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Resonant tunneling into a quantum dot embedded inside a microcavity

Yueh-Nan Chen* and Der-San Chuu†

Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan
~Received 19 June 2002; published 29 October 2002!

We propose to measure the Purcell effect by observing the current through a semeiconductor quantum dot
embedded in a microcavity. An electron and a hole are injected separately into the quantum structure to form
an exciton and then recombine radiatively. The stationary current is shown to be altered if one varies the cavity
length or the exciton energy gap. Therefore, the Purcell effect can be observed experimentally by measuring
the current through the quantum structure. In addition, we also find that super-radiance of excitons between
quantum dots may also be observed in an electrical way.
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Recently, much attention has been focused on the
hanced spontaneous emission~SE! rate of the quantum do
exciton in an optical microcavity. Historically, the idea
controlling the SE rate by using a cavity was introduced
Purcell.1 Considering the interaction between the atomic
pole and the electromagnetic fields inside a cavity, the
rate can be expressed as (2p/\) rcav(v)u^ f uVu i &u2 , where
rcav(v) and V are the photon density of states and ato
vacuum field interaction Hamiltonian, respectively. For
planar cavity with distanceLc between two mirrors, the pho
ton density of states isNcv/2pc2, whereNc is an integer
less than 2Lc /l. Thus, by varying the cavity lengthLc , the
SE rate can be altered. The enhanced and inhibited SE
for the atomic system was intensively investigated in
1980’s ~Refs. 2–5! by using atoms passed through a cavi

Turning to semiconductor systems, the electron-hole p
is naturally a candidate for examining the spontaneous e
sion. However, as is well known, the excitons in a thre
dimensional~3D! system will couple with photons to form
polaritons—the eigenstate of the combined system consis
of the crystal and the radiation field which does not dec
radiatively.6 Thus, in a bulk crystal, the exciton can on
decay via impurity, phonon scatterings, or boundary effe
The exciton can render radiative decay in lower-dimensio
systems such as quantum wells, quantum wires, or quan
dots as a result of broken symmetry. The decay rate of
exciton is superradiant enhanced by a factor ofl/d in a 1D
system7 and (l/d)2 for the 2D exciton polariton,8,9 wherel
is the wavelength of emitted photon andd is the lattice con-
stant of the 1D system or the thin film. The super-radiance
excitons in these quantum structures have been investig
intensively.10–13

With the advances of modern fabrication technology
has become possible to fabricate the planar microcavities
corporating quantum wells14 or quantum wires.15 In these
systems it is possible to observe the modified spontane
emission rate of excitons. Similar to its decay-rate coun
part, the frequency shift of a quantum wire exciton sho
also be modified in a planar microcavity. By using the ren
malization procedure proposed by Leeet al.,16 we have re-
cently shown that the frequency shift shows discontinuit
at resonant modes.17 Instead of one-dimensional confineme
of photon fields, experimentalists are now able to fabric
the quantum dot systems in laterally structured microcavi
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that exhibit photon confinement in all three dimensions.18,19

Both inhibition and enhancement of the spontaneous em
sion of quantum dot excitons have been observed.20 In this
paper, a relatively simple way to observe the enhanced sp
taneous emission is proposed to embed the quantum rin
the quantum dot in a microcavity.21 By injecting electron and
hole into the quantum dot, a photon is generated by the
combination of the exciton. This process allows one to
termine Purcell effect by measuring the current through
quantum dot.

In our model, we consider a quantum dot embedded i
p-i -n junction, which is similar to the device proposed by
Bensonet al.21 The energy-band diagram is shown in Fig.

Both the hole and electron reservoirs are assumed to b
thermal equilibrium. For the physical phenomena we are
terested in, the Fermi level of thep(n)-side hole~electron! is
slightly lower ~higher! than the hole~electron! subband in
the dot. After a hole is injected into the hole subband in
quantum dot, then-side electron can tunnel into the excito
level because of the Coulomb interaction between the e
tron and hole. Thus, we may assume three dot states

u0&5u0,h&,

uU&5ue,h&,

uD&5u0,0&, ~1!

FIG. 1. Energy-band diagram of the structure.
©2002 The American Physical Society16-1
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whereu0,h& means that there is one hole in the quantum d
ue,h& is the exciton state, andu0,0& represents the groun
state with no hole and electron in the quantum dot. O
might argue that one cannot neglect the stateue,0& for a real
device since the tunable variable is the applied voltage. T
can be resolved by fabricating a thicker barrier on the e
tron side so that there is little chance for an electron to tun
in advance. Moreover, the charged exciton and biexcit
states are also neglected in our calculations. This mea
low injection limit is required in the experiment.22 We can
now define the dot operatorsn̂U[uU&^Uu, n̂D[uD&^Du, p̂

[uU&^Du, ŝU[u0&^Uu, ŝD[u0&^Du. The total Hamiltonian
H of the system consists of three parts: the dot Hamilton
the photon bath, and the electron~hole! reservoirs

H5H01HT1HV ,

H05«Un̂U1«Dn̂D1Hp1H res,

HT5(
k

g~Dkbk
†p̂1Dk* bkp̂

†!5g~ p̂X1 p̂†X†!,

Hp5(
k

vkbk
†bk ,

HV5(
q

~Vqcq
†ŝU1Wqdq

†ŝD1c.c.!,

H res5(
q

«q
Ucq

†cq1(
q

«q
Ddq

†dq . ~2!

In the above equation,bk is the photon operator,gDk is the
dipole coupling strength,X5(kDkbk

† , andcq anddq denote
the electron operators in the left and right reservoirs, resp
tively. Here,g is a constant with a unit of the tunneling rat
The couplings to the electron and hole reservoirs are gi
by the standard tunnel HamiltonianHV , whereVq and Wq
couple the channelsq of the electron and the hole reservoir
If the couplings to the electron and the hole reservoirs
weak, then it is reasonable to assume that the standard B
Markov approximation with respect to these couplings
valid. In this case, one can derive a master equation from
exact time evolution of the system. The equations of mot
can be expressed as~see Ref. 22!

^n̂U& t2^n̂U&052 igE
0

t

dt8$^ p̂& t82^ p̂†& t8%

12GUE
0

t

dt8~12^n̂U& t82^n̂D& t8!,

^n̂D& t2^n̂D&052 igE
0

t

dt8$^ p̂& t82^ p̂†& t8%

22GDE
0

t

dt8^n̂D& t8 ,
16531
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^ p̂& t2^ p̂& t
052GDE

0

t

dt8ei«(t2t8)^XtXt8
† p̃~ t8!& t8

2 igE
0

t

dt8ei«(t2t8)$^n̂UXtXt8
† & t82^n̂DXt8

† Xt& t8%,

^ p̂†& t2^ p̂& t
052GDE

0

t

dt8e2 i«(t2t8)^ p̃†~ t8!Xt8Xt
†& t8

1 igE
0

t

dt8e2 i«(t2t8)$^n̂UXt8Xt
†& t8

2^n̂DXt
†Xt8& t8%, ~3!

where GU52p(qVq
2d(«U2«q

U), GD52p(qWq
2d(«D

2«q
D), and«5«U2«D is the energy gap of the quantum d

exciton. Here,p̃(t8)5pei«tXt8 , and Xt8 denotes the time
evolution of X with Hp . The expectation valuêp̂(†)& t

0 de-
scribes the decay of an initial polarization of the system a
plays no role for the stationary current. Therefore, we sh
assume the initial expectation value ofp̂(†) vanishes at time
t50.

As can be seen from Eq.~3!, there are terms such a

^n̂UXtXt8
† & t8 which contain products of dot operators an

photon operators. If we are interested in small coupling
rameters here, a decoupling of the reduced density ma
r̃(t8) can be written as

r̃~ t8!'rph
0 Trphr̃~ t8!. ~4!

By using the above equation, we obtain

Tr@ r̃~ t8!n̂UXtXt8
†

#'^n̂U& t8^XtXt8
† &0 ~5!

and correspondingly the other products of operators can
be obtained. For spontaneous emission, the photon ba
assumed to be in equilibrium. The expectation va
^XtXt8

† &0[C(t2t8) is a function of the time interval only
We can now define the Laplace transformation for realz,

C«~z![E
0

`

dte2ztei«tC~ t !,

nU~z![E
0

`

dte2zt^n̂U& t , etc., z.0 ~6!

and transform the whole equations of motion intoz space
6-2
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nU~z!52 i
g

z
@p~z!2p* ~z!#12

GU

z
@1/z2nU~z!2nD~z!#,

nD~z!5
g

z
@p~z!2p* ~z!#22

GD

z
nD~z!, ~7!

p~z!52 ig$nU~z!C«~z!2nD~z!C2«* ~z!%2GDp~z!C«~z!,

p* ~z!5 ig$nU~z!C«* ~z!2nD~z!C2«~z!%2GDp* ~z!C«* ~z!.

These equations can then be solved algebraically. The tu
current Î can be defined as the change of the occupation
n̂U and is given byÎ[ ig( p̂2 p̂†), where we have set th
electron chargee51 for convenience. The time dependen
of the expectation valuêÎ & t can be obtained by solving Eq
~7! and performing the inverse Laplace transformation. F
time t→`, the result is

^ Î & t→`5
2g2GUGDB

g2GDB1@g2B1GD12gGD
2 1~g21V2!GD

3 #
,

B5g1~g21V2!GD , ~8!

whereg2V andg2g are the exciton frequency shift and d
cay rate, respectively. The derivation of the current equa
is closely analogous to the spontaneous emission of pho
in double dots,23 in which the correlation functionŝXtXt8

† &0

are given by the electron-phonon interaction.
Since the stationary current through the quantum dot

pends strongly on the decay rateg, the results of a quantum
dot inside a planar microcavity is numerically displayed
Fig. 2. In plotting the figure, the current is in terms of 10
pA, and the cavity length is in units ofl0/2, wherel0 is the
wavelength of the emitted photon. Furthermore, the tunn
ing ratesGU and GD are assumed to be equal to 0.2g0 and
g0, respectively. Here, a value of 1/1.3 ns for the free-sp
quantum dot decay rateg0 is used in our calculations.19 Also,
the planar microcavity has a Lorentzian broadening at e
resonant modes~with broadening widths equal to 1% of eac
resonant mode!.17 As the cavity length is less than half of th

FIG. 2. Stationary tunnel current, Eq.~8!, as a function of cavity
length Lc . The vertical and horizontal units are 100 pA andl0,
respectively.
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wavelength of the emitted photon, the stationary curren
inhibited. This is because the energy of the photon gener
by the quantum dot is less than the cutoff frequency of
planar microcavity. Moreover, the current is increased wh
ever the cavity length is equal to the multiple half wav
length of the emitted photon. As the cavity length excee
some multiple wavelength, it opens up another decay ch
nel abruptly for the quantum dot exciton, and it turns out th
the current is increased. With the increasing of cavity leng
the stationary current becomes less affected by the cavity
gradually approaches the free space limit.

To understand the inhibited current thoroughly, we no
fix the cavity length equal tol0/2 and vary the exciton en
ergy gap, while the planar microcavity is now assumed to
perfect. The vertical and horizontal units in Fig. 3 are 100
and 2hc/l0, respectively. Here,l0 is the wavelength of the
photon emitted by the quantum dot exciton in free spa
Once again, we observe the suppressed current as the ex
energy gap is tuned below the cutoff frequency. The plat
features in Fig. 3 also come from the abruptly opened de
channels for the quantum dot exciton. From an experime
point of view, it is not possible to tune either the cavi
length or the energy gap for such a wide range. A poss
way is to vary the exciton gap around the first discontinuo
point 2hc/l0. Since the discontinuities should smear out f
the real microcavity, it is likely to have a peak if one me
sures the differential conductanced^ Î &/d« as a function of
energy gap«.

The coherence of the quantum states is a fundame
issue in quantum physics. The decoherence caused
phonons or imperfections may destroy the unitary quant
evolution. The atomic exciton ground state of an isola
quantum dot has recently been shown to be radiativ
damped. Coupling with acoustical phonons or imperfectio
plays no role during the exciton lifetime.25 Therefore, our
proposal can also be used to measure the super-radian
quantum dots in an electrical way. Consider now the sys
containing two quantum dots with a distanced. One of the
obstacles in measuring the super-radiance between the q
tum dots comes from the random size of the dots wh
result in a random distribution of energy gap. This can

FIG. 3. Stationary current as a function of exciton energy gap«.
The cavity length is fixed tol0/2. The current is in units of 100 pA
while the energy gap is terms of 2hc/l0.
6-3



ot
n
,
t
tw

-
ig

e
le
a
ric

tin
em

ef
b

rg
t
i

le

nd
of
ns
lly
o

m
ha
a

t t
re

sed
ses
ng
ect

a-

lus

e

YUEH-NAN CHEN AND DER-SAN CHUU PHYSICAL REVIEW B66, 165316 ~2002!
overcome by growing two gates above the quantum d
The energy gap and the orientation of the dipole mome
can be controlled well. Analogous to the two-ion system24

the electron and hole can tunnel into the super-radian
subradiant state. The corresponding decay rate for the
channels is given by

g65g0S 16
sin~2pd/l0!

2pd/l0
D , ~9!

where the two signs6 correspond to the two different rela
tive orientations of the dipole moments of the two dots. F
ure 4 shows the stationary currents of the super-radiant~solid
line! and subradiant~dashed line! channels. The interferenc
effect between the dots is displayed explicitly. In princip
one can incorporate more quantum dots in the system,
many super-radiant effects can be examined by the elect
current.

In conclusion, we have proposed a method of detec
the Purcell effect in a semiconductor quantum dot syst
By incorporating the InAs quantum dot between ap-i -n
junction surrounded by a planar microcavity, the Purcell
fect on stationary tunnel current can be examined either
changing the cavity length or by varying the exciton ene
gap. Second, it is also possible to observe super-radian
fects between two dots by using the present model. The
terference features are pointed out and may be observab
a suitably designed experiment.

We would like to thank to Professor D. A. Rudman a
Professor M. Keller of NIST for helpful discussions. One
authors~Y. N. Chen! also appreciate valuable discussio
with P. C. Chen of UCSD. This work is supported partia
by the National Science Council, Taiwan under Grant N
NSC 91-2112-M-009-012.

APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

In this appendix, we will derive a master equation fro
the exact time evolution of the system. We will assume t
couplings to the left and right electron reservoirs are we
and a standard Born-Markov approximation with respec
these couplings is reasonable. The assumption of weak

FIG. 4. Stationary current~in units of 100 pA! through the su-
perradiant~solid line! and subradiant~dashed line! channel as a
function of dot distanced ~in units of l0).
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ervoir coupling means that we neglect the effects arou
from higher order tunneling such as cotunneling proces
throughout. In particular, we are outside the regime of stro
coupling to the leads where signatures of the Kondo eff
start to play a role.

Now, we define an interaction picture for arbitrary oper
tor Ô and by theX operator by

Õ~ t ![eiH 0tOe2 iH 0t, Xt[eiH 0tXe2 iH 0t. ~A1!

Furthermore, for the total density matrixJ(t) which obeys
the Liouville equation

J~ t !5e2 iHtJ t50eiHt , ~A2!

we define

J̃~ t ![eiH 0tJ~ t !e2 iH 0t. ~A3!

The expectation value of any operatorÔ is given by

^Ô& t[Tr@J~ t !O#5Tr@J̃~ t !Õ~ t !#. ~A4!

We therefore have

ñU~ t !5n̂U , ñD~ t !5n̂D ,

p̃~ t !5 p̂ei«tXt , p̃†~ t !5 p̂†e2 i«tXt
† ,

~A5!
«[«U2«D .

The equation of motion forJ̃(t) becomes

i
d

dt
J̃~ t !5@H̃T~ t !1H̃V~ t !,J̃~ t !#. ~A6!

This can be written as

d

dt
J̃~ t !52 i @H̃T~ t !,J̃~ t !#2 i @H̃V~ t !,J̃~ t !#5

2 i @H̃T~ t !,J̃~ t !#2 i @H̃V~ t !,J0#

2E
0

t

dt8$H̃V~ t !,@H̃T~ t8!1H̃V~ t8!,J̃~ t8!#%.

~A7!

Now, we define the effective density operator of the dot p
photons

r̃~ t !5TrresJ̃~ t ! ~A8!

as the trace ofJ̃(t) taking over electron reservoirs. The trac
Trres taking over the terms linear inHV vanishes, therefore,

d

dt
r̃~ t !52 i @H̃T~ t !,r̃~ t !#

2TrresE
0

t

dt8$H̃V~ t !,@H̃V~ t8!,J̃~ t8!#%. ~A9!
6-4
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As can be seen from the above equation, the last term
already second order inHV , we can approximate

J̃~ t8!'R0r̃~ t8!, ~A10!

whereR0 is the equilibrium density matrix for the two elec
tron reservoirs. Working out the commutators and using
time evolution of the electron reservoir operators

c̃q~ t !5e2 i«q
Utcq , d̃q~ t !5e2 i«q

Dtdq , ~A11!

the master equation becomes

r̃~ t !5r02 i E
0

t

dt8@H̃T~ t8!,r̃~ t8!#

2GUE
0

t

dt8$sŨ~ t8!sŨ
†~ t8!r̃~ t8!

22sŨ
†~ t8!r̃~ t8!sŨ~ t8!%

2GUE
0

t

dt8$r̃~ t8!sŨ~ t8!sŨ
†~ t8!%

2GDE
0

t

dt8$sD̃
†~ t8!sD̃~ t8!r̃~ t8!%2GDE

0

t

dt8

3$22sD̃~ t8!r̃~ t8!sD̃
†~ t8!1 r̃~ t8!sD̃

†~ t8!sD̃~ t8!%,

~A12!

whereGU52p(qVq
2d(«U2«q

U), GD52p(qWq
2d(«D2«q

D).
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