total cost can be

minimized under some assumptions which will be described

in Section 2.

We first present a mathematical programming formu-

lation for the dual-homing cell assignment problem in

wireless ATM network environment. Since this problem is

an NP-hard problem, this implies that a solution procedure

searching for the optimal solution may not terminate within

a reasonable amount of computing time. In order to deal

with problems of significant size, it is worthwhile develop-

ing an effective GA to solve this problem.

The organization of this paper is as follows. In Section 2,

we formally define the problem. In Section 3, we describe

the backgrounds of GAs. In Section 4, we describe the

details of solution algorithm. The experimental results are

presented in Section 5. Finally, conclusions are given in

Section 6.

2. Problem formulation

This section first provides an overview of various terms

and notations used to explain the concepts outlined in the

subsequent sections. Let n cells in PCS network CGðC; LÞ be

assigned to m switches in ATM network GðS;EÞ: We

assume that the location of cells and switches, the structure

of ATM network GðS;EÞ are fixed and known. Assume G is

connected, sk, sl in S, and ðsk; slÞ in E. Let ðXsk
; Ysk

Þ be the

coordinate of switch sk, k ¼ 1; 2;…;m; ðXci
; Yci

Þ be the

coordinate of cell ci, i ¼ 1; 2;…; n; and dkl be the minimal

communication cost between the switches sk and sl. Let fij be

the frequency of handoff per unit time that occurs between

cells ci and cj [ C; ði; j ¼ 1; 2;…; nÞ is fixed and known.

We assume that all edges in CG are undirected and

weighted; and assume cells ci and cj in C are connected

by an edge ðci; cjÞ [ L with weight wij, where wij ¼ fij þ fji;
wij ¼ wji; and wii ¼ 0 [11,12]. Let lik be the cost of cabling

per unit time and between cell ci switch sk, ði ¼ 1; 2;…; n;

k ¼ 1; 2;…;mÞ and assume lik is the function of Euclidean

distance between cell ci and switch sk, that is, lik ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXci

2 Xsk
Þ2 þ ðYci

2 Ysk
Þ2

q
:

Assume the number of calls that can be handled by each

cell per unit time is equal to 1. Let Capk be the number of

cells that can be assigned to switch sk. Our objective is to

assign each cell in C to two switches so as to minimize (total

cost) the sum of cabling cost and handoffs cost per unit time

of whole system.

Example 1. Consider the graph shown in Fig. 1. There are

10 cells in C which should be assigned to four switches in S.

The weight of edge between two cells is the frequency of

Fig. 1. An example of PCS network and ATM network, (a) PCS network

CGðC;LÞ; (b) ATM network GðS;EÞ:
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handoffs per unit time that occurs between them. Four

switches are positioned at the center of the cell: c1, c2, c4,

and c6.

Assume the matrix CS of the distance between a cell and a

switch is as follows:

CS ¼ {lik}10£4 ¼

s1 s2 s3 s4

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

0

1

2

1

1ffiffi
3

p

ffiffi
7

p

ffiffi
3

p

2ffiffi
7

p

2
666666666666666666666666664

1

1ffiffi
3

p

1

0

1

2

1

1ffiffi
3

p

ffiffi
7

p

ffiffi
3

p

1

3

2

1

0ffiffi
7

p

ffiffi
3

p

1

2ffiffi
3

p

2ffiffi
3

p

1

1ffiffi
3

p

1

0

1

3
777777777777777777777777775

:

A possible dual-homing cell assignment of Example 1 is

shown in Fig. 2.

To formulate this problem, let us define the following

variables. Let xik1
¼ 1 if the primary assignment of cell ci is

assigned to switch sk1
, sk1

[ S; xik1
¼ 0; otherwise. Let

xik2
¼ 1 if the secondary assignment of cell ci is assigned to

switch sk2
, sk2

[ S; xik2
¼ 0; otherwise. It is important to

note that if a cell is to be connected to the same switch in

both primary and secondary assignments, its cabling cost

should not be double. In order to ensure that the cabling

costs are not double in the event that a cell is connected to

the same switch in both assignments, variables xik, i ¼

1; 2;…; n; k ¼ 1; 2;…;m are defined as: xik ¼ xik1
_ xik2

; for

i ¼ 1; 2;…; n and k ¼ 1; 2;…;m; where the ‘ _ ‘ symbol

means the ‘or’ operation [1]. Since each cell should be

assigned to at most two switches, we have the constraints

Xm
k1¼1

xik1
¼ 1; for i ¼ 1; 2;…; n

and

Xm
k2¼1

xik2
¼ 1; for i ¼ 1; 2;…; n:

Further, since we allow the two assignments of the cell can

be the same, the constraint on the call handling capacity of

switch is

Xn

i¼1

xik1
þ

Xn

i¼1

xik2
# Capk; for k ¼ k1 ¼ k2 ¼ 1; 2;…;m:

Thus, the sum of cabling costs can be formulated as:

Xn

i¼1

Xm
k¼1

likxik ¼
Xn

i¼1

Xm
k¼1

likðxik1
_ xik2

Þ:

To formulate the handoff cost, define variables zijk1
¼

xik1
xjk1

; for i; j ¼ 1; 2;…; n and k1 ¼ 1; 2;…;m: Thus, zijk1

equals 1 if both the primary assignments of cells ci and cj are

connected to a common switch sk1
; otherwise it is zero.

Further, let

yij ¼
Xm

k1¼1

zijk1
; i; j ¼ 1; 2;…; n:

Thus, yij takes a value of 1, if both the primary assignments

of cells ci and cj are connected to a common switch; 0,

otherwise. With this definition, it is easy to see that the cost

of handoffs per unit time between the primary assignment of

cell ci and cj is given by

Xn

i¼1

Xn

j¼1

Xm
k1¼1

Xm
l1¼1

wijð1 2 yijÞxik1
xjl1

dk1l1
:

The formulation of handoff cost described above is directly

derived from the cell assignment problem in Refs. [11,12].

In the dual-homing cell assignment problem, since each cell

is assigned to two switches in ATM network, the

computation of handoff cost should consider more complex

model. As shown in Fig. 3, assume cell ci is assigned to sk1

and sk2
, cj is assigned to switches sl1

and sl2
, respectively.Fig. 3. The assignments two cells ci and cj:

Fig. 2. A possible dual-homing assignment of Example 1.
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There are four possible communication cases between cells

ci and cj as shown in Fig. 4. They are: (a) from sk1
to sl1

, (b)

from sk1
to sl2

, (c) from sk2
to sl1

, and (d) from sk2
to sl2

as

shown in Fig. 4(a)–(d), respectively. Thus, the handoff cost

should be computed by the summation (or average) of these

cases. To formulate the handoff cost, several variables are

introduced as follows:

† zijk1
¼ xik1

xjl1
; for i; j ¼ 1; 2;…; n and k ¼ k1 ¼ l1 ¼

1; 2;…;m:
† yij ¼

Pm
k1¼1 zijk; i; j ¼ 1; 2;…; n:

† z0ijk ¼ xik1
xjl2

; for i; j ¼ 1; 2;…; n and k ¼ k1 ¼ l2 ¼

1; 2;…;m:
† y0ij ¼

Pm
k¼1 z0ijk; i; j ¼ 1; 2;…; n:

† z00ijk ¼ xik2
xjl1

; for i; j ¼ 1; 2;…; n and k ¼ k2 ¼ l1 ¼

1; 2;…;m:
† y00ij ¼

Pm
k¼1 z00ijk; i; j ¼ 1; 2;…; n:

† z000ijk ¼ xik2
xjl2

; for i; j ¼ 1; 2;…; n and k ¼ k2 ¼ l2 ¼

1; 2;…;m:
† y000ij ¼

Pm
k¼1 z000ijk; i; j ¼ 1; 2;…; n:

With these definitions, it is easy to see that the cost of

handoffs per unit time for the best case is given by

Handoff ¼ a

(Xn

i¼1

Xn

j¼1

Xm
k1¼1

Xm
l1¼1

wijð1 2 yijÞxik1
xjl1

dk1l1

þ
Xn

i¼1

Xn

j¼1

Xm
k1¼1

Xm
l2¼1

wijð1 2 y0ijÞxik1
xjl2

dk1l2

þ
Xn

i¼1

Xn

j¼1

Xm
k2¼1

Xm
l1¼1

wijð1 2 y00ijÞxik2
xjl1

dk2l1

þ
Xn

i¼1

Xn

j¼1

Xm
k1¼1

Xm
l2¼1

wijð1 2 y000ij Þxik2
xjl2

dk2l2

)
:

This, together with our earlier statement about the sum of

cabling costs, gives us the objective function:

Minimize :
Xn

i¼1

Xm
k¼1

likxik þ Handoff;

where a is the ratio of the cost between cabling and network

costs. That is, our objective is to assign each cell to two

switches so as to minimize (total cost) the sum of cabling

costs and handoffs cost per unit time.

3. Background of genetic algorithms

The Genetic Algorithm was developed by John Holland

at the University of Michigan [19]. GAs are search

techniques for global optimization in a complex search

space. As the name suggests, GA employs the concepts of

natural selection and genetic. Using past information, GA

directs the search with expected improved performance. The

concept of GA is based on the theory of adoption in natural

and artificial systems [19]. In artificial adaptive systems,

adaptation starts with an initial set of structures (possible

solutions). These initial structures are modified according to

the performance of their solution by using an adaptive plan

to improve the performance of these structures. It has been

proved by Holland that repeatedly applying this adaptive

plan to input structures results in optimal or near optimal

solutions [19]. The traditional methods of optimization and

search do not fare well over a broad spectrum of problem

domains [20]. Some are limited in scope because they

employ local search techniques (e.g. calculus-based

methods). Others, such as enumerative schemes, are not

efficient when the practical search space is too large.

3.1. Concept of GA

The search space in GA is composed of possible

solutions to the problem. A solution in the search space is

represented by a sequence of 0s and 1s. This solution string

is referred as a chromosome in the search space. Each

chromosome has an associated objective function called the

fitness. A good chromosome is the one that has a high/low

fitness value, depending upon the nature of the problem

(maximization/minimization). The strength of a chromo-

some is represented by its fitness value. Fitness values

indicate which chromosomes are to be carried to the next

generation. A set of chromosomes and associated fitness

values is called the population. This population at a given

stage of GA is referred to as a generation. The general GA

proceeds as follows:

Genetic Algorithm( )

Begin

Initialize population;

while (not terminal condition) do

Begin

Fig. 4. Four cases of computing multi-homing handoff cost.
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choose parents from population; / p Selection p /

construct offspring by combining parents; / p

Crossover p /

optimize (offspring); / p Mutation p /

if suited (offspring) then

replace worst fit (population) with better offspring;

/ p Survival of the fittest p /

End;

End.

There are three main processes in the while loop for GA:

1. The process of selecting good strings from the current

generation to be carried to the next generation. This

process is called selection/reproduction.

2. The process of shuffling two randomly selected strings to

generate new offspring is called crossover. Sometimes,

one or more bits of a chromosome are complemented to

generate a new offspring. This process of complementa-

tion is called mutation.

3. The process of replacing the worst performing chromo-

somes based on the fitness value.

The population size is finite in each generation of GA,

which implies that only relatively fit chromosomes in

generation (i ) will be carried to the next generation ði þ 1Þ:
The power of GA comes from the fact that the algorithm

terminates rapidly to an optimal or near optimal solution.

The iterative process terminates when the solution reaches

the optimum value. The three genetic operators, namely,

selection, crossover and mutation, are discussed in Sections

3.2–3.4.

3.2. Selection/reproduction

Since the population size in each generation is limited,

only a finite number of good chromosomes will be copied in

the mating pool depending on the fitness value. Chromo-

somes with higher fitness values contribute more copies to

the mating pool than those with lower fitness values do. This

can be achieved by assigning proportionately a higher

probability of copying a chromosome that has a higher

fitness value [20]. Selection/reproduction uses the fitness

values of the chromosome obtained after evaluating the

objective function. It uses a biased roulette wheel [20] to

select chromosomes, which are to be taken in the mating

pool. It ensures that highly fit chromosomes (with high

fitness value) will have a higher number of offspring in the

mating pool. Each chromosome (i ) in the current generation

is allotted a roulette wheel slot sized in proportion ( pi) to its

fitness value. This proportion pi can be defined as follows.

Let Ofi be the actual fitness value of a chromosome (i ) in

generation ( j ) of g chromosomes, Sumj ¼
Pg

i¼1 Ofi be the

sum of the fitness values of all the chromosomes in

generation j, and let pi ¼ Ofi=Sumj:
When the roulette wheel is spun, there is a greater chance

that a better chromosome will be copied into the mating

pool because a good chromosome occupies a larger area on

the roulette wheel.

3.3. Crossover

This phase involves two steps: first, from the mating

pool, two chromosomes are selected at random for mating,

and second, crossover site c is selected uniformly at random

in the interval [1,n ]. Two new chromosomes, called

offspring, are then obtained by swapping all the characters

between positions c þ 1 and n. This can be shown using two

chromosomes, say P and Q, each of length n ¼ 6 bit

positions

chromosome P: 111l000;

chromosome Q: 000l111.

Let the crossover site be 3. Two substrings between 4 and

6 are swapped, and two substrings between 1 and 3 remain

unchanged; then, the two offspring can be obtained as

follows:

chromosome R: 111l111;

chromosome S: 000l000.

3.4. Mutation

Combining the reproduction and crossover operations

may sometimes result in losing potentially useful infor-

mation in the chromosome. To overcome this problem,

mutation is introduced. It is implemented by complement-

ing a bit (0 to 1 and vice versa) at random. This ensures that

good chromosomes will not be permanently lost.

4. Genetic algorithm for dual-homing cell assignment

problem

In this section, we discuss the details of GA developed to

solve the dual-homing assignment problem of optimum

assignment of cells in PCSs to switches in the ATM

network. The development of GA requires: (1) a chromo-

somal coding scheme, (2) genetic crossover operators, (3)

mutation operators, (4) fitness function and penalty function

Fig. 5. (a) Cell-oriented representation of chromosome structure. (b) Cell-

oriented representation of Example 1.
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definitions, (5) a replacement strategy, and (6) termination

rules.

4.1. Chromosomal coding

Since our problem involves representing connections

between cells and switches, we employ a coding scheme

that use positive integer numbers. Cells are labeled from 1 to

n (the total number of cells), and switches are labeled from 1

to m (the total number of switches). The cell-oriented

representation of chromosome structure shown in Fig. 5(a)

consists of two parts. The first part is the primary

assignment of cells, where the ith cell belongs to the vith

switch, and the second part is the secondary assignment,

where the ith cell belongs to the vðiþnÞth switch. Since each

cell will be assigned to two switches on ATM network, we

use 2 £ n array to represent the assignment of cells. If cell ci

is assigned to switches sk1
, and sk2

, then vi ¼ k1 and vðiþnÞ ¼

k2: For example, the chromosome of the Example 1 shown

in Fig. 2 is shown in Fig. 5(b). It is worth noting that, the

cell-oriented representation of chromosome structure can be

divided into two sets which represent the primary assign-

ment and the secondary assignment of cells, respectively.

4.2. Genetic crossover operator

Four types of genetic operators were used to develop this

algorithm:

1. partial single point crossover,

2. global single point crossover,

3. partial cell-exchanging operator, and

4. global cells-exchanging operator.

4.2.1. Partial single point crossover

The partial single point crossover is randomly selecting

two chromosomes (say P1 and P2) for crossover from

previous generations and then by using a random number

generator, an integer value i is generated in the range ½1; 2n�:
This number i is used as the crossover site. All characters

between i þ 1 and 2n of two parents are swapped and

offspring chromosomes O1 and O2 are generated. The

following example provides the detailed description of

partial single point crossover operation: (assume crossover

site i ¼ 5),

parent P1:

2 2 3 3 3 l 4 3 2 4 4 k 1 4 4 1 2 1 4 4 1 2;

parent P2:

1 4 4 1 2 l 1 4 4 1 2 k 2 2 3 2 2 4 3 2 4 4:

Two substrings between 6 and 20 are swapped, we have:

offspring O1:

2 2 3 3 3 l 1 4 4 1 2 k 2 2 3 2 2 4 3 2 4 4;

offspring O2:

1 4 4 1 2 l 4 3 2 4 4 k 1 4 4 1 2 1 4 4 1 2:

4.2.2. Global single point crossover

The global single point crossover is slightly different

from the partial single point crossover, which randomly

selects two chromosomes (say P1 and P2) for crossover from

previous generations and then by using a random number

generator, an integer value i is generated in the range ½1; n�:
Two numbers i and ði þ nÞ are used as the crossover sites.

All characters between i þ 1 and n, ði þ n þ 1Þ and 2n of

two parents are swapped and offspring chromosomes O1 and

O2 are generated. The following example provides the

detailed description of global single point crossover

operation: (assume crossover sites are i ¼ 5 and 15),

parent P1:

2 2 3 3 3 l 4 3 2 4 4 k 1 4 4 1 2 l 1 4 4 1 2;

parent P2:

1 4 4 1 2 l 1 4 4 1 2 k 2 2 3 2 2 l 4 3 2 4 4:

First, two substrings between 6 and 10 are swapped, then

two substrings between 16 and 20 are swapped, we have:

offspring O1:

2 2 3 3 3 l 1 4 4 1 2 k 1 4 4 1 2 l 4 3 2 4 4;

offspring O2:

1 4 4 1 2 l 4 3 2 4 4 k 2 2 3 2 2 l 1 4 4 1 2:

4.2.3. Partial cell-exchanging operator

In partial cell-exchanging operator, two sites of chromo-

some in range ½1; 2n� are randomly selected, and the primary

assignment of two cells are exchanged.

For example, before exchanging, we have:

2 2 3p 3 3 4 3 2p 4 4 k 1 4 4 1 2 1 4 4 1 2:

(Assume that the two cells c3 and c8 are selected) After

exchanging:

2 2 2p 3 3 4 3 3p 4 4 k 1 4 4 1 2 1 4 4 1 2:

4.2.4. Global cell-exchanging operator

In global cell-exchanging operator, two cells in C of a

chromosome ½l; n� (say ci and cj) are randomly selected, the
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primary and secondary assignments of two cells ci, and cj

are exchanged. That is, vi and vj, vðiþnÞ and vðjþnÞ are

exchanging. For example, before exchanging, we have:

2 2 3p 3 3 4 3 2p 4 4 k 1 4 4p 1 2 1 4 4 1 2:

(Assume that the two cells c3 and c8 are selected) After

exchanging:

2 2 2p 3 3 4 3 3p 4 4 k 1 4 4p 1 2 1 4 4p 1 2:

4.3. Mutations and heuristic mutations

Five types of mutations are used to develop this

algorithm and the active probabilities of mutations are the

same.

Traditional Mutation (TM). Randomly select a cell of

vector vi; where i in ½1; 2n� and transform it to a random

number q between 1 and m. The following example provides

the detailed description of traditional mutation: (assume cell

c8 is randomly selected and q ¼ 4) before mutating, we

have

2 2 3 3 3 4 3 2p 4 4 k 1 4 4 1 2 1 4 4 1 2:

After mutating, we have:

2 2 2 3 3 4 3 4p 4 4 k 1 4 4 1 2 1 4 4 1 2:

Multiple Cells Mutation (MCM). Randomly select two

random numbers k, l between 1 and m, transform the value

of cells value is k to l and l to k. The following example

provides the detailed description of multiple cells mutation:

(assume random number k ¼ 3 and l ¼ 2) before mutating,

we have

2þ 2þ 3p 3p 3p 4 3p 2þ 4 4 k 1 4 4 1 2þ 1 4 4 1 2þ:

After mutating, we have

3p 3p 2þ 2þ 2þ 4 2þ 3p 4 4 k 1 4 4 1 3p 1 4 4 1 3p:

Heaviest Weight First Preference (HWFP) [11]. Since the

handoff cost involving only one switch is negligible, two

cells can be assigned to the same switch so as to reduce the

handoff cost between these cells. Two cells with higher

weight wij should have a higher probability of being

assigned to the same switch. Thus, if we consider two

connected cells ci and cj [ C; then the probability of

mutation from vi of cell ci to the value vj of cell cj is as

follows

Pði;jÞ ¼
wijXn

i¼1

XdegreeðciÞ

j¼1

wij

; for i; j ¼ 1; 2;…; n;

where degreeðciÞ is the number of cells connected to cell ci

in CG:
Minimal Cabling Cost First Preference (MCCFP) [11].

To reduce the cabling costs between cells and switches, we

prefer to assign each cell to the nearer switch rather than the

farther one. Cell ci and switch sk with lower cabling cost lik

should result in higher probability that ci will be assigned to

sk: Thus, if we consider the randomly selected cell ci; then

the probability of mutation from vi of cell ci to the value vk is

Pði;kÞ ¼
Lmax 2 likXm

l¼1

ðLmax 2 lilÞ

;

where Lmax ¼ maxm
l¼1 {lil}:

Unique Switch First Mutation (USFM). It is important to

note that if a cell is to be connected to the same switch in

both primary and secondary assignments, its cabling cost

should not be double. That is, if the two assignments of the

cell are assigned to the same switch, the cabling cost will be

reduced. If we randomly selected cell ci; then the value of vi

can be mutated to vðiþnÞ or vðiþnÞ can be mutated to vi with

equal probabilities. The following example provides the

detailed description of unique switch first mutation: (assume

cell c8 is randomly selected) before mutating, we have

2 2 3 3 3 4 3 2p 4 4 k 1 4 4 1 2 1 4 4p 1 2:

After mutating, assume the primary assignment is mutated

to the secondary assignment, we have

2 2 2 3 3 4 3 4p 4 4 k 1 4 4 1 2 1 4 4p 1 2:

4.4. Fitness function definition

Generally, GAs use fitness functions to map objectives to

costs to achieve the goal of an optimally designed two-level

wireless ATM network. If cell ci is assigned to switch sk1
;

and sk2
; then vi in the chromosome is set as k1 and vðiþnÞ is set

as k2: Let dðvi;vjÞ
; dðvi;vðjþnÞÞ

; dðvðiþnÞ;vjÞ
; and dðvðiþnÞ;vðjþnÞÞ

be the

minimal communication cost between switches skl
and sl1

;
sk1

and sl2
; sk2

and sl1
; sk2

and sl2
in G, respectively. An

objective function value is associated with each chromo-

some, which is the same as the fitness measure. If vi ¼ vðiþnÞ

then qi ¼ 0; otherwise qi ¼ 1: We use the following

objective function: minimize

OBJ ¼
Xn

i¼1

½livi þ qilivðiþnÞ� þ a
Xn

i¼1

Xm
k¼1

wij{dðvi;vjÞ
þ dðvi;vðjþnÞÞ

þ dðvðiþnÞ;vjÞ
þ dðvðiþnÞ;vðjþnÞÞ

}:

Note that if assumptions
Pm

k1¼1 xik1
¼ 1;

Pm
k2¼1 xik2

¼ 1; for

i ¼ 1; 2;…; n; and
Pm

k1¼1 xik1
þ

Pm
k2¼1 xik2

¼ 1 # Capk; k ¼

1; 2;…;m are considered with this objective function, we

have a complete problem formulation. While breeding

chromosomes, the GA does not require the chromosome to

reflect a feasible solution. Thus, we need to attach a penalty

to the fitness function in the event the solution is infeasible.

Let nk be the number of cells assigned to switch sk; define

pk ¼ nk 2 Capk if nk $ Capk; pk ¼ 0; otherwise. We
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rewrite the formulation above in an unconstrained form:

minimize cost ¼ OBJ þP;

where P ¼ bð
Pm

k1¼1 pkÞ is the penalty measure associated

with a chromosome, and, b is the penalty weight. Since the

best-fit chromosomes should have a probability of being

selected as parents that is proportional to their fitness, they

need to be expressed in a maximization form. This is done

by subtracting the objective from a large number Cmax.

Hence, the fitness function becomes

maximize Cmax 2 ½OBJ þP�;

where Cmax denotes the maximum value observed, so far, of

the cost function in the population. Let cost be the value of

the cost function for the chromosome; Cmax can be

calculated by the following iterative equation

Cmax ¼ max{Cmax; cost};

where Cmax is initialized to zero.

4.5. Replacement strategy

This subsection discusses a method used to create a new

generation after crossover and mutation is carried out on the

chromosomes of the previous generation. Several replace-

ment strategies have been proposed in the literature, and a

good discussion can be found in Ref. [20]. The algorithm

developed here combines to both the concepts maintained

above. Each offspring generated after crossover is added to

the new generation if it has a better objective function value

than both of its parents. If the objective function value of an

offspring is better than that of only one of the parents, then

we select a chromosome randomly from the better parent

and the offspring. If the offspring is worse than both parents,

then each of the parents is selected at random for the next

generation. This ensures that the best chromosome is carried

to the next generation, while the worst is not carried to the

succeeding generations.

4.6. Termination rules

Execution of GA can be terminated using any one of the

following rules:

R1: when the average and maximum fitness values

exceed a predetermined threshold;

R2: when the average and maximum fitness values of

strings in a generation become the same; or

R3: when the number of generations exceeds an upper

bound specified by the user.

The best value for a given problem can be obtained from

a GA when the algorithm is terminated using R2 [20].

5. Experimental results

In this section, we present the experimental results of the

GA. The description of the experimental results is divided

into four subsections. First, in Section 5.1, we describe that

the effect of the mutation probability. In Section 5.2, we

describe the effect of the crossover probability. In Section

5.3, we describe the effect of population size. Finally in

Section 5.4, the effect of the heuristic mutations is

examined.

In all the experiments, the implementation language is C,

and all experiments were run on Windows NT with a

Pentium II 450 MHZ CPU and 256MB RAM. We simulated

a hexagonal system in which cells were configured as an H-

mesh as shown in Fig. 6. We assumed that the antenna for

each cell was at the center of the cells, and was also assumed

to be at the center of the cells. Switches are located at the

same position of cells which are randomly selected from the

Fig. 6. H-mesh of the experiments.
Fig. 7. Experimental results of different values of mutation probability for

Set 1 ðn ¼ 16Þ:

Table 1

Test sets of the wireless ATM network

Set No. No. of cells (n ) No. of switches Cap a b

1 16 8 8 1.0 100 000

2 100 20 20 0.8 100 000
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cells. The cabling cost between a switch and a cell was taken

to be proportional to the geometric distance between the

two. The topology of the backbone network is assumed to be

a complete graph and the communication cost between two

switches is assumed to be proportional to the geometric

distance. The handoff frequency fij for each border was

generated from a normal random number with mean 100

and variance 20. Two different set of cells and switches

shown in Table 1 are used to test the performance of the

algorithm.

5.1. Effect of mutation probability

To examine the effect of the mutation probability of GAs,

we set population size (popsize) ¼ 100, crossover prob-

ability ðPcÞ ¼ 1:0; maximum number of

generations ¼ 3000, and mutation probability is selected

from {0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.2, 0.25}. The

results shown in Figs. 7 and 8 are the best solution of

different values of mutation probability after 10 runs of Set

1 and Set 2, respectively. In Fig. 7, we found that when the

mutation probability is lower than (0.15), GA can find the

best solution. If the mutation probability is higher (0.20 or

0.25), the GA may get trapped in local minima. In Fig. 8, for

the Set 2, we found that when the mutation probability is

(0.05), GA can find the best solution.

Let Cpm be the average result of the GA running in

mutation probability Pm in 10 runs, and let the known best

solution total cost be the OPT. The total cost ratio computed

by Cpm/OPT% of Set 2 is shown in Fig. 9. The CPU time of

different values of mutation probability for Set 2 is shown in

Fig. 10. From Figs. 9 and 10, we can conclude, for the Set 2,

if Pm is set as 0.05, GA have the best result and efficiency.

5.2. Effect of crossover probability

To examine the effect of the crossover probability of

GAs, we set population size (popsize) ¼ 100, mutation

probability (Pm) is 0.05, maximum number of

generations ¼ 3000, and crossover probability is selected

from {1.00, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, 0.50}. The

results shown in Figs. 11 and 12 are the best solutions of

different values of crossover probability after 10 runs of Set

1 and Set 2, respectively. In Fig. 11, we found that when the

crossover probability is greater than (0.85), GA can find the

best solution. If the crossover probability is lower (0.50),

the GA may get trapped in local minima. In Fig. 12, we

Fig. 9. The total cost ratio of different values of mutation probability for Set

2 ðn ¼ 100Þ:

Fig. 11. Experimental results of different values of crossover probability for

Set 1 ðn ¼ 16Þ:

Fig. 8. Experimental results of different values of mutation probability for

Set 2 ðn ¼ 100Þ:

Fig. 10. The CPU time ratio of different values of mutation probability for

Set 2 ðn ¼ 100Þ:
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found that when the crossover probability is (1.00), GA can

find the best solution.

The comparison of different values of crossover

probability for Set 2 is shown in Fig. 13. The CPU time

of different values of crossover probability for Set 2 is

shown in Fig. 14. We found that when Pc ¼ 1:0; GA can

find the best solution. From Figs. 13 and 14, we can

conclude, for the Set 2, if Pc is set as 1.00, GA have the best

result and efficiency.

5.3. Effect of population size

To examine the effect of population size of GAs, we set

crossover probability (Pc) is 1.00, mutation probability (Pm)

is 0.05, maximum number of generations ¼ 3000, and

population size is selected from {100, 200, 300, 400, 500,

600, 700, 800, 900, 1000 }. The result shown in Figs. 15 and

16 are the best solution of different values of population size

after 10 runs of Set 1 and Set 2, respectively. In Fig. 15, we

found when the population size is greater than 100 (except

500), GA can find the best solution. In Fig. 15, for Set 2, we

found that when the population size is (300), GA can find

the best solution.

The comparison of different values of population size for

Set 2 is shown in Fig. 17. The CPU time of different values

of population size for Set 2 is shown in Fig. 18. We found

that when popsize ¼ 300, GA can find the best solution.

From Figs. 17and 18, we can conclude, for the Set 2, if Pc is

set as 300, GA have the best result and efficiency.

Fig. 13. The total cost ratio of different values of crossover probability for

Set 2 ðn ¼ 100Þ:

Fig. 14. The CPU time ratio of different values of crossover probability for

Set 2 ðn ¼ 100Þ:

Fig. 16. Experimental results of different values of population size for Set 2

ðn ¼ 100Þ:

Fig. 17. The total cost ratio of different values of population size for Set 2

ðn ¼ 100Þ:

Fig. 12. Experimental results of different values of crossover probability for

Set 2 ðn ¼ 100Þ: Fig. 15. Experimental results of different values of population size for Set 1

ðn ¼ 16Þ:
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5.4. Effect of heuristic mutation

To evaluate the effect of the heuristic mutations

described in Section 4.3, we simply constructed a trivial

GA called TGA (trivial GA). The crossover operations

of TGA were the same as our genetic algorithm (OGA)

but the mutation operations were not. The mutation

operation used in TGA is only the traditional mutation

(TM) described in Section 4.3. The network Set 2

shown in Table 1 was used in experiments and the

parameter of two GAs are set as Pm ¼ 0:05; Pc ¼ 1:0;
and popsize ¼ 300. Fig. 19 shows the best results in 10

runs of two GA (OGA and TGA). Observe the results

shown in Fig. 19, the total cost of our GA decreases

rapidly and is better than TGA. That is, heuristic

mutations in OGA can decrease the total cost and keep

the cost from getting trapped a local minima.

6. Conclusions

In this paper, we investigate the dual-homing cell

assignment problem which optimally assigns each cell

in PCS to two switches on ATM network. This problem

is currently faced by designers of mobile communi-

cation service and in the future, it is likely to be faced

by designers of PCS. Since finding an optimal solution

of this problem is NP-hard, a stochastic search method

based on a genetic approach is proposed to solve it.

Simulation results showed that GA is robust for this

problem. In our methods, cell-oriented representation is

used to represent the cell assignment; three general

genetic operators, selection, crossover, and mutation

were employed. Four types of operators (partial single

point crossover, global single point crossover, partial

cell-exchanging crossover and global cell-exchanging

crossover) and five types of mutations (TM, MCM,

LHWFP, MCCFP, and USFM) are employed in our

method. Experimental results indicate that the algorithm

can run efficiently.
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