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Abstract

A graphG∗ is 1-edge fault-tolerant with respect to a graphG, denoted by 1-EFT(G), if every graph obtained by removing
any edge fromG∗ containsG. A 1-EFT(G) graph is optimal if it contains the minimum number of edges among all 1-EFT(G)
graphs. Thekth ladder graph,Lk , is defined to be the cartesian product of thePk andP2 wherePn is then-vertex path graph.
In this paper, we present several 1-edge fault-tolerant graphs with respect to ladders. Some of these graphs are proven to be
optimal.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and notations

In this paper, anygraph means an undirected graph
in which multiple edges are allowed. LetG = (V ,E)

be a graph whereV (= V (G)) is the vertexx of V ,
degG(x) denotes its degree inG. Let E′ be a subset
of E. We useG − E′ to denote the spanning subgraph
of G with its edge set to beE − E′. For convenience,
G − e denotesG − {e}. Let G1 = (V1,E1) andG2 =
(V2,E2) be two graphs. Thecartesian product of G1
and G2, denoted byG1 × G2, is the smallest graph
with the vertex setV1 × V2 such that the subgraph
induced byV1 × {v2} is isomorphic toG1 for every

✩ This work was supported in part by the National Science
Council of the Republic of China under Contract NSC 90-2213-E-
009-148.

* Corresponding author.
E-mail address: lhhsu@cc.nctu.edu.tw (L.-H. Hsu).

v2 ∈ V2, and the subgraph induced by{v1} × V2 is
isomorphic toG2 for everyv1 ∈ V1.

Motivated by the study of computers and commu-
nication networks that tolerate failure of their compo-
nents, Harary and Hayes [6] have formulated the con-
cept of edge fault tolerance in graphs. Given atar-
get graph G = (V ,E), let G∗ = (V ,E∗) be a span-
ning supergraph ofG. G∗ is said to bek-EFT(G), if
G∗ −F contains a subgraph isomorphic toG, which is
called areconfiguration for k-edge faultF (or simply
reconfiguration), for anyF ⊂ E∗ and |F | = k. A re-
configuration can be viewed as a relabeling of ver-
tices ofG∗ such thatG∗ − F containsG. We some-
times write “G∗ is a k-EFT(G) graph” as “G∗ is a
k-EFT(G)”, for short. The graphG∗ is said to be op-
timal if G∗ contains the smallest number of edges
among allk-EFT(G) graphs. We use eftk(G) to denote
the difference between the number of edges in an opti-
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malk-EFT(G) graph and that inG. Families ofk-EFT
graphs with respect to some graphs have been studied
in literature [1,2,4,6–8,10–17].

The n-dimensional meshM(m1,m2, . . . ,mn) is
defined to be the cartesian productPm1 × Pm2 ×
· · · × Pmn of n paths. Mesh is a widely used graph
model for computer networks [9]. Farrag [4] has pre-
sented families of 1-EFT graphs with respect to the
n-dimensional meshes. In [6], the graphC(m1,m2,

. . . ,mn) = Cm1 × Cm2 × · · · × Cmn was proposed as
a 1-EFT graphs with respect to then-dimensional
meshM(m1,m2, . . . ,mn). We call such graphsmul-
tidimensional torus graphs because their construction
is similar to that of the torus forn = 2 [5]. Harary
and Hayes [6] conjectured that these multidimensional
torus graphs are optimal ifmi � 3 for everyi. There is
another 1-EFT graph for then-dimensional meshes.
We assume the vertices ofM(m1,m2, . . . ,mn) are
labeled canonically. Thus,xi1,i2,...,in is a vertex of
M(m1,m2, . . . ,mn) if and only if 1 � ij � mj for
1 � j � n. Moreover,xi1,i2,...,in is adjacent to another
vertex xj1,j2,...,jn if there exist a indexk such that
|ik − jk| = 1 andit = jt for all indicest �= k. Then,
Vp = {xi1,i2,...,in | ik = 1 or mk for some 1� k � n} is
the set ofperipheral vertices. Letxi1,i2,...,in be a vertex
in Vp. Theantipodal vertex of xi1,i2,...,in is xj1,j2,...,jn ,
with jk = mk − ik +1, which is another vertex inVp. It
is easy to check that every vertex inVp has exactly one
antipodal. InM(m1,m2, . . . ,mn), we add the edges
joining each vertex inVp to its antipodal counter-
part to form a new graphP(m1,m2, . . . ,mn). We
call theseP(m1,m2, . . . ,mn) projective-plane graphs
because their construction is similar to that of the
projective plane whenn = 2 [5]. It is proven in
[3] thatP(m1,m2, . . . ,mn) is also 1-EFT(M(m1,m2,

. . . ,mn)) and it contains fewer edges than that of
C(m1,m2, . . . ,mn). Thus, the conjecture posed in [6]
is disproved with these projective-plane graphs.

The projective-plane graphs are optimal for some
cases but not for all. Note that everyn-dimensional
hypercube can be viewed as the meshM(2,2, . . . ,2).
Our P(2,2, . . . ,2) is actually the same 1-EFT graph
as that proposed in [1,6,7,13,16]. Thus,P(2,2, . . . ,2)

is an optimal 1-EFT graph. It is proved in [3] that
the graph in Fig. 1(a) is a 1-EFT(M(3,2)) and the
graph in Fig. 1(b) is a 1-EFT(M(4,2)). With these two
examples, we know that the projective-plane graphs
may not be optimal for some cases. Furthermore,

Fig. 1. (a) A 1-EFT(M(3,2)), L∗
3; (b) a 1-EFT(M(4,2)), L∗

4.

the problem of finding the optimal 1-EFT for alln-
dimensional meshes remains unsolved.

In this paper, we only aim at the 1-EFT graphs
for M(k,2) with k � 2. For simplicity, thekth lad-
der graph Lk is defined to beM(k,2). Since the
projective-plane graphP(k,2) is a 1-EFT(Lk) graph,
we know that eft1(Lk) � k. In this paper, we will prove
by constructing a 1-EFT(Lk) graphL∗

k that eft1(Lk) �
k − 1 if k is odd andk � 7, and eft1(Lk) � k − 2 if k

is even andk � 4. Moreover, we prove that eft1(L2) =
eft1(L3) = eft1(L4) = 2, and eft1(L5) = 3.

2. Some 1-EFT designs for ladders

The vertices ofLk can be labeled byxi,j with
1 � i � k and 1� j � 2 canonically. The verticesx1,1,
xk,1, x1,2, andxk,2 are called thecorner vertices of Lk .
We have the following theorem:

Theorem 1. Let L∗
k be a 1-EFT(Lk) graph. Then we

have

(i) degL∗
k
(x) � 3 for any vertex x of L∗

k , and
(ii) eft1(Lk) � 2.

Proof. Suppose some vertexx with degL∗
k
(x) = 2. Let

e be any edge incident withx. Obviously, degL∗
k−e(x)

= 1. Since degLk
(x) � 2 for any vertexx of Lk , Lk is

not a subgraph ofL∗
k − e. We obtain a contradiction

that L∗
k is a 1-EFT(Lk) graph. Hence, degL∗

k
(x) � 3.

Since there are exactly four corner vertices in every
Lk , we have eft1(Lk) � 2. ✷
Corollary 1. eft1(Lk) > 2 if k > 4.

Proof. It is observed that there are exactly three differ-
ent ways of joining the four corner vertices inLk with
two edges, namely{(x1,1, x1,2), (xk,1, xk,2)}, {(x1,1,
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Fig. 2. A 1-EFT(M(5,2)), L∗
5.

xk,1), (x1,2, xk,2)}, and{(x1,1, xk,2), (x1,2, xk,1)}. It is
observed that none of the graphs obtained by joining
two edges to the corner vertices ofLk with k > 4 is
1-EFT(Lk). Hence eft1(Lk) > 2 if k > 4. ✷
2.1. Optimal 1-EFT(L2), 1-EFT(L3), 1-EFT(L4)

graphs

Let L∗
2 (L∗

3, and L∗
4, respectively) be the graph

P(2,2) (the graph in Figs. 1(a) and 1(b), respectively).
From the above discussion,L∗

k is 1-EFT(Lk) for
k = 2, 3, and 4. Since there are exactly 2 edges
added toLk with k = 2, 3, and 4, by Theorem 1
these graphs are optimal. It can be verified that the
optimal 1-EFT(Lk) is unique for k = 2, 3, and 4
by checking all the three cases joining two edges to
the corner vertices ofLk . We obtain the following
theorem:

Theorem 2. eft1(Lk) = 2 for k = 2,3, and 4.

2.2. An optimal 1-EFT(L5) graph

Consider the spanning supergraphL∗
5 of L5 given

by E(L∗
5) = E(L5) ∪ {(x1,1, x5,2), (x1,2, x4,2), (x2,1,

x5,1)} as shown in Fig. 2.
Edges ofL5 can be divided into the following 7

classes: namely,

A = {
(x1,1, x1,2)

}
,

B = {
(xi,1, xi,2) | 2 � i � 4

}
,

C = {
(x5,1, x5,2)

}
,

D = {
(x1,1, x2,1), (x1,2, x2,2)

}
,

E = {
(x2,1, x3,1), (x2,2, x3,2)

}
,

F = {
(x3,1, x4,1), (x3,2, x4,2)

}
,

G = {
(x4,1, x5,1), (x4,2, x5,2)

}
.

We can reconfigureL5 in L∗
5 for any faulty edgee

in A (B, C, D, E, F , andG, respectively) as shown
in Figs. 3(a), (3(b), 3(c), 3(d), 3(e), 3(f), and 3(g),
respectively). HenceL∗

5 is 1-EFT(L5). The following
theorem follows from Corollary 1.

Theorem 3. eft1(L5) = 3.

2.3. 1-EFT(Lk) for graphs where k � 4 and even

In this subsection, we are going to construct 1-
EFT(Lk) graphs wherek is an even integer withk � 4.
Let the spanning supergraphL∗

k of Lk be the graph that
addsE′ = {(xi,j , xk−i+1,j ) | 1 � i < k/2, j = 1,2} to
E(Lk) as shown in Fig. 4(a). The graph in Fig. 4(a)
is actually isomorphic toM(k/2,2,2) as shown in
Fig. 4(b). We can reconfigureLk in L∗

k as shown in
Fig. 4(c) for any faulty edge of the form(xi,1, xi,2) or
as shown in Fig. 4(d) for any faulty edge of the form
(xi,1, xi+1,1) or (xi,2, xi+1,2). Hence,M(k/2,2,2) is
a 1-EFT(Lk). We obtain the following theorem:

Theorem 4. eft1(Lk) � k − 2 where k is an even
integer with k � 4.

Fig. 3. A 1-EFT(M(5,2)), L∗
5.
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Fig. 4. (a)L∗
k
, a 1-EFT(Lk) wherek is even andk � 4; (b) the 3-dimensional meshM(k/2,2,2); (c) reconfigureLk for any faulty edge of the

form (xi,1, xi,2); and (d) reconfigureLk for any faulty edge of the form(xi,1, xi+1,1), or (xi,2, xi+1,2).

Fig. 5. A 1-EFT(Lk) wherek is odd andk � 7.

2.4. 1-EFT(Lk) graphs for k � 7 and odd

Assumek is an odd integer withk � 7. Construct
the spanning supergraphL∗

k of Lk by addingE′ =
{(x1,2, x4,2), (x3,2, x6,2), (x2,1, x5,1), (x4,1, x7,1), (x1,1,

x5,2), (x3,1, x7,2)} ∪ {(x2i,j , x2i+3,j ) | 3 � i � (k −
3)/2, j = 1,2} as shown in Fig. 5.

Edges ofLk can be divided into the following 7
classes:

A = {
(xi,1, xi,2) | i = 1,2

} ∪
{
(x2i,j , x2i+1,j ) | 4 � i � (k − 3)/2, j = 1,2

};
B = {

(xi,1, xi,2) | i = 3,4
} ∪

{
(x2i−1,j , x2i,j ) | 4 � i � (k − 1)/2, j = 1,2

};
C = {

(x5,1, x5,2)
} ∪ {

(xi,1, xi,2) | 4 � i � (k − 1)/2
};

D = {
(xi,1, xi,2) | i = 6,7

} ∪ {
(xi,1, xi,2) | i = k, k − 1

};
E = {

(x1,j , x2,j ) | j = 1,2
} ∪ {

(x3,j , x4,j ) | j = 1,2
};

F = {
(x2,j , x3,j ) | j = 1,2

} ∪ {
(x5,j , x6,j ) | j = 1,2

};
G = {

(x4,j , x5,j ) | j = 1,2
} ∪ {

(x6,j , x7,j ) | j = 1,2
} ∪

{
(xk−1,j , xk,j ) | j = 1,2

}
.

We can reconfigureLk in L∗
k for any faulty edgee

in A, B, C, D, E, F , andG respectively as shown
in Figs. 6(a), 6(b), 6(c), 6(d), 6(e), 6(f), and 6(g),
respectively. HenceL∗

k is 1-EFT(Lk). We obtain the
following theorem:

Theorem 5. eft1(Lk) � k−1 where k is an odd integer
with k � 7.
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Fig. 6. Reconfigures ofLk in L∗
k wherek is odd andk � 7 for any faulty edge inA,B,C,D,E,F , andG, respectively.
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