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Resonant tunneling into a quantum dot embedded inside a microcavity
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We propose to measure the Purcell effect by observing the current through a semeiconductor quantum dot
embedded in a microcavity. An electron and a hole are injected separately into the quantum structure to form
an exciton and then recombine radiatively. The stationary current is shown to be altered if one varies the cavity
length or the exciton energy gap. Therefore, the Purcell effect can be observed experimentally by measuring
the current through the quantum structure. In addition, we also find that super-radiance of excitons between
guantum dots may also be observed in an electrical way.
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Recently, much attention has been focused on the erthat exhibit photon confinement in all three dimensiths.
hanced spontaneous emissi@E) rate of the quantum dot Both inhibition and enhancement of the spontaneous emis-
exciton in an optical microcavity. Historically, the idea of sion of quantum dot excitons have been obseRldd. this
controlling the SE rate by using a cavity was introduced bypaper, a relatively simple way to observe the enhanced spon-
Purcell* Considering the interaction between the atomic di-taneous emission is proposed to embed the quantum ring or
pole and the electromagnetic fields inside a cavity, the SEhe quantum dot in a microcavify.By injecting electron and
rate can be expressed asm(Z) pcaf®)|(f|V]i}|?> , where hole into the quantum dot, a photon is generated by the re-
pea @) andV are the photon density of states and atom-combination of the exciton. This process allows one to de-
vacuum field interaction Hamiltonian, respectively. For atermine Purcell effect by measuring the current through the
planar cavity with distanck. between two mirrors, the pho- quantum dot.
ton density of states i8l.w/27c?, whereN, is an integer In our model, we consider a quantum dot embedded in a
less than 2./\. Thus, by varying the cavity length,, the ~ P-i-n junction, which is similar to the device proposed by O.
SE rate can be altered. The enhanced and inhibited SE raBensonet al** The energy-band diagram is shown in Fig. 1.
for the atomic system was intensively investigated in the Both the hole and electron reservoirs are assumed to be in
1980's (Refs. 2—5 by using atoms passed through a cavity. thermal equilibrium. For the physical phenomena we are in-

Turning to semiconductor systems, the electron-hole paiterested in, the Fermi level of thgn)-side hole(electron is
is naturally a candidate for examining the spontaneous emislightly lower (highep than the hole(electron subband in
sion. However, as is well known, the excitons in a three-the dot. After a hole is injected into the hole subband in the
dimensional(3D) system will couple with photons to form quantum dot, thé-side electron can tunnel into the exciton
polaritons—the eigenstate of the combined system consistinigvel because of the Coulomb interaction between the elec-
of the crystal and the radiation field which does not decaytron and hole. Thus, we may assume three dot states
radiatively® Thus, in a bulk crystal, the exciton can only

decay via impurity, phonon scatterings, or boundary effects. |0)=|0,h),

The exciton can render radiative decay in lower-dimensional

systems such as quantum wells, quantum wires, or quantum |U)=|e,h),

dots as a result of broken symmetry. The decay rate of the

exciton is superradiant enhanced by a factok td in a 1D |D)=10,0), (1)

systemd and (\/d)? for the 2D exciton polaritofi;’ wherex

is the wavelength of emitted photon adds the lattice con-

stant of the 1D system or the thin film. The super-radiance of pigaAs A e ‘
LC

. . : . Qb
excitons in these quantum structures have been investigate
intensively! %13

With the advances of modern fabrication technology, it ~ Electron subband

has become possible to fabricate the planar microcavities in

. . 15 exciton -
corporating quantum weft§ or quantum wire$® In these Electron
systems it is possible to observe the modified spontaneou — " tunneling
emission rate of excno_ns. Similar to its dgcay-ra_ﬁe counter- hole
part, the frequency shift of a quantum wire exciton should tunneling

also be modified in a planar microcavity. By using the renor-
malization procedure proposed by Leeal.,'® we have re-
cently shown that the frequency shift shows discontinuities
at resonant modéd.Instead of one-dimensional confinement

of photon fields, experimentalists are now able to fabricate

the quantum dot systems in laterally structured microcavities FIG. 1. Energy-band diagram of the structure.
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where|0,h) means that there is one hole in the quantum dot, Co () o

le,h) is the exciton state, anfD,0) represents the ground (P~ (p)Y=-T J dt’e' ™ XX p(t )

state with no hole and electron in the quantum dot. One

might argue that one cannot neglect the stat@) for a real ot (-t + .

device since the tunable variable is the applied voltage. This —ig Ldt e N(Nu XX e — (Np X Xow t

can be resolved by fabricating a thicker barrier on the elec-

tron side so that there is little chance for an electron to tunnel

in advance. Moreover, the charged exciton and biexcitons .

states are also neglected in our calculations. This means @ty _/n\0— _T f dt’ e =t pttx,, X,

low injection limit is required in the experimeft.We can @ (o) ®Jo (PHLIX X0,

now define the dot opgratorQ,E|U><U|, np=|D){D|, p . o

=|U)D|, sy=|0)(U|, sp=|0)(D|. The total Hamiltonian +igf dt’e 2Ny Xe Xy

H of the system consists of three parts: the dot Hamiltonian, 0

the photon bath, and the electr@mle) reservoirs A
P (role) ~(RoX{Xe )}, ®

H:Ho+ HT+ Hv,

where T'y=273,Vid(ey—eg), TIp=273qW;8(ep

Ho=syNy+2pNp+ Hpt Hres: —sq) ande =g —¢p is the energy gap of the quantum dot
exciton. Here,p(t')=p€e*X, , and X, denotes the time
~ - ~ i i i 50 de-
HT:; g(Dybip+DEbph)=g(pX+ptXh), evolution of X with H,,. The expectation valugp'"), de

scribes the decay of an initial polarization of the system and
plays no role for the stationary current. Therefore, we shall
assume the initial expectation value@f’ vanishes at time
Hp:E wkabk, 0. p Fd
As can be seen from Ed3), there are terms such as
(ﬁUXtXtT,)t/ which contain products of dot operators and
photon operators. If we are interested in small coupling pa-
rameters here, a decoupling of the reduced density matrix
p(t') can be written as

HV: 2 (chgéu +qug§D+ C.C.),
q

H S=% sgcgcq+§ sc?d(:dq. 2

In the above equatiorh, is the photon operatogD, is the p(t")~ponTrpnp(t)). (4)

dipole coupling strength{=3,Db}, andc, andd, denote

the electron operators in the left and right reserv0|rs respec-

tively. Here,g is a constant with a unit of the tunneling rate. BY Using the above equation, we obtain

The couplings to the electron and hole reservoirs are given

by the standard tunnel Hamiltonidth,, whereV, and W, A : ~ .

couple the channels of the electron and the hole reservoirs. Trlp(t")nyXXp, 1= (nu) e (XX o (5

If the couplings to the electron and the hole reservoirs are

weak, then it is reasonable to assume that the standard Born-

Markov approximation with respect to these couplings isand correspondingly the other products of operators can also

valid. In this case, one can derive a master equation from thee obtained. For spontaneous emission, the photon bath is

exact time evolution of the system. The equations of monorassumed to be in equilibrium. The expectation value

can be expressed &see Ref. 2P (X Xt,)o C(t—t') is a function of the time interval only.
We can now define the Laplace transformation for @al

(o= (Au)o= i3 | dU1(Be—(BNe

t R . cs(z)srdte—“eistca),
+zrujodt'(1_<nu>t/_<nD>t/), 0

~ ~ t ~ ~ B
<nD>t_<nD>O:_igfodt,{<p>t’_<pT>t'} nU(Z)EfO dte ?{(ny), etc., z>0 (6)

t ~
_zer dt,<nD>t/,
0

and transform the whole equations of motion iatspace
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FIG. 2. Stationary tunnel current, E@), as a function of cavity FIG. 3. Stationary current as a function of exciton energy gap
length L. The vertical and horizontal units are 100 pA angl  The cavity length is fixed ta /2. The current is in units of 100 pA,
respectively. while the energy gap is terms oh2/\,.

wavelength of the emitted photon, the stationary current is
inhibited. This is because the energy of the photon generated
by the quantum dot is less than the cutoff frequency of the

.9 * I'y
ny(2)==i=[p(2) ~p*(2)]+2—[ 11— ny(2)~ (2],

g b planar microcavity. Moreover, the current is increased when-
no(2)=~[p(2)=p*(2)]=2—"np(2), (7)  ever the cavity length is equal to the multiple half wave-

length of the emitted photon. As the cavity length exceeds

p(2)=—iginy(2)C.(2)—np(2)C* (2)} ~Top(2)C.(2), some multiple wavelength, it opens up another decay chan-

nel abruptly for the quantum dot exciton, and it turns out that

%o o _ " % the current is increased. With the increasing of cavity length,
P*(2)=ig{nu(2)C; (2)~np(2)C—.(2)} = T'op™ (2)C; (2). the stationary current becomes less affected by the cavity and
These equations can then be solved algebraically. The tunngfadually approaches the free space limit.
currenti can be defined as the change of the occupation of 10 Understand the inhibited current thoroughly, we now
~ d is given byl =ig(p—p'), where we have set the fix the cavity length equal ta.o/2 and vary the exciton en-
”lu an hg _lyf_ 9(P=p ), The time d d ergy gap, while the planar microcavity is now assumed to be
electron ¢ arge_s— or convenience. ) e me ep_en enceperfect. The vertical and horizontal units in Fig. 3 are 100 pA
of the expectation valudl ), can be obtained by solving EQ. and hc/h,, respectively. Herey, is the wavelength of the
(7) and performing the inverse Laplace transformation. Folphoton emitted by the quantum dot exciton in free space.

time t—o, the result is Once again, we observe the suppressed current as the exciton
5 energy gap is tuned below the cutoff frequency. The plateau
T 29°TyI'pB features in Fig. 3 also come from the abruptly opened decay
H*_gzrDBjL[ngJFFDJrzyFZDJF (Y2 +02)T3]’ channels for the quantum dot exciton. From an experimental
point of view, it is not possible to tune either the cavity
B=y+(y2+Q3)Ip, (8) length or the energy gap for such a wide range. A possible

way is to vary the exciton gap around the first discontinuous

whereg?() andg?y are the exciton frequency shift and de- point 2hc/\. Since the discontinuities should smear out for
cay rate, respectively. The derivation of the current equatiothe real microcavity, it is likely to have a peak if one mea-
is closely analogous to the spontaneous emission of phonoRgres the differential conductandéi)/de as a function of
in double dot$? in which the correlation functionéX,X,)q energy gape.
are given by the electron-phonon interaction. The coherence of the quantum states is a fundamental

Since the stationary current through the quantum dot deissue in quantum physics. The decoherence caused by
pends strongly on the decay rage the results of a quantum phonons or imperfections may destroy the unitary quantum
dot inside a planar microcavity is numerically displayed inevolution. The atomic exciton ground state of an isolated
Fig. 2. In plotting the figure, the current is in terms of 100 quantum dot has recently been shown to be radiatively
pA, and the cavity length is in units afy/2, where\g is the  damped. Coupling with acoustical phonons or imperfections
wavelength of the emitted photon. Furthermore, the tunnelplays no role during the exciton lifetinfé. Therefore, our
ing ratesI', andI'p are assumed to be equal to §s2and  proposal can also be used to measure the super-radiance of
vo, respectively. Here, a value of 1/1.3 ns for the free-spacguantum dots in an electrical way. Consider now the system
quantum dot decay ratg, is used in our calculationS.Also,  containing two quantum dots with a distandeOne of the
the planar microcavity has a Lorentzian broadening at eachbstacles in measuring the super-radiance between the quan-
resonant mode@vith broadening widths equal to 1% of each tum dots comes from the random size of the dots which
resonant mode'’ As the cavity length is less than half of the result in a random distribution of energy gap. This can be
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ervoir coupling means that we neglect the effects aroused
0.3 / < — — from higher order tunneling such as cotunneling processes
throughout. In particular, we are outside the regime of strong
0.25 . )
D / coupling to the leads where signatures of the Kondo effect
& 0.2 | start to play a role.
“ . . . . .
50.15 Now, we define an interaction picture for arbitrary opera-
° .1 I tor O and by theX operator by
0.05 / 6(t)EeiH0toefiHot' XtEeiHOtXefiHot. (Al)
/ . :
0 0.5 1 1.5 2 2.5 3 Furthermore, for the total density matr&(t) which obeys
dot distamce the Liouville equation
FIG. 4. Stationary currer(in units of 100 pA through the su- E(t)=e MZ,_,eM, (A2)
perradiant(solid line) and subradiantdashed ling channel as a )
function of dot distance (in units of \). we define
overcome by growing two gates above the quantum dots. é(t)ze‘HotE(t)e*‘Hot. (A3)

The energy gap and the orientation of the dipole moments R

can be controlled well. Analogous to the two-ion systém, The expectation value of any operafris given by

the electron and hole can tunnel into the super-radiant or _

subradiant state. The corresponding decay rate for the two (O)=THE()O]=TH{E(H)O(1)]. (A4)

channels is given by We therefore have

B +sin(27rd/)\0) 5 R _ R
Y=y 1o i, ) © ny(H=ny, Mp(H)=np,
where the two signs: correspond to the two different rela- P(H=peetx,, pl(t)= E)Te—iatxtf’

tive orientations of the dipole moments of the two dots. Fig-

ure 4 shows the stationary currents of the super-radsatit

line) and subradiantdashed lingchannels. The interference

effect between the dots is displayed explicitly. In principle, The equation of motion foé(t) becomes

one can incorporate more quantum dots in the system, and

many super-radiant effects can be examined by the electrical d~ ~ ~ ~

current. I5E (O =[Hr(O)+Hy(1),EMD)]. (A6)
In conclusion, we have proposed a method of detecting

the Purcell effect in a semiconductor quantum dot systemThis can be written as

By incorporating the InAs quantum dot betweenpda-n g

junction surrounded by a planar microcavity, the Purcell ef- o T = — S

fect on stationary tunnel current can be examined either by ai= (D= ~1H(0, 2O ][R0, 2(0]=

changing the cavity length or by varying the exciton energy

(A5)
e=gy—¢ep.

gap. Second, it is also possible to observe super-radiant ef- —i[A(t), E(O)]=i[Ay(t), Eo]

fects between two dots by using the present model. The in- .

terference features are pointed out and may be observable in _J dt IR () TRt +Hot’) Bt/

a suitably designed experiment. 0 TRV, [H (1) R, E(E) ]}
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Now, we define the effective density operator of the dot plus
photons

as the trace oﬁ(t) taking over electron reservoirs. The trace

APPENDIX A: DERIVATION OF THE EQUATIONS Tr,es taking over the terms linear iHy, vanishes, therefore,

OF MOTION

In this appendix, we will derive a master equation from £~(t)= —i[F+(1),p(1)]
the exact time evolution of the system. We will assume that dt” TP

couplings to the left and right electron reservoirs are weak .

and a standard Born-Markov approximation with respect to . dt’{ﬁv(t),[ﬁv(t’),é(t’)]}. (A9)
these couplings is reasonable. The assumption of weak res- 0
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As can be seen from the above equation, the last term is Multiplying Eq. (A12) by ﬁu, ﬁD, 5 and b‘r, respec-
already second order iy, we can approximate tively and performing the trace with the three dot states in
B Eq. (1), one obtains
E(t")~Rop(t'), (A10)

t
. A . . ﬁ - ﬁ = _| dt, 0 P o' ’
whereR is the equilibrium density matrix for the two elec- (nu)e=(Nu) gJO (P = (pT)er}
tron reservoirs. Working out the commutators and using the

time evolution of the electron reservoir operators +2FUJtdt'(1—<ﬁu)tr—<ﬁo>tf)
0

Syt=etraley, dq(t)=e*aldy, (AL :
e e e
the master equation becomes (Np)t—(Np)o= 'gfodt {(P)v = (P )}
~ t ~ ~ t R
p(t)=po—ifodt’[Hﬂt'),p(t')] —ZFDfodt’<nD>v-
t — ~ - N ~ t . , -
—Fufodt’{su(wsu "(tp(t) <p>t—<p>?=—Fojodt’e's“*‘ (XXP())

— 2;:1 T(t,)"p‘(t,)—s-ljj(t,)} _ |g Jtdt’eis(t_t,){<ﬁuxtx;rr>[’
0

t ~ — —
_Fufodt’{P(t/)Su(t/)Su ()}

—(NpX{ X},
t _ ~ - t R R t ) S
T [ at {5 (1 ()T [ at (B ()= T | dte B X
X{=2sp(t")p(t")sp T(t") +p(t' Jsp (1" )sp(t)}, tig ftdt’efis(“t’){(ﬁuxt/xbv
(AL2) 0
whereT =275 V25(sy — &0), Tp =275 qW25(ep—eD). —(NpX{ X )} (A13)
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