

Information Processing Letters 84 (2002) 87–92

Information Processing Letters

www.elsevier.com/locate/ipl

Optimal 1-edge fault-tolerant designs for ladders *

Yen-Chu Chuang a, Lih-Hsing Hsu a,*, Chung-Haw Chang b

Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan 30050, ROC
 Ming-Hsin Institute of Technology, Hsinchu, Taiwan, ROC

Received 14 September 2001; received in revised form 14 January 2002

Communicated by K. Iwama

Abstract

A graph G^* is 1-edge fault-tolerant with respect to a graph G, denoted by 1-EFT(G), if every graph obtained by removing any edge from G^* contains G. A 1-EFT(G) graph is optimal if it contains the minimum number of edges among all 1-EFT(G) graphs. The kth ladder graph, L_k , is defined to be the cartesian product of the P_k and P_2 where P_n is the n-vertex path graph. In this paper, we present several 1-edge fault-tolerant graphs with respect to ladders. Some of these graphs are proven to be optimal.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Cartesian product; Edge fault tolerance; Meshes; Ladders; Fault tolerance

1. Introduction and notations

In this paper, any *graph* means an undirected graph in which multiple edges are allowed. Let G = (V, E) be a graph where V := V(G) is the vertex x of V, $\deg_G(x)$ denotes its degree in G. Let E' be a subset of E. We use G - E' to denote the spanning subgraph of G with its edge set to be E - E'. For convenience, G - e denotes $G - \{e\}$. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *cartesian product* of G_1 and G_2 , denoted by $G_1 \times G_2$, is the smallest graph with the vertex set $V_1 \times V_2$ such that the subgraph induced by $V_1 \times \{v_2\}$ is isomorphic to G_1 for every

E-mail address: lhhsu@cc.nctu.edu.tw (L.-H. Hsu).

 $v_2 \in V_2$, and the subgraph induced by $\{v_1\} \times V_2$ is isomorphic to G_2 for every $v_1 \in V_1$.

Motivated by the study of computers and communication networks that tolerate failure of their components, Harary and Hayes [6] have formulated the concept of edge fault tolerance in graphs. Given a target graph G = (V, E), let $G^* = (V, E^*)$ be a spanning supergraph of G. G^* is said to be k-EFT(G), if $G^* - F$ contains a subgraph isomorphic to G, which is called a reconfiguration for k-edge fault F (or simply reconfiguration), for any $F \subset E^*$ and |F| = k. A reconfiguration can be viewed as a relabeling of vertices of G^* such that $G^* - F$ contains G. We sometimes write " G^* is a k-EFT(G) graph" as " G^* is a k-EFT(G)", for short. The graph G^* is said to be optimal if G^* contains the smallest number of edges among all k-EFT(G) graphs. We use eft $_k(G)$ to denote the difference between the number of edges in an opti-

[★] This work was supported in part by the National Science Council of the Republic of China under Contract NSC 90-2213-E-009-148.

^{*} Corresponding author.

mal k-EFT(G) graph and that in G. Families of k-EFT graphs with respect to some graphs have been studied in literature [1,2,4,6–8,10–17].

The *n*-dimensional mesh $M(m_1, m_2, ..., m_n)$ is defined to be the cartesian product $P_{m_1} \times P_{m_2} \times$ $\cdots \times P_{m_n}$ of *n* paths. Mesh is a widely used graph model for computer networks [9]. Farrag [4] has presented families of 1-EFT graphs with respect to the *n*-dimensional meshes. In [6], the graph $C(m_1, m_2,$ $\ldots, m_n) = C_{m_1} \times C_{m_2} \times \cdots \times C_{m_n}$ was proposed as a 1-EFT graphs with respect to the n-dimensional mesh $M(m_1, m_2, \ldots, m_n)$. We call such graphs multidimensional torus graphs because their construction is similar to that of the torus for n = 2 [5]. Harary and Hayes [6] conjectured that these multidimensional torus graphs are optimal if $m_i \ge 3$ for every i. There is another 1-EFT graph for the n-dimensional meshes. We assume the vertices of $M(m_1, m_2, ..., m_n)$ are labeled canonically. Thus, $x_{i_1,i_2,...,i_n}$ is a vertex of $M(m_1, m_2, ..., m_n)$ if and only if $1 \le i_j \le m_j$ for $1 \leq j \leq n$. Moreover, $x_{i_1,i_2,...,i_n}$ is adjacent to another vertex $x_{j_1,j_2,...,j_n}$ if there exist a index k such that $|i_k - j_k| = 1$ and $i_t = j_t$ for all indices $t \neq k$. Then, $V_p = \{x_{i_1, i_2, ..., i_n} \mid i_k = 1 \text{ or } m_k \text{ for some } 1 \le k \le n\} \text{ is }$ the set of *peripheral vertices*. Let $x_{i_1,i_2,...,i_n}$ be a vertex in V_p . The antipodal vertex of $x_{i_1,i_2,...,i_n}$ is $x_{j_1,j_2,...,j_n}$, with $j_k = m_k - i_k + 1$, which is another vertex in V_p . It is easy to check that every vertex in V_p has exactly one antipodal. In $M(m_1, m_2, ..., m_n)$, we add the edges joining each vertex in V_p to its antipodal counterpart to form a new graph $P(m_1, m_2, ..., m_n)$. We call these $P(m_1, m_2, ..., m_n)$ projective-plane graphs because their construction is similar to that of the projective plane when n = 2 [5]. It is proven in [3] that $P(m_1, m_2, ..., m_n)$ is also 1-EFT $(M(m_1, m_2, ..., m_n))$ \ldots, m_n)) and it contains fewer edges than that of $C(m_1, m_2, \ldots, m_n)$. Thus, the conjecture posed in [6] is disproved with these projective-plane graphs.

The projective-plane graphs are optimal for some cases but not for all. Note that every n-dimensional hypercube can be viewed as the mesh M(2, 2, ..., 2). Our P(2, 2, ..., 2) is actually the same 1-EFT graph as that proposed in [1,6,7,13,16]. Thus, P(2,2,...,2) is an optimal 1-EFT graph. It is proved in [3] that the graph in Fig. 1(a) is a 1-EFT(M(3,2)) and the graph in Fig. 1(b) is a 1-EFT(M(4,2)). With these two examples, we know that the projective-plane graphs may not be optimal for some cases. Furthermore,

Fig. 1. (a) A 1-EFT(M(3,2)), L_3^* ; (b) a 1-EFT(M(4,2)), L_4^* .

the problem of finding the optimal 1-EFT for all *n*-dimensional meshes remains unsolved.

In this paper, we only aim at the 1-EFT graphs for M(k,2) with $k \ge 2$. For simplicity, the kth ladder graph L_k is defined to be M(k,2). Since the projective-plane graph P(k,2) is a 1-EFT (L_k) graph, we know that $\operatorname{eft}_1(L_k) \le k$. In this paper, we will prove by constructing a 1-EFT (L_k) graph L_k^* that $\operatorname{eft}_1(L_k) \le k-1$ if k is odd and $k \ge 7$, and $\operatorname{eft}_1(L_k) \le k-2$ if k is even and $k \ge 4$. Moreover, we prove that $\operatorname{eft}_1(L_2) = \operatorname{eft}_1(L_3) = \operatorname{eft}_1(L_4) = 2$, and $\operatorname{eft}_1(L_5) = 3$.

2. Some 1-EFT designs for ladders

The vertices of L_k can be labeled by $x_{i,j}$ with $1 \le i \le k$ and $1 \le j \le 2$ canonically. The vertices $x_{1,1}$, $x_{k,1}$, $x_{1,2}$, and $x_{k,2}$ are called the *corner vertices* of L_k . We have the following theorem:

Theorem 1. Let L_k^* be a 1-EFT(L_k) graph. Then we have

- (i) $\deg_{L_k^*}(x) \geqslant 3$ for any vertex x of L_k^* , and
- (ii) eft₁(\hat{L}_k) $\geqslant 2$.

Proof. Suppose some vertex x with $\deg_{L_k^*}(x) = 2$. Let e be any edge incident with x. Obviously, $\deg_{L_k^*-e}(x) = 1$. Since $\deg_{L_k}(x) \geqslant 2$ for any vertex x of L_k , L_k is not a subgraph of $L_k^* - e$. We obtain a contradiction that L_k^* is a 1-EFT(L_k) graph. Hence, $\deg_{L_k^*}(x) \geqslant 3$. Since there are exactly four corner vertices in every L_k , we have $\operatorname{eft}_1(L_k) \geqslant 2$. \square

Corollary 1. eft₁(L_k) > 2 *if* k > 4.

Proof. It is observed that there are exactly three different ways of joining the four corner vertices in L_k with two edges, namely $\{(x_{1,1}, x_{1,2}), (x_{k,1}, x_{k,2})\}$, $\{(x_{1,1}, x_{k,2}), (x_{k,1}, x_{k,2})\}$

Fig. 2. A 1-EFT(M(5,2)), L_5^* .

 $(x_{1,1}, (x_{1,2}, x_{k,2}))$, and $((x_{1,1}, x_{k,2}), (x_{1,2}, x_{k,1}))$. It is observed that none of the graphs obtained by joining two edges to the corner vertices of L_k with k > 4 is 1-EFT(L_k). Hence eft₁(L_k) > 2 if k > 4. \square

2.1. Optimal 1-EFT(L_2), 1-EFT(L_3), 1-EFT(L_4) graphs

Let L_2^* (L_3^* , and L_4^* , respectively) be the graph P(2,2) (the graph in Figs. 1(a) and 1(b), respectively). From the above discussion, L_k^* is 1-EFT(L_k) for k=2,3, and 4. Since there are exactly 2 edges added to L_k with k=2,3, and 4, by Theorem 1 these graphs are optimal. It can be verified that the optimal 1-EFT(L_k) is unique for k=2,3, and 4 by checking all the three cases joining two edges to the corner vertices of L_k . We obtain the following theorem:

Theorem 2. eft₁(
$$L_k$$
) = 2 for $k = 2, 3, and 4.$

2.2. An optimal 1-EFT(L_5) graph

Consider the spanning supergraph L_5^* of L_5 given by $E(L_5^*) = E(L_5) \cup \{(x_{1,1}, x_{5,2}), (x_{1,2}, x_{4,2}), (x_{2,1}, x_{5,1})\}$ as shown in Fig. 2.

Edges of L_5 can be divided into the following 7 classes: namely,

$$A = \{(x_{1,1}, x_{1,2})\},\$$

$$B = \{(x_{i,1}, x_{i,2}) \mid 2 \le i \le 4\},\$$

$$C = \{(x_{5,1}, x_{5,2})\},\$$

$$D = \{(x_{1,1}, x_{2,1}), (x_{1,2}, x_{2,2})\},\$$

$$E = \{(x_{2,1}, x_{3,1}), (x_{2,2}, x_{3,2})\},\$$

$$F = \{(x_{3,1}, x_{4,1}), (x_{3,2}, x_{4,2})\},\$$

$$G = \{(x_{4,1}, x_{5,1}), (x_{4,2}, x_{5,2})\}.$$

We can reconfigure L_5 in L_5^* for any faulty edge e in A (B, C, D, E, F, and G, respectively) as shown in Figs. 3(a), (3(b), 3(c), 3(d), 3(e), 3(f), and 3(g), respectively). Hence L_5^* is 1-EFT(L_5). The following theorem follows from Corollary 1.

Theorem 3.
$$eft_1(L_5) = 3$$
.

2.3. 1-EFT(L_k) for graphs where $k \ge 4$ and even

In this subsection, we are going to construct 1-EFT(L_k) graphs where k is an even integer with $k \ge 4$. Let the spanning supergraph L_k^* of L_k be the graph that adds $E' = \{(x_{i,j}, x_{k-i+1,j}) \mid 1 \le i < k/2, \ j=1,2\}$ to $E(L_k)$ as shown in Fig. 4(a). The graph in Fig. 4(a) is actually isomorphic to M(k/2,2,2) as shown in Fig. 4(b). We can reconfigure L_k in L_k^* as shown in Fig. 4(c) for any faulty edge of the form $(x_{i,1}, x_{i,2})$ or as shown in Fig. 4(d) for any faulty edge of the form $(x_{i,1}, x_{i+1,1})$ or $(x_{i,2}, x_{i+1,2})$. Hence, M(k/2, 2, 2) is a 1-EFT(L_k). We obtain the following theorem:

Theorem 4. eft₁ $(L_k) \le k-2$ where k is an even integer with $k \ge 4$.

Fig. 3. A 1-EFT(M(5, 2)), L_5^* .

Fig. 4. (a) L_k^* , a 1-EFT(L_k) where k is even and $k \ge 4$; (b) the 3-dimensional mesh M(k/2, 2, 2); (c) reconfigure L_k for any faulty edge of the form $(x_{i,1}, x_{i,2})$; and (d) reconfigure L_k for any faulty edge of the form $(x_{i,1}, x_{i+1,1})$, or $(x_{i,2}, x_{i+1,2})$.

Fig. 5. A 1-EFT(L_k) where k is odd and $k \ge 7$.

2.4. 1-EFT(L_k) graphs for $k \ge 7$ and odd

Assume k is an odd integer with $k \ge 7$. Construct the spanning supergraph L_k^* of L_k by adding $E' = \{(x_{1,2}, x_{4,2}), (x_{3,2}, x_{6,2}), (x_{2,1}, x_{5,1}), (x_{4,1}, x_{7,1}), (x_{1,1}, x_{5,2}), (x_{3,1}, x_{7,2})\} \cup \{(x_{2i,j}, x_{2i+3,j}) \mid 3 \le i \le (k-3)/2, j=1, 2\}$ as shown in Fig. 5.

Edges of L_k can be divided into the following 7 classes:

$$A = \{(x_{i,1}, x_{i,2}) \mid i = 1, 2\} \cup \{(x_{2i,j}, x_{2i+1,j}) \mid 4 \le i \le (k-3)/2, \ j = 1, 2\};$$

$$B = \{(x_{i,1}, x_{i,2}) \mid i = 3, 4\} \cup \{(x_{2i-1,j}, x_{2i,j}) \mid 4 \le i \le (k-1)/2, \ j = 1, 2\};$$

$$C = \{(x_{5,1}, x_{5,2})\} \cup \{(x_{i,1}, x_{i,2}) \mid 4 \le i \le (k-1)/2\};$$

$$D = \{(x_{i,1}, x_{i,2}) \mid i = 6, 7\} \cup \{(x_{i,1}, x_{i,2}) \mid i = k, k - 1\};$$

$$E = \{(x_{1,j}, x_{2,j}) \mid j = 1, 2\} \cup \{(x_{3,j}, x_{4,j}) \mid j = 1, 2\};$$

$$F = \{(x_{2,j}, x_{3,j}) \mid j = 1, 2\} \cup \{(x_{5,j}, x_{6,j}) \mid j = 1, 2\};$$

$$G = \{(x_{4,j}, x_{5,j}) \mid j = 1, 2\} \cup \{(x_{6,j}, x_{7,j}) \mid j = 1, 2\} \cup \{(x_{k-1,j}, x_{k,j}) \mid j = 1, 2\}.$$

We can reconfigure L_k in L_k^* for any faulty edge e in A, B, C, D, E, F, and G respectively as shown in Figs. 6(a), 6(b), 6(c), 6(d), 6(e), 6(f), and 6(g), respectively. Hence L_k^* is 1-EFT(L_k). We obtain the following theorem:

Theorem 5. eft₁(L_k) $\leq k-1$ where k is an odd integer with $k \geq 7$.

Fig. 6. Reconfigures of L_k in L_k^* where k is odd and $k \ge 7$ for any faulty edge in A, B, C, D, E, F, and G, respectively.

Acknowledgements

The authors are very grateful to the anonymous referees for their thorough review of the paper and many concrete and helpful suggestions.

References

 J. Bruck, R. Cypher, C.T. Ho, Wildcard dimensions, coding theory and fault-tolerant meshes and hypercubes, IEEE Trans. Comput. 44 (1995) 150–155.

- [2] J. Bruck, R. Cypher, C.T. Ho, On the construction of faulttolerant cube-connected cycles networks, J. Parallel Distributed Comput. 25 (1995) 98–106.
- [3] R.S. Chou, L.H. Hsu, 1-edge fault-tolerant design for meshes, Parallel Process. Lett. 4 (1994) 385–389.
- [4] A.A. Farrag, Tolerating faulty edges in a multidimensional mesh, Parallel Comput. 20 (1994) 1289–1301.
- [5] J.L. Gross, T.W. Tucker, Topological Graph Theory, John Wiley & Sons, New York, 1987.
- [6] F. Harary, J.P. Hayes, Edge fault tolerance in graphs, Networks 23 (1993) 135–142.
- [7] C.T. Ho, An observation on the bisectional interconnection networks, IEEE Trans. Comput. 41 (1992) 873–877.
- [8] H.K. Ku, J.P. Hayes, Optimally edge fault-tolerant trees, Networks 27 (1996) 203–214.
- [9] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann Publishers, San Mateo, CA, 1992.
- [10] M. Palio, W.W. Wong, C.K. Wong, Minimum k-hamiltonian graphs II, J. Graph Theory 10 (1986) 79–95.

- [11] C.J. Shih, K.E. Batcher, Adding multiple-fault tolerance to generalized cube networks, IEEE Trans. Parallel Distributed Systems 5 (1994) 785–792.
- [12] T.Y. Sung, M.Y. Lin, T.Y. Ho, Multiple-edge-fault tolerance with respect to hypercubes, IEEE Trans. Parallel Distributed Systems 8 (1997) 187–191.
- [13] S. Ueno, A. Bagchi, S.L. Hakimi, E.F. Schmeichel, On minimum fault-tolerant networks, SIAM J. Discrete Math. 6 (1993) 565–574.
- [14] S.Y. Wang, L.H. Hsu, T.Y. Sung, Faithful 1-edge fault tolerant graphs, Inform. Process. Lett. 61 (1997) 173–181.
- [15] W.W. Wong, C.K. Wong, Minimum k-hamiltonian graphs, J. Graph Theory 8 (1984) 155–165.
- [16] T. Yamada, K. Yamamoto, A. Ueno, Fault-tolerant graphs for hypercubes and tori, IEICE Trans. Inform. Systems E79-D (1996) 1147–1152.
- [17] T. Yamada, A. Ueno, Fault-tolerant graphs for tori, Networks 32 (1998) 181–188.