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Abstract

In this study, the multilane traffic flow is modeled as a nonlinear Poisson equation in a two-dimensional space. The model
is derived from the interaction among vehicles and the assumption that vehicles will tend toward the equilibrium state under a
given traffic condition. A monotone iterative scheme for the nonlinear model, which is a finite difference approximation of the
model, is presented. The convergency is also discussed herein. At last, a numerical example is employed to explain the model.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traffic congestion generates the interest in traf-
fic flow researches. Since most roads are multilane
in each direction in the real world, traffic flow the-
ory evolves the multilane theory from the single
lane models. Therefore, the four main methodologies:
car-following models, kinetic models, Boltzmann-like
models and cellular automation (CA) toward modeling
traffic flow phenomena are extended from single lane
models to multilane models. Wiedemann [1] incorpo-
rated the lane-changing behavior and the overtaking
behavior with the car-following theory. His job be-
comes the foundation of a number of microscopic mul-
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tilane models [2]. The kinetic model [3] is extended to
multilane freeway by Munjal et al. [4,5], Michalopou-
los, Beskos, and Yamauchi [6] and others discussed
the lane-changing behavior directly by mathemati-
cal model instead of considering lane changing as a
perturbation of equilibrium. The higher-order kinetic
model is also formulated to describe the multilane traf-
fic [7,8]. Furthermore, Hoogendoorn and Bovy [9–
11] have developed a multilane multiclass traffic flow
model based on mesoscopic principles. The model in-
herits some underlying properties of the gas-kinetic
equations (e.g., a description using platoons, finite-
space requirements). The modeling approach of Hel-
bing [7,8] is similar to Hoogendoorn and Bovy [9–11].
They started with the Boltzmann-like model and the
result is a gas-kinetic model. Boltzmann-like models
are also developed directly to describe the characteris-
tics of traffic on multilane highways [12–14]. Rickert
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et al. [15], Nagel et al. [16,17] and Hattori [18] ex-
tended CA to two-lane traffic in different conditions
such as signalized intersection and etc.

Multilane traffic flow is a difficult problem because
of modeling the lane-changing behavior and model
computation. Therefore, a multilane traffic dispersion
model, which describes how traffic density distributes
on a multilane road, is suggested in this study. The dis-
persion model is derived from the interaction among
vehicles and results in a linear Poisson equation. Pois-
son equation is a stationary diffusion or wave equa-
tion, which is employed to describe steady fluid or heat
flow, electrostatics and so on. In addition, it is assumed
that the traffic will tend toward the equilibrium state
under a given situation. An equilibrium distribution of
density is obtained. Coupling the linear Poisson equa-
tion and the equilibrium distribution eventually results
in the nonlinear dispersion model. To solve the model,
a monotone iterative scheme is presented because of
its convergence [19]. The monotone iterative scheme
is firstly introduced into the numerical simulation in
nonlinear traffic phenomena.

The paper is organized in the following way. In Sec-
tion 2, the description of the traffic dispersion model is
presented. Section 3 illustrates the monotone iterative
scheme and its convergency. After that, the numerical
result is discussed in Section 4. The paper ends with
some conclusions and perspectives in Section 5.

2. Description of the model

In order to understand the multilane traffic be-
havior, a multilane dispersion model is proposed in
this section. Firstly, the interaction between a single
vehicle and other vehicles is concerned by the car-
following theory [2,20–23]. The car-following theory
discusses the acceleration of a single vehicle by its
spacing and velocity. The original idea is based on
Newton’s law [21], which implies that acceleration is
induced by external force (which is denoted byF).
Therefore, we can consider the acceleration is influ-
enced by the interaction among vehicles, which is in
terms of traffic force. The concept of traffic field(Ẽ)
is introduced to replace the force, since the interac-
tion is not really a contact force. Thus, it is assumed
that an external field applies to a road and vehicles on
the road will move along the direction of the exter-

nal field. For the sake of safety, one vehicle on a road
adjusts its velocity and spacing according to the rela-
tive position among others in order to avoid accidents.
Therefore, it is assumed that each vehicle has its own
field and the vehicles interact with each other by their
field. As mentioned above, the traffic force produced
by the interaction is a resistance against the external
field. Here are the further assumptions of the deriva-
tion of the traffic model. The first one is that the in-
fluence of vehicles in the same lane isM times larger
than that in the adjacent lanes, whereM is a scalar.
It is reasonable to assume that the influence of vehi-
cles in the same lane is larger than that in the adjacent
lanes. Owing to the assumption, the traffic field can be
transformed to a conservative field, which will be de-
scribed in detail in the following context. The second
one is that the traffic field produced by the interaction
is determined by the spacing among vehicles. The in-
teraction is larger when the spacing is smaller. There-
fore, it is assumed that the traffic field produced by the
interaction satisfies the inverse-square law (the gravity
model). The traffic field acting on a specific vehicle is
represented as

Ẽ =
N∑
i=1

ei

ε̂i

(
x̃0 − x̃i

|x̃0 − x̃i |3 i + ỹ0 − ỹi
M2|ỹ0 − ỹi |3 j

)

=
N∑
i=1

(
eiX̃i
ε̂i‖X̃i‖3

)
, (1)

whereN is the number of vehicles that may interact
with the specific vehicle,̃Xi denotes the spacing from
vehiclei to vehicle 0.ei is the passenger car equivalent
of vehicle i and ε̂i is the interacting parameter of
vehicle i. We transform the traffic field(Ẽ) into a
conservative field(E) by letting x = x̃, y =Mỹ for
convenience. In the continuous space, Eq. (1) can be
represented as

E = e

ε̂

∫
Ω

(
(k − ks)/‖X‖2)dΩ, (2)

whereΩ is the multilane section, which is a two-
dimensional space.X is the spacing after transforma-
tion. It is assumed that all vehicles have the same char-
acteristics and driving behavior, i.e. the passenger car
equivalent and the interacting parameter are constants,
which are denoted bye and ε̂, respectively.k is the
density andks is the unstrained density, which is the
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density that vehicles do not disturb each other, under a
given condition. If the actual density is equal to the un-
strained density, vehicles will spread out immediately.
Since the field is conservative, a potential functionφ
exists by the potential theory. The potential function
φ satisfiesE = −∇xφ. Thus, the magnitude of traffic
field is illustrated as

div E = −�φ = e(k− ks)/ε+Ka, (3)

where divE denotes the magnitude of traffic field,
ε = ε̂/4π , Ka =Ka(x), which depends on the the po-
sition x, is the adjust term of the road condition if
the road condition is idealKa = 0. Eq. (3) is a lin-
ear Poisson equation, which describes the diffusion ef-
fect under the steady state. The analytical solution of
the linear model can be solved directly by separation
of variables. However, the linear model implies that
density is independent of potential. Since the traffic
field affects the movement of vehicles, density should
be distributed by the field (or potential). The relation
between density and potential is obtained from the
assumption that density will tend toward its equilib-
rium state under a given traffic situation. The equilib-
rium state defined in this study is the most possible
microscopic state of a given macroscopic condition.
The macroscopic condition includes the conservation
of vehicle numbers and the conservation of total ve-
locity variance. An equilibrium distribution, which is
in the form of Maxwell–Boltzmann distribution, is fi-
nally obtained as shown in Eq. (4).

k =K0 exp
(
(eψ − eφ)/Θe

)
, (4)

whereK0 is the essential density,Θe is the equilib-
rium velocity variance,ψ is the potential equivalent
of the velocity variance threshold.ψ is named as the
potential barrier here. Velocity variance is defined as
Θ = ∫ ‖v − u‖2f (x,v, t)dv wherev is individual ve-
locity, u is average velocity andf (x,v, t) is the phase
plane distribution [12].Θe is the velocity variance un-
der the equilibrium state. Eq. (4) is the equilibrium dis-
tribution of density. Several points are induced from
the equation. First, density decreases as traffic poten-
tial increases. Second, when the equilibrium velocity
variance increases, the variation of density increases,
which means the traffic, is sensitive. The third one is
when the potential barrier is low, the density is small;
that is, drivers are aggressive. By coupling Eqs. (3)
and (4), the multilane traffic dispersion model is ob-
tained. In the following paragraphs, the application of

the monotone iterative scheme in the dispersion model
is derived.

3. The monotone iterative scheme

Monotone iterative techniques are widely applied
in solving nonlinear differential equation. Pao [19]
mentioned that the point method is not efficient com-
putation in two or higher space dimension and pro-
posed a block monotone iterative scheme for nonlin-
ear elliptic equations. Since the dispersion model is a
nonlinear elliptic equation, the block monotone itera-
tive scheme is employed. In order to demonstrate the
fundamental of monotone iterative method Eqs. (3),
(4) and the boundary condition are shown in a simpli-
fied form as follows:

�φ = f (x, y,φ), inΩ,

a∂φ/∂n + bφ = g(x, y) on∂Ω,
(5)

whereΩ is a two-dimensional rectangular domain
Ω = (0,Lx) × (0,Ly) with boundary∂Ω , where
∂φ/∂n is the outward normal derivative ofφ on ∂Ω ,
a ≡ a(x, y) andb≡ b(x, y) are nonnegative functions
on∂Ω with a+b > 0, andf andg are prescribed non-
linear function in its domain. Lethx = Lx/Mx , hy =
Ly/My and xi = ih, yj = jh for i = 0,1, . . . ,Mx ,
j = 0,1, . . . ,My , whereMx andMy are the total
number of intervals along thex andy directions, re-
spectively. The set of points(xi, yj ) in Ω and �Ω =
Ω ∪ ∂Ω are denoted, respectively, byΛ and �Λ. De-
fineφi,j = φ(xi, yj ), fi,j (φi,j )= f (xi, yj ,φ(xi , yj ))
andgi,j = g(xi, yj ), then the standard finite difference
approximation for the equations in (5) leads to a finite
difference system in the form

ãij φij − b̃ij φi−1,j − c̃ij φi+1,j − d̃ij φi,j−1 − ẽij φi,j+1

= hkfij (φij )+ g∗
i,j , for all (i, j) ∈ �Λ, (6)

where the coefficients̃aij , b̃ij , etc. are associated with
the coefficient of the discretized Laplace operator as
well as the boundary coefficientsa ≡ a(x, y) andb ≡
b(x, y), g∗

i,j is associated with the boundary functions
of gi,j . In a more compact form

AΦ = −F(Φ)− G, (7)

whereA is aM × M matrix, where

M = (Mx + 1)(My + 1),
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Fj (Φj )=
(−hxhyf0,j (φ0,j ), . . . ,

− hxhyfMx,j (φMx,j )
)T
,

Gj = (−hxhyg0,j , . . . ,−hxhygMx,j )T and

Φ = (φ0,j , . . . , φMx,j )
T for j = 0,1,2, . . . ,My.

DenotingF andΦ by M, then

F(Φ)≡ (−F0(Φ0), . . . ,−FM(ΦM)
)T
,

G ≡ (−G0, . . . ,−GM)
T and

Φ ≡ (φ0,j , . . . , φMx,j )
T.

Typical choice of the coefficients in Eq. (6) can be
easily derived if a finite difference approximation is
specified. For the boundary points(xi, yj ) wherei =
0,Mx andj = 0,My . If the coefficientsãij , b̃ij , c̃ij ,
d̃ij , ẽij are associated with the boundary coefficients
aij andbij , and possess the following property for the
caseaij > 0.

ãij � b̃ij + c̃ij + d̃ij + ẽij , (8)

for i = 0,Mx andj = 0,My . If the mixed boundary
condition holds, then strict inequality in the above
relation holds for at least one(i, j). In either case,
these coefficients satisfy the condition:

ãij � 0, b̃ij � 0, c̃ij � 0, d̃ij � 0, ẽij � 0,

ãij � b̃ij + c̃ij + d̃ij + ẽij , for all (i, j) ∈ �Λ. (9)

Condition (9) is the fundamental hypothesis for our
discussion of the monotone iterative method for the
nonlinear algebraic system (7). It is clear from the
matrix A in Eq. (7) and condition (9) thatA is aM-
matrix, i.e. A−1 � 0 is a strictly diagonal dominant
and invertible matrix provided that strict inequality in
the relationãij � b̃ij + c̃ij + d̃ij + ẽij in condition
(9) holds for at least one(i, j) and the domain�Λ is
connected. The monotone iterative method is based on
the system (7) withA in the split formA = D−L−U,
whereD, L andU are block diagonal, lower triangular
and upper triangular matrices ofA, respectively. In
addition, we observe thatD is aM-matrix, L � 0,
and U � 0. A direct fact that Eq. (7) has at most a
solution holds, ifFj (Φj ) ∈ C1, for 0 � j � M and
∂Fj (Φj )/∂φ � 0, −∞< φ <∞.

It is assumed that there is a functionS0(c) such that∣∣Fj (Φ1)− Fj (Φ2)
∣∣ � S0(c)|Φ1 −Φ2|, (10)

for 0 � j � M provided that|Φ1|, |Φ2| � c. Fj (Φj )
is bounded uniformly if there exists a constantZ >
0 such that|Fj (Φj )| � Z, |Φ| < ∞, j = 1, . . . ,M.
Let λ = S0(c), wherec0 = ‖Φ̂ (0)‖ and Φ̂ (0) is the
solution ofAΦ̂ (0) = (Z + 1)E − G, whereE = (ej )
for 0 � j � M. The following result is the well-known
theorem and has been reported by Pao [19].

Theorem 1. Let the functionsFj (Φ) be bounded uni-
formly, andΦ̂ (n+1), n = 0,1,2, . . . , be the solution
of

(D + λI)Φ̂ (n+1)

= (L + U)Φ̂ (n) − F(Φ̂ (n))− G + λΦ̂ (n), (11)

then, there exists a solution of Eq.(7).

As discussion above, let the coefficientξi,j associ-
ated with the Laplace operator in Eq. (3) satisfies the
condition (9), i.e.ξi,j � 0 for all (i, j) ∈ �Λ andξi,j �
ξi+1,j + ξi−1,j + ξi,j+1 + ξi,j−1. As last, when using
the corresponding finite difference and monotone iter-
ative methods for the nonlinear Poisson equation, we
obtain the following finite difference system, i.e.

φi,j ξi,j = (e/ε){ξi+1,j φi+1,j + ξi−1,j φi−1,j

+ ξi,j+1φ1,j+1 + ξi,j−1φi,j−1

+K0 exp
(
e(ψi,j − φi,j )/Θe

) − ksi,j
}

+Kai,j (12)

is the finite difference system corresponding to the
nonlinear Poisson equation, and

φ
(n)
i,j = (

e/ε(λ+ ξi,j )
){
ξi+1,j φ

(n)
i+1,j + ξi−1,j φ

(n)
i−1,j

+ ξi,j+1φ
(n)
1,j+1 + ξi,j−1φ

(n)
i,j−1

+K0 exp
(
e(ψi,j − φ(n)i,j )/Θe

) − ksi,j + λφ(n)i,j
}

+Kai,j /(λ+ ξi,j ) (13)

is the associated monotone iterative equations where
λ= ∂f/∂φ for all (x, y,φ) ∈ �Ω×[inf φ,supφ], where

φ andφ is so-called a subsolution and supersolution,
respectively.

Theorem 2. If a monotone iterative numberλ is
chosen, and the coefficientsξi,j satisfy the condition

(9), then sequences{φ(n)i,j }∞n=0 which is generated by
Eq. (13) converge to a solutionφi,j of Eq. (12)
monotonically.
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Fig. 1. Flowchart of monotone iterative method.

Theorems 1 and 2 give us the existence and
the uniqueness of solution of the monotone iterative
scheme for our nonlinear dispersion model. The im-
plementation of the monotone iterative method is il-
lustrated in Fig. 1. Furthermore, the initial guess of
the iteration is determined by the physical meaning
of the model and the boundary conditions in general.
Fortunately, the nonlinear function (4) is a monotonic
function, and then any arbitrarily initial guess will con-
verge to the unique solution. A numerical example is
employed to explain the nonlinear dispersion model
and to show the convergence of the scheme in the fol-
lowing section.

4. Numerical results and discussions

In order to describe the traffic situation, the model
and the boundary conditions should be considered
together. Since the boundary conditions of potential
can’t be obtained directly, we have to transform the
boundary conditions of density into the boundary
conditions of potential by Eqs. (3) and (4). Therefore,
the boundary conditions of density in traffic flow
problems have to be discussed first. If the traffic
condition on a boundary can be described by a
deterministic function, a Dirichlet condition is chosen,
such as deterministic inflow or outflow (k(x, y) =
f (y)) and no entrance and exit on the roadsides
(k(x, y) = 0). If we only have the changing rate
of density on a boundary, a Neumann condition is
chosen. The situation takes place behind the on-
ramp, the signal intersection and the toll collection
station where the service rate is easily obtained.
Mostly, a Robin condition mixed by both Dirichlet
and Neumann condition is employed. A traffic flow
problem often involves two or three types of boundary
conditions, which is a mixed boundary condition
problem. A boundary condition of density can be
corresponded to a boundary condition of potential
when it is formulated.

The numerical example in this study considers a
basic section of freeway, which is behind an on-ramp.
The research domain is a three-lane section with 1 km
in length. Under the uncongested traffic, the boundary
conditions are given as follows:


∂φ(x,0)/∂n = ∂φ(x,60)/∂n = 0, x ∈ ∂Ω,
φ(0, y)− ∂φ(0, y)/∂n

= 4− 2× (Θe/e)× ln(ks(0, y)/K0), y ∈ ∂Ω,
φ(100, y)

= −(Θe/e)× ln(ks(100, y)/K0), y ∈ ∂Ω,
(14)

where the passenger car equivalente= 1, the equilib-
rium velocity varianceΘe = 25 km2/h2 and theK0 =
3, which is about 108 passenger car unit per kilometer
per lane (pcu/(km · lane)) in the original problem (be-
fore transforming to the conservative field). Assume
the interacting parameterε = 10 and the domain is
ideal in geometry, thenKa = 0. The unstrained den-
sity ks and the research domain are given as Fig. 2. The
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Fig. 2. The research domain and the unstrained density(ks).

first condition in Eq. (14) means that there is no en-
trance and exit on both roadsides; that is,k = 0, which
implies ∇φ = 0. The second condition is obtained
from the Robin condition of density, which means the
inflow depends on the existent density and the inflow
density. The third condition means that the outflow
is determined by the passable density. Through the
boundary conditions, traffic flow is forced to move for-
ward and the mobility of the vehicles is blocked by the
density (platoon of vehicles). The passable density is
assumed to describe that the inside lane makes more
vehicles pass through than outside lanes, since the out-
side lanes are disturbed by the inflow of the on-ramp.

The numerical results are illustrated in Figs. 3–5.
The traffic field is derived from the traffic potential
when it is computed. The traffic field is illustrated in
Fig. 4, which implies the following behavior. Vehicles
tend toward the inside lane and the trend of the
vehicles in the outside lane is stronger than that of
the vehicles in the median lane. That is, there are
more vehicles trying to change lanes in the front part
of the outside lane. However, the lane-changing trend
keeps a longer distance in the median lane. At last,
the traffic flow will become uniform. This case is an
uncongested flow, which means that if the traffic is
disturbed, the density will decrease. Fig. 5 shows the
density distributed on the road. Since the front part

Fig. 3. The potential of the numerical example. Each interval is 20 m
in x direction and 0.4 m iny direction. 0� y � 10 is the outside
lane; 10� y � 20 is the median lane; 20� y � 30 is the inside
lane.

(right-hand side) of the domain is disturbed by the
inflow of the on-ramp, the density there is lower than
the rear part (left-hand side) of the domain. Behind
the merging area, the traffic flow becomes uniform.
This information can help to design the on-ramp area
(the length of the auxiliary lane). Sup norm error is
chosen to check the convergence. The numerical result
supports the conclusions of Theorems 1 and 2 that the
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Fig. 4. The traffic field of the numerical example, which shows that vehicles tend to move to the inside lane and the traffic flow will become
uniform (the upper side of the figure is the inside lane and the lower side is the outside lane).

Fig. 5. The density of the numerical example.

monotone iterative scheme converges to the unique
solution. This fact is inferred in Fig. 6, which also
illustrates the speed of convergence is very fast.

5. Conclusions and perspectives

In this study, a multilane traffic dispersion model
is used to describe the multilane traffic flow. The
model, which is a nonlinear Poisson equation, pro-

Fig. 6. Plot of the convergence (log(error× 108) v.s. number of
iterations).

vides the multilane traffic information (density) with-
out microscopic analyses. The multilane dispersion
model is a nonlinear Poisson equation. Poisson equa-
tion is widely used in physical researches, such as heat,
fluid, electricity and so on, to discuss the distribution
of density or volume. We introduce the application of
Poisson equation into the traffic flow research in this
study. Also, the monotone scheme is firstly employed
to solve the traffic problem. A numerical example is
employed to explain the multilane traffic by the model,
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and it also shows the convergence of the monotone it-
erative scheme is fast. Scenarios of boundary condi-
tions should be formulated according to different traf-
fic situations. The model developed herein is a station-
ary dispersion model. The time dependent dispersion
model is left for further researches.
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