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Energy states and magnetization in nanoscale quantum rings
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In this paper we calculate electron energy states and magnetization for torus shaped nanoscale quantum rings
with external magnetic fields. We use the three-dimensional effective one-band Hamiltonian, the energy and
position-dependent quasiparticle effective mass approximation, and the Ben Daniel-Duke boundary conditions.
The dependence of the energy spectrum on the sizes and shapes of the quantum rings was calculated and the
result agrees with experimental observations. Penetration of the magnetic field into torus region results in an
aperiodic oscillation of magnetization at zero temperature. It saturates with the increasing of the magnetic field
strength.
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[. INTRODUCTION tion, and the Ben Daniel-Duke boundary conditions. One of
the important goals is to go beyond the 1D and 2D parabolic
Microscale and mesoscale metallic and semiconductogonfinement potential pictures. In the 1D approach, varying
quantum rings have been received a considerable attentidghagnetic field strengtB only changes the phase of the elec-
for decaded:? Advances in the fabrication of semiconductor tronic wave function, resulting in periodic oscillations in
nanostructures have allowed us to construct nanoscale sydlagnetizationthe Aharonov-Bohm effegtIn the 2D con-
tems with a wide range of geometries. Recent experimentdinement parabolic potential approach the effects of the ring's
resu'ts on InGaAs torus Shaped quantum nanorings demoﬁnite W|dth and the f|n|te hal’d-Wa” Conﬁnement pOtentia| are
strated such capabilitiéhe typical lateral sizes and height NOt considered. In a realistic 3D description, penetration of
are about 100 nm and 2 nm, respectivif). The realization the magnetic field into the torus region can result in an ape-
Of such Semiconductor nanorings bridges the gap betweéilpd|c and saturated O§Ci||ati0ns_ in magnetization. Beca.use
quantum dots and mesoscale ring structures. Unusual excitéle main purpose of this paper is to study the effect of ring
tion propertieé‘lz and the Capabmty of trapping a Sing|e sizes and geometry on electronic magnetlzatlon, we concen-
magnetic flux in such nonsimply connected quantum system&ate on a noninteracting electron model at zero temperature.
make them attractive for potential practical applications. It is known that electron-electron interaction can change
The quantum mechanical properties of ring structureglectron energy spectrum and the magnetization of nanoscale
have long fascinated physicists. Most of theoretical studie§emiconductor object®. While for single electron quantum
however, either use the traditional one-dimensio(tD) ring we present a correct results, calculations of the magne-
model or assume that the electrons move in a twolization of few electron rings are done for reference pur-
dimensional(2D) plane confined by a parabolic potential POS€S.
(see, for instance1%13-1%and references therginOnly re-
cently, three-dimensional simulations are performed for toru
shaped rings with rectangutdt® and cut circle cross
sections'? These calculations provide explanations for ex-
perimental observations in the far-infrared region. It shows We assume that quantum rings are formed with the hard-
an importance of the full 3D description of the nanoscalewall confinement potential that is induced by a discontinuity
guantum rings. of conduction-band edge of the system components. This
To the best of our knowledge, theoretical investigations ofmodel is commonly used to calculate electron energy states
the electronic magnetization for 3D nanoscale quantum ringi quantum heterostructurésand allows us to solve the 3D
have never been done. It goes without saying that the 33chralinger equation with a minor number of additional ap-
simulations can obviously provide us with much better un-proximations. The effective one-band electron Hamiltonian
derstanding of the magnetic quantum phenomena in thi& given in the form
nanoscale quantum rings which are expected to be rather
different from those in mesoscale rings.

$I. THREE-DIMENSIONAL MODEL OF SEMICONDUCTOR
QUANTUM RINGS

In this paper, we theoretically investigate electron energy A =Hr;H,+V(r)+MBg(E’r) oB, (1)
systems and magnetization for 3D nanoscale quantum rings. 2m(E,r) 2
The calculations are done for realistic 3D models of InAs/
GaAs quantum rings with the finite hard-wall confinementwherell,=—iAV +eA(r) stands for the electron momen-

potential. We use the effective 3D one band Hamiltonian, théum operator,V, is the spatial gradient(r) is the vector
energy-dependent (nonparabolic  approximation and  potential 8=curlA), m(E,r) is the energy and position-
position-dependent quasipatrticle effective-mass approximadependent electron effective-mass defined by
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FIG. 1. Electron energy states for TS-InAs nanorings with various inner @dii;,=8 nm, (b) p;,=18 nm, () p;,=28 nm, and(d)

pin=38 nm, respectively.
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is the Landefactor. In the equations above{r) is the con-
finement potential,E4(r) and A(r) stand for position-

0, rel
V(r)=

Vo, rEZ.

We consider a cylindrically symmetrical quantum ring,
which is generated by rotation of a generating contour about
z axis. When the magnetic field is directed along thaxis
we can treat the problem in cylindrical coordinatesd,z).

The origin of the system is lying in the center of the ring.
The generating contours used in the calculation are: an el-
lipse for torus shape(T'S) rings[see, insert in Fig.(®] and

a cut ellipse for cut torus shap€@TS) “volcano-type” rings
[see, insert in Fig. @)].1%%°

Because of the cylindrical symmetry, the wave function
can be represented as

dependent energy-band gap and spin-orbit splitting in the
valence bandP is the momentum matrix element, is the
vector of the Pauli matricesn, ande are the free electron
mass and charge. For systems with sharp discontinuity of the
conduction-band edge between the inner region of the ringvherel =0,+=1,=2--, is the orbital quantum number. This
(material 2 and environmental crystal matrigmaterial 2 leads to a 2D problem in thep(z) coordinates, and the
the hard-wall confinement potential can be presented as  Schralinger equation is reduced to

W(r)=Fp,2)explil ¢),
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IFH(p.2)  df(p) 0F|(p,2)
ap dp 9z
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Dot: spin down (s =-1)
Line: spin up (s = +1)

0.44 z=1(p)

)
z=f(p)
wherez=f(p) presents the generating contour of the ring on
{p,z} plane.

The energy states and wave functions of the electrons
~ confined in the quantum ring are found by the nonlinear
e TIETES iterative method. The solution scheme is described some-
= where elsé??!

_ 1 {Wﬁ(p,z) , df(p) 37(p.2)
“Tmy(E)[  dp dp
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@) B(T) IIl. CALCULATION RESULTS

The quantum rings used in the calculation consist of InAs/
GaAs heterostructure. For InAs inside the rings we chose:
E;g=0.42 eV, A;=0.38 eV, andm;(0)=0.024n,. For
GaAs outside the rings:E;q=1.52 eV, A,=0.34 eV,

m, (Vo) =0.067my, andV,=0.77 eV?2 The energy eigen-
values of the problen{4)—(5) are numerated by a set of
quantum numbern,l,s}, wheren=0, 1, 2, . .. is themain
guantum number. In Fig. 1 we show the electron energy
spectrum versus magnetic fields for TS quantum rings with
different inner radiip;,. The heighth=2.4 nm and width
Ap=pout— Pin=24 nm (p,, is the outer radiysof the rings
are fixed. OnlyEy, . 1(B) states are shown for the reason of
clarity. It should be mentioned, that for the geometries cho-
sen, the energy difference between two sfid,s} and
{1],s} of energy states is controlled by the ring cross-section
area and is about the same for all chosen inner rad:

FIG. 2. Electron energy states for CTS-InAs nanorings with=E; os—E0s=0.298 eV. However, as it can be seen in
outer radiug@) py,=30 nm and(b) py,;=60 nm. Fig. 1, the difference between states of the sanand dif-
ferentl are strongly dependent on the total lateral size of the
rings.

In Fig. 2, we present the lowest energy states for two CTS
rings of the same heighh=2.4 nm, inner radiusp;,
=10 nm, and different outer radii. It should be noted that for
rQi(E) bulk InAs (unlike for GaAs the Landefactor is rather large
2 I in absolute value and negatijg,(0)~ — 15] and, therefore,

the Zeeman spin-splitting should be taken into consideration.
i ) Unfortunately, the Landéactor behavior in nanoscale semi-
+Vodi,—E|Fi(p,2)=0; =12, (4)  conductor system has not been well investigated yet and
there is a discrepancy in experimental datee, for instance
Refs. 23—-26 and references thejeilm our calculation the
where Zeeman spin-spliting is controlled by an average magnitude
of the Landefactor (g(E)) defined as
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Energy of the lowest states are close for the geometries and
) ) . sizes choserisee Fig. 1 and Fig.)2and the Landeactor
and s=*1 refers to the orientation of the electron-spin yenends only weakly of the ring parameters. Our calculation
along z axis. The Ben Danl_eI-Duke boundary conditibhs suggests that for instance for the system in Figb) 2
can be written as the following: (9(Ego.+1;B=0))=—3.94 which is close to results calcu-
lated in Ref. 27 for small InAs quantum dots. This leads to a
N ) small Zeeman spin splitingeven for relatively large mag-
Filp,2)=Fi(p,z), z=1(p); netic fields it is about a few meV, see, Fig) @hich is of no
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TABLE I. The'k parameter for CTS InAs nanorings.

Ring First crossing  Second crossing  Third crossing
Pour=30 nm 2.6 7.5 15.2
Pout=60 Nm 2.3 7.1 14.5

1D 1 3 5

M,

significance for the following description. In addition, the

diamagnetic shift of the energy states for, relatively, weak
magnetic fields one can estimate to be proportional to
(p?)B?,28= P where

<p|2>:277f p?| Fi(p,z)|?pdpdz. @

This causes the widening of the energy-band width with re-
spect to the magnetic field: the wider is the ring the wider is
the band width both for TS and CTSee, Fig. 1 and Fig.)2

We stress that the calculated energy differeséeis 21.9
meV for CTS with p,,;=60 nm. That is very close to the
experimental dafsand results of other authors calculatidfs.
It is worth to be noted, that in contrast to Ref. 12 we do not§
need to adjust the material band parameters. The average
effective mass at the lowest level in CTS wijth,=60 nm
is estimated to ben;(Egpg.,;B=0)=0.042n,, which is
close to the parameter chosen in Ref. 12.

It is well known that for the quasi-one-dimensional spin-
less model the single electron ground-state energy of a quar
tum ring of radiusR, is given by

h2(|+¢ i
D

E=Epnt ———,
| min 2m1(0)R§

(6)

Where<b=wR§B is the magnetic flux in the ring andt, is
the flux quanta. With increasing magnetic field, the ground-
state changes from a state witk 0 to states witH=—1,

M,

1

Mg
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FIG. 4. Magnetizations of CTS-InAs nanorings with a few non-
interacting electronsp,= 30 nm): (a) two, (b) three, andc) four
electrons.

B (T)

—2,-3,... and theenergy demonstrates a periodic
oscillations'? Crossings between states occurdat*id,,
=k/2, wherek=1,3,5,... and thegground state energy

FIG. 3. Magnetization of a single electron CTS-InAs nanoringminima occur atb™"d,=p, wherep=0, 1, 2, 3, ... .This
with po,=30 nm. The insert is the magnetization for a 1D ring Aharonov-Bohm effe¢t’ is a phenomenon inherent to one-

with Rg=20 nm.

dimensional quantum rings.
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For the 3D nanoscale rings, Fig. 1 and Fig. 2 show aiodic and negative function d and is very different from
different behavior of the electron ground state. Taking arthat obtained by the 1D modé&) (see, insert in Fig. 3 The
estimation®, = m(p?)B one can evaluate=2®,/®, when  Ccurve jum.ps at crossing points of_thg single eIectron.sta_tes.
the crossing points between states and the ground-state efith the increase of the magnetic field the magnetization
ergy minima occur. In Table I, we present results of our0Scillations become smaller and the magnetization eventu-
calculation for few crossing points in 3D CTS quantum ally saturates for at large magnetic fields. _
rings. We also found that the lowest point in energy occurs For small rings with a few electrons a self-consistent cal-
only at ®,/®,=0 (only with p=0). The Zeeman spin- culation is deswablé..Neve.rtheIess, in this work for refer-
spliting leads to small shifts for the crossing poitgse Fig. ~€nce we perform a simulation of the magnetization of quan-
2). Obviously the oscillatory behavior is not periodic. This UM rings with a few noninteracting electrons. The
difference from the simple rule(6) conforms with ~Simulation results are presented in Fig. 4. The magnetization
experiment® and demonstrates the importance of a correcflémonstrates the shell filling sequence. The cylindrical sym-
three-dimensional description of nanoscale quantum rings. Metry leads to a complete filling of shells aN

The aperiodic oscillations have been calculated=2; 6,12, ... and thenagnetization of such systems is zero
recent|>;l13_15 also in 2D models of the rings_ We should at B=0. At the same time, half filled shells prOVide with a
notice, that 2D approach allows to study merely the “laterallarge positive magnetization &=0.
spectrum” of the rings®?° Parameters of the 2D confine-
ment potential and crossing points of the energy states are
subjects of a fitting proceduté&'® and one cannot control
effects of inner radius and real lateral width of the rings. In  |n this paper, we calculated energy states and magnetiza-
contrast, 3D simulations provide us with the adequate choicgion for nanoscale semiconductor rings. A 3D model of the
for quantitative modeling of the electron energy states inorus shaped and cut torus shaped rings with various sizes in
nanorings. external magnetic field has been solved numerically.

Our calculation approach allows us to investigate the The calculated dependence of the energy spectrum on ring
magnetization of nanorings. The total magnetization at zergizes and shapes agrees with experimental results. At zero
temperature is defined by temperature, magnetization of the rings oscillate aperiodi-

cally as the magnetic field is increased and saturate at very
M=— @ (7) high fields. This is quite different from the Aharonov-Bohm
B’ periodic unsaturated oscillation in mesoscopic rings.
Although the internal electronic structure of quantum
rings has been explored by far-infrared absorption and other
N spectral analysis, no measurements of the magnetizations
Eror= Enis have been made. Based on our theoretical study presented
nl.s here such measurement of energy shell structure of the
is the total energy for a giveN electron system. nanoscale rings reveal very interesting.

It is well known that the magnetization depends drasti-
cally on the electron numbe\. The single-particle picture is
yet powerful for magnetic properties of large two-
dimensional ring$? In Fig. 3 we plot calculated in units This work was supported in part by the National Science
of the effective Born magnetopg =eB/m; as a function of Council of Taiwan under Contracts Nos. NSC-90-2215-E-
B for single electron CTS ring. The magnetization is an ape009-022 and NSC-90-2112-M-317-001.

IV. CONCLUSIONS

where
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