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Abstract

A graphG* is 1-edge fault-tolerant with respect to a graphdenoted by 1-EFTXg), if every graph obtained by removing
any edge fronG* containsG. A 1-EFT(G) graph is optimal if it contains the minimum number of edges among all 1-GFT(
graphs. Theth ladder graphLy, is defined to be the cartesian product of #jeand P, where P, is then-vertex path graph.

In this paper, we present several 1-edge fault-tolerant graphs with respect to ladders. Some of these graphs are proven to b

optimal.
00 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and notations

In this paper, angraph means an undirected graph
in which multiple edges are allowed. L&t= (V, E)
be a graph wher& (= V(G)) is the vertexx of V,
deg;(x) denotes its degree iG. Let E’ be a subset
of E. We useG — E’ to denote the spanning subgraph
of G with its edge set to b& — E’. For convenience,
G — e denotesG — {e}. Let G1 = (V1, E1) andGy =
(Va, E2) be two graphs. Theartesian product of G
and G, denoted byG1 x G2, is the smallest graph
with the vertex setV; x V2 such that the subgraph
induced byVi x {vp} is isomorphic toG; for every
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v2 € Vo, and the subgraph induced Hy;} x V> is
isomorphic toG» for everyv; € Vs.

Motivated by the study of computers and commu-
nication networks that tolerate failure of their compo-
nents, Harary and Hayes [6] have formulated the con-
cept of edge fault tolerance in graphs. Givemtag
get graph G = (V, E), let G* = (V, E*) be a span-
ning supergraph of;. G* is said to be-EFT(G), if
G* — F contains a subgraph isomorphio@o which is
called areconfiguration for k-edge faultF (or simply
reconfiguration), for any F C E* and|F| =k. A re-
configuration can be viewed as a relabeling of ver-
tices of G* such thatG* — F containsG. We some-
times write ‘G* is a k-EFT(G) graph” as ‘G* is a
k-EFT(G)”, for short. The graphG* is said to be op-
timal if G* contains the smallest number of edges
among alk-EFT(G) graphs. We use ¢ftG) to denote
the difference between the number of edges in an opti-
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malk-EFT(G) graph and that i;. Families ofk-EFT

graphs with respect to some graphs have been studied

in literature [1,2,4,6-8,10-17].

The n-dimensional meshM (m1, mo, ..., m,) is
defined to be the cartesian produBf, x Py, x

- x Py, of n paths. Mesh is a widely used graph
model for computer networks [9]. Farrag [4] has pre-
sented families of 1-EFT graphs with respect to the
n-dimensional meshes. In [6], the graghm1, m2,
covymy) = Cipy X Cpyy X -+- x Cyy, Was proposed as
a 1-EFT graphs with respect to thedimensional
meshM (m1, mo, ..., my,). We call such graphswul-
tidimensional torus graphs because their construction
is similar to that of the torus forn = 2 [5]. Harary
and Hayes [6] conjectured that these multidimensional
torus graphs are optimalif; > 3 for everyi. There is
another 1-EFT graph for the-dimensional meshes.
We assume the vertices @ff m1, mo,...,m,) are
labeled canonically. Thusy;, i,,...;, IS a vertex of
M(my,mp,...,my,) if and only if 1 <i; < m; for
1< j <n.Moreoveryx;, i, i, IS adjacent to another
vertex x;, j,....j, if there exist a indext such that
lir. — jx|l =1 andi; = j, for all indicest # k. Then,

Vp = {Xiyip,...in | ik =1 Ormy for some 1< k < n}is
the set operipheral vertices. Letx;, ;,... ;, be avertex

in V,,. Theantipodal vertex of x;, i,.....i, IS X jo,....jns
with ji = my —i; + 1, which is another vertex iii,,. It

is easy to check that every vertexiip) has exactly one
antipodal. InM (m1, m2, ..., my,), we add the edges
joining each vertex inV, to its antipodal counter-
part to form a new graphP(my,mo,...,m,). We
call theseP (m1, mo, ..., m,) projective-plane graphs
because their construction is similar to that of the
projective plane whem = 2 [5]. It is proven in
[3]that P(m1, mo, ..., my) is also 1-EFTY (m1, mao,
...,my)) and it contains fewer edges than that of
C(mi1,ma,...,my). Thus, the conjecture posed in [6]
is disproved with these projective-plane graphs.

The projective-plane graphs are optimal for some
cases but not for all. Note that evesydimensional
hypercube can be viewed as the maste, 2, .. ., 2).
Our P(2,2,...,2) is actually the same 1-EFT graph
as that proposedin [1,6,7,13,16]. Th#2, 2, ..., 2)
is an optimal 1-EFT graph. It is proved in [3] that
the graph in Fig. 1(a) is a 1-EFM(3, 2)) and the
graphin Fig. 1(b) is a 1-EF (4, 2)). With these two
examples, we know that the projective-plane graphs
may not be optimal for some cases. Furthermore,
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Fig. 1. (a) A 1-EFTM(3, 2)), L%; (b) a 1-EFT(4(4,2)), L}.

the problem of finding the optimal 1-EFT for ait
dimensional meshes remains unsolved.

In this paper, we only aim at the 1-EFT graphs
for M (k,2) with k > 2. For simplicity, thekth lad-
der graph L, is defined to beM(k, 2). Since the
projective-plane grapl® (k, 2) is a 1-EFT{;) graph,
we know that eft(L) < k. In this paper, we will prove
by constructing a 1-EFT() graphL; that eft (L) <
k—1ifkisoddandk >7,and eft(L;) <k —2ifk
is even and > 4. Moreover, we prove that eft’,) =
efty(L3) = eft1(Lg) =2, and eft(Ls) = 3.

2. Some 1-EFT designsfor ladders

The vertices ofL; can be labeled by; ; with
1<i<kand1< j < 2canonically. The vertices 1,
Xk.1, X1,2, andxy 2 are called theorner verticesof Ly.
We have the following theorem:

Theorem 1. Let L} be a 1-EFT(Ly) graph. Then we
have

0] degLZ (x) > 3for any vertex x of L%, and
(i) efte(Ly) > 2.

Proof. Suppose some vertaxwith degLZf(x) =2. Let

e be any edge incident with. Obviously, degz_e (x)

= 1. Since deg, (x) > 2 for any vertexx of Ly, Ly is

not a subgraph oL} — e. We obtain a contradiction
that L} is a 1-EFT{) graph. Hence, dqg(x) > 3.
Since there are exactly four corner vertices in every
Ly, we have eft(Ly) > 2. O

Corollary 1. efty (Ly) > 2if k > 4.
Proof. Itis observed thatthere are exactly three differ-

ent ways of joining the four corner verticesin with
two edges, namely(x1,1, x1,2), (xx,1, Xk,2)}, {(x1,1,



Xk,1)s (x1,2, xk,2)}, and{(x1,1, Xk, 2), (x1,2, x¢,1)}. Itis
observed that none of the graphs obtained by joining
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Fig. 2. A 1-EFT((5,2)), L.

={(11.x1.2)},
(xi,1, %i2) | 2< i < 4},

(x51,%x52)},

(x1,1,x2,1), (x1,2,X2,2) ¢,

A=
B={
c={
D={ }
E ={(x2,1,x31), (x2,2,x32)},
F={ J

(x3,1, X4,1), (x3,2, X4.2) |,

two edges to the corner vertices bf with k > 4 is G = {(x41, x5,1), (x4,2, x52)}.
1-EFT(Ly). Hence eft(Ly) > 2if k> 4. O

We can reconfigurd.s in L for any faulty edgee

2.1. Optimal 1-EFT(Ly), 1-EFT(L3), 1-EFT(Ly) in A (B, C, D, E, F, andG, respectively) as shown

graphs

in Figs. 3(a), (3(b), 3(c), 3(d), 3(e), 3(f), and 3(g),
respectively). Hencé; is 1-EFT(Ls). The following

Let L} (L%, and L, respectively) be the graph theorem follows from Corollary 1.
P(2,2) (the graphin Figs. 1(a) and 1(b), respectively).
From the above discussior,} is 1-EFT(Ly) for Theorem 3. efty(Ls) = 3.
k =2, 3, and 4. Since there are exactly 2 edges
added toL; with k = 2, 3, and 4, by Theorem 1  2.3. 1-EFT(L;) for graphswhere k > 4 and even
these graphs are optimal. It can be verified that the
optimal 1-EFT{y) is unique fork = 2, 3, and 4 In this subsection, we are going to construct 1-
by checking all the three cases joining two edges to EFT(L) graphs wheré is an even integer with > 4.
the corner vertices of;. We obtain the following Let the spanning supergraplj of L, be the graph that

theorem: addsE’ = {(x;, j, xx—i+1,;) |1 1<i <k/2, j=1,2}t0
E(Ly) as shown in Fig. 4(a). The graph in Fig. 4(a)
Theorem 2. efty (L) = 2 for k =2, 3, and 4. is actually isomorphic taM(k/2,2,2) as shown in

2.2. Anoptimal 1-EFT(Ls) graph

Fig. 4(b). We can reconfigurg, in L} as shown in
Fig. 4(c) for any faulty edge of the foriw; 1, x; 2) or
as shown in Fig. 4(d) for any faulty edge of the form

Consider the spanning supergraph of Ls given (%i,1, Xi+1,1) OF (xi 2, Xi+12). Hence,M (k/2,2,2) is
by E(LE) = E(Ls) U {(x1.1, X52), (¥1.2, x4.2), (x2.1, a 1-EFT(). We obtain the following theorem:
x51)} as shown in Fig. 2.

Edges ofLs can be divided into the following 7  Theorem 4. eft;(Lx) < k — 2 where k is an even
classes: namely,

integer with k > 4.

Y1 Xy Xp2  Xpa X Fag Xy, Xop o Xy Xsp Xy X5, X120 X Xy X5 X5,
J o ﬁ J)—TT s o o JM J—E%ﬁ
[ & PR S & —d = S S L&—v
Xsr Xsz X320 Xy X5y X5 Xy Y51 Far Xap X ¥y Yur Xsp Xsp Xy Xy
(b) (c) (d)
Far *a2 X320 X2 X Yyo Xy X X0 Tz K Xy

Fig. 3. A1-EFT(M (5, 2)), L.
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Fig. 4. ()L}, a 1-EFT(Ly) wherek is even and > 4; (b) the 3-dimensional mest (k/2, 2, 2); (c) reconfigureL;, for any faulty edge of the
form (x; 1, x; 2); and (d) reconfigure.;, for any faulty edge of the fornx; 1, x;41,1), of (x; 2, Xj4+1,2)-

Fig. 5. A 1-EFT(Ly) wherek is odd andk > 7.

2.4. 1-EFT(Ly) graphsfor k > 7 and odd

Assumek is an odd integer witlt > 7. Construct
the spanning supergraplii of L; by addingE’ =
{(x1,2, x4,2), (x3,2, X6,2), (2,1, X5,1), (¥4,1, X7,1), (X1,1,
x5,2), (x3,1, x7,2)} U {(x21,j, x2i43;) | 3 < i < (k —
3)/2, j =1,2}as shownin Fig. 5.

Edges ofL; can be divided into the following 7
classes:

(xi1.x2) |i=1,2}U
(x2i,j. x2i41,j) | 4<i < (k—=3)/2, j=12};

A=
{

B = {(xj1,x%2)|i=34}U
{

¢ = {

(xpi—1,js%2i ) 14<i<(k—=1D/2, j=1,2};

= {(x5,1.x52)} U {(xi1.%2) [4<i < (k—1)/2};

D = {(x;1.%2) i =67 U{(xj1.x2) |i=kk—1};

E = {(x1j.x2,) 1 j =12} U{(x3,x4)j=12};

F = {(x2j.,x3;)1j=12}U{(xs,x6 ;) j=12};

G = {(x4,j.x5)) | j =12} U{(xgj.x7,,) | j=12}U
{O—r,j k) 17 =12}

We can reconfigurd, in L} for any faulty edgee

in A, B, C, D, E, F, andG respectively as shown
in Figs. 6(a), 6(b), 6(c), 6(d), 6(e), 6(f), and 6(Q),
respectively. Hencd; is 1-EFT(Ls). We obtain the
following theorem:

Theorem 5. eft1 (L) < k—1wherek isan odd integer
withk > 7.
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Fig. 6. Reconfigures af; in L} wherek is odd andk > 7 for any faulty edge im, B, C, D, E, F, andG, respectively.
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