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Abstract

In this article, we consider testing a general linear hypothesis for a regression model when the
error distribution belongs to the class of spherical distributions. The distributional robustness of
the F-statistics under a null hypothesis for spherically symmetric distributions is well understood.
This invariance property, however, does not hold under the alternative hypothesis. Motivated
by a simpli+ed example, we study the relationship between power of the test and the error
distribution’s dispersion and kurtosis. We +nd that these two parameters are not su/ciently
precise measures for determining the power behavior of a test.
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1. Introduction

C.R. Rao’s contributions to inference for linear models has had a far reaching
impact on numerous branches of science. His book, Linear Statistical Inference
and its Applications, has already been translated into six major languages, and is one
of the most cited book in statistics. After his detailed study of the classical linear model
and concise development of parametric inference, Prof. Rao (1965, Section 7e.1) pointed
out, “in any problem we may have a set of observations and some partial informa-
tion regarding the probability distribution of the observation”. He then goes on to
discuss the robustness properties of Student’s t-test under a null hypothesis. This paper
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expands on Rao’s discussion of null robustness and examines the robustness and power
properties of hypothesis tests for the general linear models with a spherically
symmetric error term under an alternative hypothesis.

Consider the following regression model, Y = X� + �, where Y is an n× 1 response
vector, X is an n × p nonrandom design matrix with rank p; � is a p × 1 vector of
unknown parameter of interest, and � is an n × 1 vector of stochastic errors. To test
the linear hypothesis, H0 :R� = r vs. Ha :R� �= r, where R is a q×p matrix with rank
q(q¡p) and r is a q× 1 vector of constants, the following statistic is often used:

� =
(Y − X �̂0)T(Y − X �̂0) − (Y − X �̂)T(Y − X �̂)

(Y − X �̂)T(Y − X �̂)
; (1)

where �̂ = (X TX )−1X TY is the least-squares estimator of � and

�̂0 = �̂ − (X TX )−1RT[R(X TX )−1RT]−1(R�̂ − r)

is the least-squares estimator derived under H0. The model above can be reexpressed
as Y =X1�1 +X2�2 + �, where X1 : n× (p−q) and X2 : n×q are constructed by +nding
a (p − q) × p matrix G complementary to R such that (X1; X2) = X (G

R )−1; �1 = G� :
(p− q)× 1 and �2 =R� : q× 1. For details on the model re-expression, please refer to
Rao and Toutenburg (1995, Section 3.7). Hence � can be written as

� =
�̃TA1�̃
�TA2�

=
�TA1� + 2�TA1� + �TA1�

�TA2�
; (2)

where �̃= �+X2(�2− r); A1 =M1X2D−1X T
2 M1; M1 = I−X1(X T

1 X1)−1X T
1 ; D=X T

2 M1X2;
� = X2(�2 − r), and A2 = I − X (X TX )−1X T, where M1X1 = 0 and A1A2 = 0 and M1;
A1 and A2 are all symmetric idempotent matrices with ranks equal to n− (p− q); q,
and n− p, respectively. The expression of � in (2) will be useful in further analysis.

Classical inference results are often derived assuming � ∼ Nn(0; �2In). Under the
normality assumption, � is a monotone function of the likelihood ratio (LR) statistic,
�TA2� ∼ �2X 2

n−p and �TA1� + 2�TA1� + �TA1� ∼ �2X 2
q (�2) where �2 = �TA1� is the

noncentrality parameter. Under H0 (� = 0); (n − p)�=q ∼ Fq;n−p and in the noncen-
tral case (n − p)�=q ∼ Fq;n−p(�2). As pointed out by Rao (1965, Section 7e.1), the
spherical normality assumption may not be plausible in real applications. Many practi-
tioners have encountered data or residual plots with heavier tails than those from a true
normal population. Most often there is usually no scienti+cally sound reason to treat
extreme observations as outliers and discard them from the data. Alternatively one may
model the underlying population by some heavy tailed distributions. For example Ullah
and Zinde-Walsh (1984) and Zellner (1976) studied regression models with multivari-
ate
t errors. Anderson and Fang (1982a) studied a regression model with spherically dis-
tributed errors and showed that if � is spherically distributed, then for any scale invariant
statistics,  (�), satisfying  (a�) =  (�) for any scalar a¿ 0, the distribution of  (�)
is the same as if � ∼ Nn(0; �2In). In the previous example under H0; �2 = R� = r;
�̃ = � and hence � = (�TA1�)=(�TA2�) is scale invariant. Therefore, as long as � has a
spherical distribution, (n − p)�=q ∼ Fq;n−p as in the normal case (Fang et al., 1990,
pp. 54–55). This nice distributional invariance property, however, does not hold when
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H0 is not true. Speci+cally under Ha; �̃(�= �) is nonspherical and � is no longer scale
invariant. In general the distribution of � and particularly the power of tests based on
� are both dependent on the underlying error distribution.

In this article, we study the regression model, Y = X� + �, with � being spherically
distributed. We aim to +nd possible characteristics of the error distribution which may
have direct eNect on the power behavior of �. In Section 2, previous related results on
symmetric distributions are summarized and the distribution of � under Ha is derived.
In Section 3, a simpli+ed example which motivates further analysis is discussed +rst.
Then we derive the relationship between the power and the dispersion and kurtosis
of the error distribution. Illustrative examples are provided in Section 4. Concluding
remarks are given in Section 5.

2. Regression model with spherical errors

2.1. Spherical and elliptical distributions

Spherical distributions can be de+ned in various ways. Refer to Fang et al. (1990)
for a thorough discussion. If the density of a spherical random vector Y =(Y1; : : : ; Yn)T

exists, it must have the form of g(yTy) where g(·), called the density generator, is
some nonnegative scalar function. Speci+cally the univariate function Cng(yTy) de+nes
a multivariate density of Y such that

Cn

∫ ∞

−∞
· · ·
∫ ∞

−∞
g

(
n∑

i=1

y2
i

)
dy1 : : : dyn = Cn

!n=2

"(n=2)

∫ ∞

0
tn=2−1g(t) dt = 1;

(3)

where

Cn =
"(n=2)

2!n=2
∫∞

0 rn−1g(r2) dr
(4)

is the normalizing constant. We will write Y ∼ �2Sn(g) to denote that Y belongs to
the spherical family with the density generator g(·) with E(Y ) = 0 and Cov(Y ) = �2In.
The standard normal distribution is in the spherical family with Cn = (2!)−n=2 and
g(t)=exp(−t=2). Table 3.1 in Fang et al. (1990) lists important subclasses of spherical
distributions. Elliptical distributions can be derived from spherical distributions via an
a/ne transformation as Nn(%; &) can be derived from Nk(0; Ik). Speci+cally we say
Y has an elliptical distribution, denoted by Y ∼ ECn(%; &; g), if Y =d % + ATZ where
Z ∼ Sk(g); % : n× 1; A : k × n and ATA = & with rank(&) = k (k6 n). The density of
Y ∼ ECn(%; &; g) (if it exists) is of the form

Cn|&|−1=2g{(y − %)T&−1(y − %)}: (5)

It should be mentioned that for members in the spherical family, the coordinates are
uncorrelated but usually dependent unless it is normal (Fang et al., 1990, p. 106).
The implication is that by extending the distributional assumption from normality to
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spherical symmetry, the independence assumption is automatically dropped. Exchange-
ability is another way to extend the independence assumption. Spherical symmetry
implies exchangeability but the converse is not true.

Several noncentral sampling distributions derived from elliptical distributions are
discussed in Fang and Zhang (1990). For the present article the distribution of � under
the alternative hypothesis is related to the generalized F(GF) distribution which is
de+ned as follows. If Y ∼ ECm+n(%; Im+n; g) with %=(+T; 0T)T: (m+n)×1 and v : m×1
is a vector of constants, then

U =
U1

U2
=

Y T
(1)Y(1)=m

Y T
(2)Y(2)=n

∼ GFm;n(�2; g); (6)

where Y(1) = (Y1; : : : ; Ym)T; Y(2) = (Ym+1; : : : ; Ym+n)T and GFm;n(�2; g) is called the
generalized noncentral F distribution with noncentrality parameter �2 = +T+. The p.d.f.
of U ∼ GFm;n(�2; g) has been derived by Fan (Theorem 2.9.5, Fang and Zhang, 1991)
and is given by

f(u; g) = Cu(m−2)=2(1 + u)−(m+n)=2
∫ ∞

0

∫ !

0
sinm−20ym+n−1

×g(y2 − 2�1y cos 0 + �2) d0 dy; (7)

where C = 2mCm+n!(m+n−1)=2

n"(m−1=2)"(n=2) ; Cm+n can be computed using (4), u1 = (m=n)u; �1 =√
u1=(1 + u1)�. Note that Y T

(1)Y(1) has the noncentral generalized chi-squared distri-
bution with noncentrality parameter �2 and Y T

(2)Y(2) has the usual (central) chi-squared
distribution (see Fang and Zhang, 1990, for a review). When g(t)=exp(−t=2), the GF
distribution reduces to the usual noncentral F distribution. Note that unlike the ordinary
F distribution, the GF distribution does not require stochastic independence between
the numerator and denominator.

2.2. The distribution of �

Consider the regression model Y=X�+� where � ∼ �2Sn(g). From (5), the likelihood
function of � can be written as

L(�) = Cn�−ng((Y − X�)T(Y − X�)=�2);

where Cn is de+ned in (4). If g(t) is a monotone decreasing function of t (¿ 0); L(�)
is maximized when (Y − X�)T(Y − X�)=�2 is minimized. Note that the monotonicity
assumption corresponds to a unimodal distribution. In such a case the maximum like-
lihood estimator of � also equals the least-squares estimator. The distributions of �̂
and �̂ = Y − X �̂ for � ∼ �2Sn(g) have been derived by Anderson and Fang (1982a,
b, c), speci+cally �̂ = (X TX )−1X TY ∼ ECp(�; �2(X TX )−1; g), and �̂ = Y − X �̂ ∼
ECn(0; �2[In + X (X TX )−1X T]; g). When g(·) is monotone decreasing, the LR statistic
for testing H0 :R� = r is given by

l =
supH0

(�2)−n=2g((Y − X�)T(Y − X�)=�2)
sup(�2)−n=2g((Y − X�)T(Y − X�)=�2)

=
L(�̂H ; �̂2

H )

L(�̂; �̂2)
=
[
�̂2

�̂2
H

]n=2
;
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where �̂2
H = (Y − X �̂H )T(Y − X �̂H )=n; �̂2 = (Y − X �̂)T(Y − X �̂)=n and �̂2

H = (Y −
X �̂H )T(Y−X �̂H )=n. Notice that �=1−l−n=2, the same as in the normal case. Therefore,
the test based on � is equivalent to the LR test and hence possesses the optimality
property. As described earlier as �∼ �2Sn(g); (n − p)�=q ∼ Fq;n−p under H0. This
implies that when g(·) is monotone decreasing, the LR statistic is also distributional
invariant under the null. The statement is consistent with the result derived by Ullah
and Zinde-Walsh (1984) who showed that the LR statistic is robust for multivariate t
errors whose density generator is a monotone function.

Under Ha the distribution of � depends on the density generator g(·). The following
lemma, analogous to the normal sampling theory, states that the (noncentral) GF dis-
tribution can be derived from a ratio of two quadratic forms of spherical distributions.

Lemma 1. Suppose that Y ∼ ECn(0; In; g) has the fourth moment and continuous
positive density, then

U =
(Y TA1Y + 2bT

1A1Y + bT
1A1b1)=n1

Y TA2Y=n2
∼ GFn1 ;n2 (�

2; g) (8)

if and only if �2 = bT
1A1b1; Ai (i = 1; 2) are symmetric matrices satisfying

A2
i = Ai; rank(Ai) = ni; Aibi = bi; A1A2 = 0.

Theorem 1. For the regression model, Y =X�+ �, with � ∼ �2Sn(g), then for the test
statistics in (1),

n− p
q

� =
n− p

q
�TA1� + 2�TA1� + �TA1�

�TA2�
∼ GFq;n−p(�2; g);

where A1; A2 and � are de:ned in (2) and �2 = �TA1� is the noncentrality parameter.

The proof of Lemma 1 is given in Appendix A. Theorem 1 can be proved by
applying Lemma 1 to (2). Note that in the normal case with g(t) = exp(−t=2); U ∼
Fn1 ;n2 (�

2). Testing H0 :R� = r is equivalent to testing H0 : � = 0 since A1 is positive
de+nite this implies that �TA1� = 0 if and only if � = 0. In fact when � = 0, the GF
distribution reduces to the ordinary F distribution for all g(·). Under Ha; (n−p)�=q ∼
GFq;n−p(�2; g) and the power function of the GF test statistic is given by

P(�; g) =
∫ ∞

C5

f(u; �; g) du = 1 −
∫ C5

0
f(u; �; g) du; (9)

where f(u; �; g) is the density of GFq;n−p(�2; g) in (7) and C5 is the critical value
satisfying

∫∞
C5

f(u; 0; g) du = 5 where 5 is the con+dence level. Note that the value of
C5 is the same for all g(·) and can be found from the ordinary F table.
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3. Power analysis

3.1. A simple motivating example

To assess which characteristics of the error distribution aNect the power behavior,
consider a simpli+ed model, Yi=�̃+�i (i=1; : : : ; n), where �̃ is a scalar and (�1; : : : ; �n) ∼
�2Sn(g). To test H0 : �̃ = 0 vs. Ha : �̃ �= 0, the test statistic in (1) reduces to

�(�̃) =
∑n

i=1 Y 2
i −∑n

i=1 (Yi − RY )2∑n
i=1 (Yi − RY )2

= A + B7; (10)

where

A =
∑n

i=1 �2
i −

∑n
i=1 (�i − R�)2∑n

i=1 (�i − R�)2
+

n�̃2∑n
i=1 (�i − R�)2

¿ 0;

B =

∣∣∣2�̃∑n
i=1 �i

∣∣∣√∑n
i=1 (�i − R�)2

1√∑n
i=1 (�i − R�)2

¿ 0

and 7=1 if �̃ R�¿ 0 and 7=−1 if �̃ R�¡ 0; RY =
∑n

i=1 Yi=n; �i=Yi−�̃; R�=
∑n

i=1 �i=n. The
power of �(�̃) equals pr(�(�̃)¿c5) where the critical value C5 satis+es pr(�(0)¿C5)=
5 and 5 is the level of the test. The +rst component of A is scale invariant and the
second term increases as the second sample moment decreases. The term B7, on the
average, is zero and asymptotically is of order Op(n−1=2). Therefore when n is large
or �̃ is far from zero, the eNect of B7 is negligible and the value of �(�̃) is more
aNected by the second moment of � in a monotonic way. Speci+cally when the second
moment increases, �(�̃) tends to decrease which pulls down the power.

If �̃ is close to zero and the sample size is moderate, the eNect of B7 cannot be
neglected. Notice that B is a product of a scale invariant ratio (the +rst component)
and the reciprocal of the second moment of � (the second component). Hence as
the second moment increases, B tends to decrease. However the sign of 7 can be
positive or negative. Although by symmetry pr(7=1)=pr(7=−1), we +nd that since
rejection region of the � test is one sided, the sign of R� or 7 aNects the power in an
asymmetric way. To see this, without loss of generality suppose that A and B are +xed
and pr(7= 1) = pr(7=−1) = 1=2. Notice that pr(�(�̃)¿C5) = pr(B¿C5 −A) pr(7=
1)+pr(B¡A−C5) pr(7=−1). When C5 ¡A; pr(B¿C5−A)=1 but pr(B¡A−C5)
may be 0 or 1. When C5 ¿A; pr(B¿C5 − A)¿ 0 but pr(B¡A − C5) = 0. In both
cases, the condition of 7 = 1, corresponding to R�¿ 0, has more contribution to the
power. To sum up, in the simpli+ed example the increase in the second moment tends
to decrease the value of �(�̃) and hence decrease the power.

The above analysis can be extended to the general expression in (2). Speci+cally let
A = (�TA2�)−1(�TA1� + �2); B = 2

∣∣(�TA2�)−1(�TA1�)
∣∣ ; 7 = 1 if �TA1�¿ 0 and 7 = −1
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if �TA1�¡ 0. It can be seen that the +rst component of A is scale invariant and �TA2�
also reveals a negative eNect on the second component. According to the proof of
Lemma 1, �TA1� can be written as

∑g
i=1 �∗i Xi where X = (X1; : : : ; Xn)T = "T

1 �; �∗ =
(�∗1 ; : : : ; �

∗
n)T = "T

1� and "1 is an n× n orthogonal matrix satisfying

"T
1A1"1 =

(
Iq 0

0 0

)
:

Note that because X is also spherical, pr(7=1)=pr(7=−1)= 1
2 . As in the simpli+ed

case, the increase in �TA2� tends to decrease the value of � and hence the power. The
phenomenon seems to support the conjecture that the � test would have bad power if
the errors were generated from a heavy-tailed distribution with large second moment.
The relationship between the power behavior and heaviness of tails is explored in more
detail in the next subsection.

3.2. Dispersion, kurtosis, and power

Let Z ∼ Sn(g). The second moment, known as the dispersion parameter, of Z is
de+ned as 9 = E(ZTZ)=n. Kurtosis is usually used to measure tail’s heaviness and
according to Mardia (1970) it is de+ned as : = E(ZTZ)2=n(n + 2) − 1. Using the
special property that all the marginal distributions of a spherical distribution are also
spherical with the same generator up to a multiplicative constant, by simple algebra it
follows that

9 =
1
n

n∑
i=1

E(Z2
i ) = C1

∫ ∞

−∞
z2g(z2) dz = C1

∫ ∞

0
t1=2g(t) dt (11)

and

: =
1

n(n + 2)




n∑
i=1

E(Z4
i ) +

∑
i �=j

E(Z2
i Z

2
j )


− 1

=
C1

n + 2

∫ ∞

−∞
z4g(z2) dz +

(n− 1)C2

n + 2

∫ ∞

−∞

∫ ∞

−∞
z2
1z

2
2g(z2

1 + z2
2) dz1 dz2 − 1

=
C1

n + 2

∫ ∞

0
t3=2g(t) dt +

(n− 1)C2

n + 2

∫ ∞

0

∫ ∞

0
s1=2t1=2g(s + t) ds dt − 1; (12)

where C1 and C2 are the normalizing constants satisfying

C1

∫ ∞

−∞
g(z2) dz = 1; C2

∫ ∞

−∞

∫ ∞

−∞
g(z2

1 + z2
2) dz1 dz2 = 1:

The following theorem establishes the relationship between 9; : and P(�; g)
within a family which shares the same density generator indexed by a parameter,
denoted as >.
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Theorem 2. Consider the regression model, Y = X� + �, where � ∼ �2Sn(g). Assume
that the density generator g(t) ≡ g(t; >) is a continuous, di>erentiable and monotone
function of some parameter > for all t ¿ 0. Then

sign
(
@g(t; >)

@>

)
= sign

(
@9(>)
@>

)
= sign

(
@:(>)
@>

)
= −sign

(
@P(�; g; >)

@>

)
;

where P(�; g; >); 9 and : are de:ned in (9), (11), (12), respectively.

Theorem 2 states that if > aNects g(t; >) in a monotonic way, it also aNects 9 and
: in the same direction and P(�; g; >) in the opposite direction. It is worth noting to
mention that the converse of Theorem 2 may not be true. That is if P(>) or :(>) is a
monotonic function of >, there is no guarantee that > has a monotonic eNect on g(t; >)
and P(�; g; >) if g(t; >) is not a monotone function of > for all t ¿ 0. Theorem 2 does
not allow one to compare P(�; g) across diNerent families of g(·) simply based on the
magnitude of 9 or :. In other words, the dispersion and kurtosis are not su/cient to
predict the power behavior of �.

4. Illustrative examples

We select some families of g(·) from Fang et al. (1990, pp. 69–93) and compute the
corresponding forms of 9 and :. Figs. 1–3 show one-dimensional and two-dimensional
density plots of these families. The power function of GFq;n−p(�2; g) is obtained
using formula (9) where f(u; �; g) is given in (7). Fan (1984) derived analytic
forms of the GF density for these families by expanding g(t) as the sum of an in+nite
series, if it converges everywhere, exchanging the summation and integration in (7)
and then deriving the integration analytically. We found that Fan’s derivations had
some typographical errors because the original formula of f(u; g) was in error. Here
we present the corrected version which is then used to obtain analytic expressions of
the corresponding power functions.

Example 1. The Kotz-type distribution, Kotz(a; @)(a¿−n=2; @¿ 0), is de+ned via the
generating function g(t)= ta exp(−@t) with Cn ="(n=2)@n=2+a=!n=2"(n=2+a). It is easy
to show that for a +xed a6 0; g(t; @) is decreasing in @ for t¿ 0.

Applying formula (11) and properties of the Gamma function, it can be shown that

9 = C1

∫ ∞

0
ta+1=2 exp(−@t) dt =

"(a + 3=2)
@"(a + 1=2)

:

Based on (12) it follows that for each i = 1; : : : ; n

E(Z4
i ) = C1

∫ ∞

0
t3=2+a exp(−@t) dt =

"(a + 5=2)
@2"(a + 1=2)
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Fig. 1. One-dimensional density of Kotz(r).

Fig. 2. One-dimensional density of MPVII(l; h = 10).

and by applying the formula of a Binomial series, it follows that for i �= j

E(Z2
i Z

2
j ) = C2

∫ ∞

0

∫ ∞

0
s1=2t1=2(s + t)a exp{−@(s + t)} ds dt

= 2C2

∞∑
k=0

(
a

k

)∫ ∞

0
ta+1=2−k exp(−@t)

[∫ t

0
s1=2+k exp(−@s) ds

]
dt:

The above expression, which involves integrating an incomplete Gamma function (i.e.
the term in the bracket), does not reduce to a nice explicit formula. Nevertheless it
still can be seen that g(t; @); 9(@) and :(@) are all decreasing functions of @. Also it
can be shown that @P(�; @)=@@ equals

@
∫ C5

0

∫ ∞

0

∫ !

0
Cu(m−2)=2

1 (1 + u1)−(m+n)=2 sinm−20ym+n−1

×(y2 − 2�1y cos 0 + �2)a+1 exp{−@(y2 − 2�1y cos 0 + �2)} d0 dy du: (13)
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Fig. 3. Two-dimensional density of MPVII(h = 1; l = 2).

Because y2 − 2�1y cos 0 + �2 ¿ 0, the integrand of the above equation is positive and
hence @P(�; @)=@@¿ 0.

When a= 0, the Kotz family becomes a scale change of the normal distribution and
more explicit results can be derived. It can be shown that 9= 1=(2@); E(Z4

i ) = 3=(4@2),

E(Z2
i Z

2
j ) = C2

∫ ∞

0

∫ ∞

0
s1=2t1=2 exp{−@(s + t)} ds dt = C2

(
"(3=2)
@3=2

)2

=
1

4@2

and hence : = 3=4@2(n + 2) + n− 1=4@2(n + 2) − 1 = 1=4@2 − 1. The corrected formula
of GFq; s(�; exp(−@t)), based on Fan’s original derivation, is given by

f(u; �) =
q
s
Cau

(q−2)=2
1 (1 + u1)−(q+s)=2 exp(−@�2)1F1

(
q + s

2
;
q
2
; r�2

1

)
;

where s = n − p; C5 = "((q + s)=2)="(q=2)(s=2); u1 = (q=s)u; �1 =
√

[u1=(1 + u1)]�;
1F1(a; b; z) =

∑∞
k=0 (a)kzk =(b)kk! is a conUuent hypergeometric function with (a)k =

a(a + 1) · · · (a + k − 1) = "(a + k)="(a). Therefore one can write

P(�; @) = 1 −
∞∑
k=0

Ca
(@�2)k((q + s)=2)k

K!(q=2)k
exp(−@�2)S(k);

where

S(k) =
∫ C5

0

q
s
u(q−2)=2+k

1 (1 + u1)−[(q+s)=2]−k du;
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Fig. 4. Power of GF3;95(exp(−rt)).

which does not depend on @. Note that unlike (13) directly checking the sign of
@P(�; @)=@@ using the above explicit formula is very complex.

The power function of GF3;95(�; exp(−@t)) is depicted in Fig. 4 using the numer-
ical integration function of Mathematica. The picture also shows that P(�; @) is an
increasing function of @. Note that using the formula of Binomial series again, S(k)
can be expressed as the following analytic formula:

S(k) =
∞∑
i=0


− q+s

2 − k

i


 1

q−2
2 + k + i + 1

{C∗
5 }

q−2
2 +k+i+1 if C∗

5 ¡ 1

=
∞∑
i=0


− q+s

2 − k

i


 1

q−2
2 + k + i + 1

+
∞∑
i=0

(− q+s
2 − k

i

)
1

1 − (i + s+2
2 )

{
{C∗

5 }−(i+ s+2
2 )+1 − 1

}

if C∗
5 ¿ 1;

where C∗
5 = qC5=s.

Example 2. A Pearson-type VII distribution, MPVII(l; h), is de+ned via the generating
function g(t)=(1+ t=h)−l and Cn="(l)(!h)−n=2="(l−n=2)(t ¿ 0; l¿n=2; h¿ 0). This
family includes the multivariate t distribution with l = (n + h)=2 and the multivariate
Cauchy distribution with h = 1 and l = (n + 1)=2. Notice that g(t) is also a monotone
decreasing function of t.
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Fig. 5. Power of GF3;95(MPVII(h = 5; l)).

Using properties of the beta function, it follows that

9 = E(Z2
i ) = C1h3=2B(3=2; l− 3=2) =

h
2(l− 3=2)

if l¿ 3=2

and

E(Z4
i ) = C1

∫ ∞

0
t3=2(1 + t=h)−l dt = C1h5=2

∫ ∞

0
s3=2(1 + s)−l ds

=
"(l)(!h)−1=2

"(l− 1=2)
h5=2B

(
5
2
; l− 5

2

)

=
3h2

4
"(l− 5=2)
"(l− 1=2)

=
3h2

4
1

(l− 3=2)(l− 5=2)
if l¿ 5=2:

E(Z2
i Z

2
j ) = C2

∫ ∞

0

∫ ∞

0

√
st
{

1 +
s + t
h

}−l

ds dt

= C2h3B
(

3
2
; l− 3

2

)∫ ∞

0
s1=2(1 + s)−l+3=2

=
h2"(l− 3)
4"(l− 1)

=
h2

4(l− 2)(l− 3)
for l¿ 3:

Hence the kurtosis is given by

: =
h2

4(n + 2)

[
3n

(l− 3=2)(l− 5=2)
+

n(n− 1)
(l− 2)(l− 3)

]
− 1(l¿ 5=2; h¿ 0):

Note that g(t); 9 and : are all increasing in h and decreasing in l. Theorem 2 implies
that P(�; g) is increasing in l (as shown in Fig. 5) and decreasing in h.
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Fig. 6. Power of GF3;95(MT).

The corrected formula of GFq; s(�; (1 + t=h)−l) is given by

f(u; �) =
q
s
Cau

(q−2)=2
1 (1 + u1)−(q+s)=2

(
h

h + �2

)l−(q+s)=2

×2F1

(
q + s

2
; l− q + s

2
;
q
2
;

�2
1

h + �2

)
:

It follows that P(�; g) = 1 − Ca(h=(h + �2))l−(q+s)=2 ∑∞
k=0 [�2kJ (k)=(h + �2)k ]S(k),

where Ca and S(k) are de+ned earlier, 2F1(a; b; c; z) =
∑∞

k=0 [(a)k(b)k =k!(c)k ]zk is the
Gauss-hypergeometric function and J (k) = ((q + s=2))k(l− (q + s)=2)k =[k!(q=2)k ].

Example 3. The multivariate t distribution, MT(h), is de+ned via the generating func-
tion g(t) = (1 + t=h)−(h+n)=2 where h is the degree-of-freedom parameter. Recall the
multivariate t distribution is a special case of the Pearson type VII distribution with
l = (h + n)=2. By simple algebra

E(Z4
i ) =

3h2

4
"(h=2 − 2)
"(h=2)

=
3h2

(h− 2)(h− 4)

and

E(Z2
i Z

2
j ) = C2

∫ ∞

0

∫ ∞

0

√
st
(

1 +
s + t
h

)−(h+2)=2

ds dt

=
h2

4
"(h=2 − 2)
"(h=2)

=
h2

(h− 2)(h− 4)
:

Therefore 9 = E(Z2
i ) = h=(h− 2) for h¿ 2, and : = h2=(h− 2)(h− 4) − 1 for h¿ 4.

Notice that both of 9 and : are monotone decreasing functions of the degree-of-freedom
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parameter, h. However g(t) is not a monotone function of h since the sign of the
function, @g(t; h)=@h = g(t; h){− 1

2 log(1 + t=h) + (h + n)=2t=(h + th)}, depends on the
value of t. Therefore Theorem 2 cannot be applied. In fact Fig. 6 shows that the power
function of GF3;95(MT(h)) is not monotone in h. Surprisingly for small �(¡ 4), the
power is even higher for smaller value of h which correspond to heavier tails. In the
case of h=1 where the underlying distribution is Cauchy which has no +nite moments,
the power is the highest for �¡ 4.

5. Discussion

We have seen that � is aNected by
∑n

i=1 (�i − R�)2 (in the simpli+ed example) or
by �TA2� (in the general case), both of which are random variables and have the
(central) generalized chi-squared distributions. When the noncentrality parameter is
nonzero, the generalized chi-squared distribution always depends on g(·). However it
has been shown that the density generator g(·) aNects the power of � in an intricate
way such that 9 and : cannot completely determine the power behavior. We also found
the interesting phenomenon for the multivariate t family that in the region of small
noncentrality tail heaviness even has a positive eNect on the power. Practically it is
more di/cult to detect the parameter value when it is close to the null hypothesis,
thus the t family even has the advantage over the normal family in terms of the power
consideration. We suspect that such a counter-intuitive result may be due to the eNect
of B in (10). For example for the Cauchy distribution, no moments exist so that even
when

∑n
i=1 (�i− R�)2 is large the value of B may still be large which pulls up the power.

Recall that when g(·) is a monotone function, the test statistic � produces an equivalent
test as the LR statistic which possesses some optimality properties. This implies that
if � has poor power, there is no much room to improve by constructing other tests.
Note that the discussions in the article are based on +nite samples. A referee pointed
out that Fang and Yuan (1993) discussed asymptotic behavior of the power for some
spherical distributions of the error.
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Appendix A

A.1. Proof of Lemma 1

There are two ways to prove the lemma. The +rst approach is to re-express U in
(6) according to the de+nition of the GF distribution. Another alternative is to derive
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the density of U from the joint density of (U1; U2) derived by Fan (1986) and show
it as the same as the GF density in (7). Here we present the +rst approach and for the
second method, please refer to Wang (1993). Speci+cally we want to show that

U =
Y TA1Y + 2bT

1A1Y + bT
1A1b1

Y TA2Y
=d

W T
(1)W(1)=n1

W T
(2)W(2)=n2

;

where

(
W(1)

W(2)

)
∼ ECn1+n2




�(1)

In1+n2

�(2)


 ;

W(i) : ni × 1�(i) : ni × 1 (i = 1; 2); �T
(1)�(1) = �2 = c; �T

(1)�(1) = 0, There exist orthogonal
matrices, "1, and "2, such that

"T
i Ai"i =

(
Ini 0

0 0

)
(i = 1; 2):

Letting X = "T
1Y , it is easy to show that

Y TA1Y = Y T("T
1 )−1"T

1A1"1"−1
1 Y = X T

(
In1 0

0 0

)
X =

n1∑
i=1

X 2
i :

Letting b∗1 = "T
1b1, since "T

1 = "−1
1 it follows that

2bT
1Y = 2bT

1"1"−1
1 Y = 2bT

1"1X = 2bT
1A1"1X

=2bT
1""TA1"X = 2b∗T

1

(
In1 0

0 0

)
X = 2

n1∑
i=1

b∗1iXi

and bT
1A1b1 = bT

1"1"T
1A1"1"−1

1 b1 =
∑n1

i=1 b∗2
1i = �2. Therefore one can write U1 =∑n1

i=1 (Xi + b∗1i)
2 = W T

(1)W(1), where

W(1) =




Xi1 + b∗1i

·
·
·

Xin1 + b∗1n1



∼ ECn1







b∗11

·
·
·

b∗1n1



; In1 ; g




:

Similarly letting Z="T
2Y , we get Y TA2Y =

∑n2
i=1 Z2

i =W T
(2)W(2) and W(2)=(Z1; : : : ; Zn2 )

T

∼ ECn2 (0; In2 ; g). Then by the de+nition in (6), we have shown that U ∼ GFn1 ;n2 (�
2).
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A.2. Proof of Theorem 2

Since g(t; >) is a monotone diNerentiable function of >, then one can determine
7=sign(@g(t; >)=@>). Since g is a density generator it follows from Lebesgue’s theorem,
it follows that

@9(>)
@>

= C1

∫ ∞

0
t1=2

@g(t; >)
@>

= WC1

∫ ∞

0

∣∣∣∣t1=2 @g(t; >)
@>

∣∣∣∣ dt:
@:(>)
@>

=
C1

n + 2

∫ ∞

0
t3=2

@g(t; >)
@>

dt +
(n− 1)C2

n + 2

∫ ∞

0

∫ ∞

0

√
st
@g(s + t; >)

@>
ds dt

= 7
C1

n + 2

∫ ∞

0

∣∣∣∣t3=2 @g(t; >)
@>

∣∣∣∣ dt
+7

(n− 1)C2

n + 2

∫ ∞

0

∫ ∞

0

∣∣∣∣√st
@g(s + t; >)

@>

∣∣∣∣ ds dt:

Since the integrands in the above expressions are positive functions and Cj ¿ 0
(j = 1; 2), hence sign(@9(>)=@>) = sign(@:(>)=@>) = 7. Similarly

@P(�; g; >)
@>

= −
∫ C5

0

@f(u; �; g; >)
@>

du

with f(u; �; g; >) given in (7). It is easy to show that the sign of @f(u; �; g; >)=@> is the
same as 7. Hence sign( @P(�;g;>)

@> ) = −7.
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