NH,
E
;i

ELSEVIER

Computer Networks 40 (2002) 257-278

COMPUTER
NETWORKS

www.elsevier.com/locate/comnet

A new methodology for easily constructing extensible
and high-fidelity TCP/IP network simulators ™

S.Y. Wang **, H.T. Kung °

& Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta Hsueh Road,
30050 Hsinchu, Taiwan
® Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

Received 5 September 2001; received in revised form 18 February 2002; accepted 20 March 2002
Responsible Editor: G. Morabito

Abstract

This paper proposes a new methodology for easily constructing extensible and high-fidelity TCP/IP network sim-
ulators. The methodology uses a kernel-reentering technique to reuse the existing real-life network protocol stacks, real
application programs that generate traffic, and real utility programs that configure, monitor, or gather network sta-
tistics to the maximum extent. Only an event scheduler and some modifications to the kernel are needed to “glue” these
existing components to collectively simulate a network.

A simulator constructed this way has many advantages that a traditional network simulator cannot provide. First,
reuse of real-life implementation in the simulator can generate more accurate results than a traditional simulator that
abstracts a lot of away from the real implementation. Second, it can save much time and effort that would be needed if a
high-fidelity simulator is developed from scratch. Third, because real application programs cannot distinguish a sim-
ulated network constructed by the simulator from a real one, all existing real-life and future application programs can

directly run on any node in a simulated network.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Network; Simulation

1. Introduction

Network simulators implemented in software
are valuable tools for researchers in developing,

*The NCTUns 1.0 network simulator is a new and much
more powerful simulator than the simulator presented in this
paper. Information about this new simulator is available at
http://NSL.csie.nctu.edu.tw/nctuns.html

* Corresponding author.

E-mail addresses: shieyuan@csie.nctu.edu.tw (S.Y. Wang),
kung@harvard.edu (H.T. Kung).

testing, and diagnosing network protocols. Sim-
ulation is economical because it can carry out
experiments without the actual hardware. It is flex-
ible because it can, for example, simulate a link
with any bandwidth and propagation delay or a
router with any queue size and queue management
policy. Simulation results are easier to analyze
than experimental results because important in-
formation at critical points can be easily logged to
help researchers diagnose network protocols.
Network simulators, however, have their limi-
tations. A complete network simulator not only

1389-1286/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S1389-1286(02)00254-2

http://NSL.csie.nctu.edu.tw/nctuns.html
mail to: shieyuan@csie.nctu.edu.tw

258 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

needs to simulate hosts and routers, it also needs to
simulate application programs that generate net-
work traffic. It also needs network utility programs
that configure, monitor, or gather statistics about a
simulated network. As such, developing a complete
network simulator is a large effort and traditional
network simulators tend to have the following
drawbacks due to limited development resources:

e Simulation results are usually not as convincing
as those produced by real hardware and soft-
ware equipment. In order to constrain their
complexity and development cost, most existing
network simulators can only simulate real-world
network protocol implementations with limited
detail, and this may generate wrong results in
some situations.

For example, in ns [1], there are many differ-
ences between the real-life and the simulation
implementation of the TCP/IP stack. First, in ns
a TCP connection must use a fixed length for all
of its packets (because there is no real application
programs running to exchange data). However,
in real networks, this is unnecessary. Second, in
ns IP fragmentation is not handled. However, in
real networks, IP fragmentation may occur.
Third, in ns the receiver of a TCP connection
does not implement the dynamic advertised
window mechanism (because there is no real
application program running to use the received
data). However, in real network usages, TCP
receivers always use the dynamic advertised
window mechanism to implement flow control
between the TCP sender and receiver.

e These simulators are not extensible in the sense
that they lack the UNIX system call (POSIX)
application programming interface (API). As
such, existing or to-be-developed real applica-
tion programs cannot be run normally in sepa-
rate address space to generate traffic on nodes
in a simulated network. Instead, in order to in-
teract with the simulator, they must be rewritten
to use the internal API provided by the simula-
tor (if there is any) and be compiled with the
simulator to form a single program.

This causes the following two problems.
First, these network simulators are limited to
the study of only network-level performance

such as link utilization, packet drop rate, etc.
Application-level performance of a real dis-
tributed application program (e.g., the response
time of a distributed database system when
running on a particular network configuration)
cannot be studied. However, a system designer
or network planner may need to know whether
a given network topology and associated link
capacities can provide reasonable application-
level performance. Indeed, some commercial
simulation systems have been developed to meet
this application; see e.g. [2]. Second, the lack of
UNIX POSIX API prohibits the use of these
network simulators in areas where user-devel-
oped real programs need to run on nodes to
carry out tasks cooperatively. Examples of
these areas include intelligent mobile agents [3]
and Mobile IP [4].

In this paper, we propose a simple simulation
methodology that alleviates these drawbacks. A
simulator constructed under this methodology has
three desirable properties as follows. First, it re-
uses the real-life UNIX TCP/IP protocol stack,
existing real network application programs, and
existing real network utility programs. As a result,
it can generate more accurate simulation results
than a traditional TCP/IP network simulator that
abstracts a lot away from a real-life TCP/IP im-
plementation. Second, it provides the UNIX PO-
SIX API (i.e., the standard UNIX system call
interface) on every node in a simulated network.
Any real UNIX application program, either ex-
isting or to be developed, thus can run on any
node in a simulated network to generate traffic.
One important advantage of this property is that
since such a developed application program for
simulations is a real UNIX program, the pro-
gram’s simulation implementation can be its real
implementation on a UNIX machine. As a re-
sult, when the simulation study is finished, we can
quickly implement the real system by reusing its
simulation implementation. Third, the simulator
can be easily constructed with minimal time and
effort. By reusing existing code to the maximum
extent, this methodology enables a network re-
searcher to easily construct his/her own TCP/IP
network simulator.

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 259

A simulator constructed under our method-
ology has been operational for several years. Its
simulation results have been validated extensively
against results obtained from real hardware, and
shown to correctly reflect TCP/IP network be-
haviors. (For example, the simulation results pre-
sented in [5] were all confirmed by real experiment
results and more validation results are stored in
our database available at http://NSL.csie.nctu.
edu.tw/NSL_DATA.) On July 1, 1999, this simu-
lator was released for the public and was named
Harvard TCP/IP network simulator 1.0 [6]. Since
that time, as of August 1, 2001, more than 1000
universities, research institutes, industrial research
laboratories, and ISPs have downloaded the sim-
ulator.

2. Related work

In the literature, some approaches also use a
real-life TCP/IP stack to generate results [7-10].
However, unlike our approach, these approaches
are used for emulation purposes, rather than for
simulation purposes. Among these approaches,
Dummynet [10] most resembles our simulator.
Both Dummynet and our simulator use tunnel
interfaces to use the real-life TCP/IP protocol
stack on the simulation machine. However, there
are some fundamental differences. Dummynet uses
the real time, rather than the simulated network’s
virtual time. Thus the simulated link bandwidth is
a function of the simulation speed and the total
load on the simulation machine. As the number of
simulated links increases, the highest link band-
width that can be simulated decreases. Moreover,
in Dummynet, routing tables are associated with
incoming links rather than nodes. Thus, the sim-
ulator will not know how to route packets gener-
ated by a router, since they do not come from any
link.

OPNET [2], REAL [11], ns [1], SSFnet [12],
PARSEC and GloMoSim [13] represent the tra-
ditional network simulation approach. In this ap-
proach, the thread-supporting event scheduler,
application programs that generate network traf-
fic, utility programs that configure, monitor, or
gather statistics about a simulated network, the

TCP/IP protocol implementation on hosts, the IP
protocol implementation on routers, and links are
all compiled together to form a single user-level
program. Due to the enormous complexity, such a
simulator tends to be difficult to develop and ver-
ify. A simulator constructed using this approach
cannot provide UNIX POSIX API for real-appli-
cation programs to run in separate address space
as they normally do on a real host. Although some
simulators may provide their own internal API,
real application programs still need to be rewritten
so that they can use the internal API, be compiled
with the simulator successfully, and be concur-
rently executed with the simulator during simula-
tion.

ENTRAPID [14] uses another approach. It uses
the virtual machine concept [15] to provide mul-
tiple virtual kernels on a physical machine. Each
virtual kernel is a process and simulates a node in a
simulated network. The system calls issued by an
application program are redirected to a virtual
kernel. As such, UNIX POSIX API can be pro-
vided by ENTRAPID and real application pro-
grams can be run in separate address space as
normal. Because the complex kernel needs to be
ported to and implemented at the user level, many
involved subsystems (e.g., the file, disk I/O, process
scheduling, inter-process communication, virtual
memory subsystems) need to be modified exten-
sively. As a result, the porting effort is very large
and the correctness of the ported system need to be
extensively verified.

The contribution of this paper is that we pro-
pose a new methodology that can easily construct
network simulators with many advantages.

3. Simulator architecture

Our simulator architecture differs from tradi-
tional ones in how it integrates the various com-
ponents that implement the following functions in
a simulated network:

1. Links with various delays and bandwidths.

2. Routers that forward IP packets.

3. Hosts that use TCP/UDP/IP protocol to send
and receive packets.

http://NSL.csie.nctu.edu.tw/NSL_DATA

260 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

4. Application programs that generate network
traffic.

5. Network utility programs that configure, moni-
tor, or gather statistics about a network.

Unlike traditional approaches such as REAL
[7] and ns [1], our simulator architecture does not
need to combine component 1-5 together to form
a single program. Instead, a simulator constructed
under our methodology has separate and inde-
pendent components for 1-5. When these com-
ponents run concurrently on a UNIX machine,
collectively their executions simulate a network.
Since the constructed system is intended to be used
as a simulator, the time used in the system is vir-
tual time, rather than real time. Section 5.1 will
give the details.

In addition, our simulator only needs to simu-
late links (component 1), and the complicated
components 2-5 need not be simulated. In a sim-
ulated network, these complicated components’
existing real-life code and programs are directly
used in the same way as they are used in a real
network. In contrast, a traditional network simu-
lator needs to simulate all of these components in a
single user-level program and therefore cannot
simulate these components in great detail. Some
traditional simulators simulate only an abstract of
the real-life TCP/IP protocol implementation.
Others port the in-kernel real-life TCP/IP protocol
implementation to the user level trying to increase
simulation fidelity. However, because many in-
volved kernel subsystems need to be carefully
removed (e.g., the mbuf buffer system, which is
extensively used in the BSD UNIX TCP/IP pro-
tocol stack), the ported version usually differs from
the real-life implementation and its behavior may
be different from the original behavior.

In the rest of this section, we will describe the
key ideas and techniques that make our simulator
architecture feasible.

3.1. Tunnel network interface

Tunnel network interfaces is the key facility
that makes our simulation architecture feasible. A
tunnel network interface, available on most UNIX
machines, is a pseudo network interface that does

not have a real physical network attached to it.
The functions of a tunnel network interface, from
the kernel’s point of view, are no different from
those of an Ethernet network interface. A network
application program can send out its packets to its
destination host through a tunnel network inter-
face or receive packets from a tunnel network in-
terface, just as if these packets were sent to or
received from a normal Ethernet interface.

Each tunnel interface has a corresponding de-
vice special file in the /dev directory. If an appli-
cation program opens a tunnel interface’s special
file and writes a packet into it, the packet will enter
the kernel. To the kernel, the packet appears to
come from a real network and just be received.
From now on, the packet will go through the
kernel’s TCP/IP protocol stack as an Ethernet
packet would do. On the other hand, if the ap-
plication program reads a packet from a tunnel
interface’s special file, the first packet in the tunnel
interface’s output queue in the kernel will be de-
queued and copied to the application program. To
the kernel, the packet appears to have been
transmitted onto a network and this pseudo
transmission is no different from an Ethernet
packet transmission.

Using tunnel network interfaces, we can easily
simulate a single-hop TCP/IP network depicted in
Fig. 1(a), where a TCP sender on host 1 is sending
its TCP packets to a TCP receiver on host 2. We
set up the virtual simulated network by performing
the following two steps. First, we configure the
kernel routing table of the simulation machine so
that tunnel network interface 1 is chosen as the
outgoing interface for the TCP packet sent from
host 1 to host 2, tunnel network interface 2 for the
TCP packets sent from host 2 to host 1. Second,
for each of the two links to be simulated, we run
an application program (called “virtual link ob-
ject here) to simulate it. For the link from host i to
host j (i =1 or 2, j =3 — i), the application pro-
gram would open tunnel network interface i’s and
J’s special file in /dev and then execute an endless
loop. In each step of this loop, it simulates a
packet’s transmission on the link by reading a
packet from the special file of tunnel interface i,
waiting the link’s propagation delay time plus the
packet’s transmission time on the link, and then

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 261

® TCP_sender TCP_receiver
_ Link 1
(= =@
Link 2
Host 1 Host 2
(b) . .
Virtual Link 1
0
TCP - . TCP
sender Virtual Link 2 Wiite\ receiver
Read ¢
user-level
Kernel
TCP/TP TCP/IP
stack stack
Tunnel Tunnel
interface 1 interface 2

Fig. 1. (a) A TCP/IP network example to be simulated. (b) By
using tunnel interfaces, only the two links need to be simulated.
The complicated TCP/IP protocol stack need not be simulated.
Instead, the real-life working TCP/IP protocol stack is directly
used in the simulation.

writing this packet to the special file of tunnel in-
terface j.

After performing the above two steps, the vir-
tual simulated network has been constructed. Fig.
1(b) depicts this simulation scheme. Since our trick
of replacing a real link with a simulated link
happens outside the kernel, the kernels on both
hosts do not know that their packets actually are
exchanged on a virtual simulated network. The
TCP sender and receiver programs, which run on
top of the kernels, of course do not know the fact
either. As a result, all existing real network appli-
cation programs can run on the simulated net-
work, all existing real network utility programs
can work on the simulated network, and the TCP/
IP network protocol stack used in the simulation is
the real-life working implementation, not just an
abstract or a ported version of it.

By using the kernel-reentering technique pre-
sented in Section 4, the kernel of the simulation
machine is shared by all nodes (hosts and routers)
in a virtual simulated network. Therefore, although
in Fig. 1(b) there are two TCP/IP protocol stacks
depicted, actually they are the same one—the
protocol stack of the single simulation machine.

3.2. Opaque and transparent network cloud simula-
tion models

To extend simulated networks from single-hop
networks as shown in Fig. 1(a) to multi-hop net-
works, we need to simulate an additional object
type—intermediate routers. A traditional way of
simulating a network composed of links and rou-
ters is to simulate them in a user-level program.
We call a simulated network formed this way an
“opaque network cloud”. It is “opaque” because
the kernel cannot see through the network cloud.
As Fig. 2(a) illustrates, once a packet is injected
into an opaque network cloud, it will be covered
by the opaque network cloud when it traverses
through the routers on the way to its destination
host. The kernel of the simulation machine cannot
see this packet because the packet will not enter
and leave the kernel again until it finally reaches its
destination host. OPNET Modeler [2] and ns [1]
are examples of those network simulators that use
the opaque network cloud simulation model.

In contrast, when a packet arrives at a router,
our methodology simulates the packet forwarding
operation by performing the following three steps.
First, the virtual link object from which the ar-
riving packet comes writes the packet into the
kernel. Second, the kernel automatically forwards
the packet toward the correct direction (i.e., puts it

(a) An opaque network cloud

Packets

(b) A transparent network cloud

Host Router Router Host
O T N Q
N N Packets
---------- -

Fig. 2. Opaque and transparent network clouds differ in whe-
ther or not packets traversing through routers in the simulated
network are “visible” to the kernel of the simulation machine.

262 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

(a) An example multi-hop network to be simulated

TCP_sender Link 1 Router 1 Router 2 TCP_receiver
n Link 3 Link 5
(= == () O
Link 2 Link 4 Link 6
Host 1 Node 3 Node 4 Host 2
Node 1 Node 2
(b) Simulation of network (a) using the opaque network cloud simulation model
Virtual Router 1 Virtual Router 2 TCP
sender V1rtua1 Link 1 Q Virtual Link 3 Virtual Link 5 receiver
g B
User level
Kernel
TCP/IP TCP/1P
stack stack
Funnel Tunnel
interface interface
(c) Simulation of network (a) using the transparent network cloud simulation model
Router 1 Router 2
. . . . TCP
SZEdir Virtual Link 1 Virtual Link 3 Virtual Link 5 receiver
1§ — 0 B
User-level
Kernel
TCPIIP TCP/IP TCP/IP TCP/IP
stack stack stack stack
Tunfiel Tunnel Tunrel Tunnel Tunnel Tunnel
interface interface interface interface interface interface

(d) IP address remapping in the simulator to allow use of a single routing table for the simulation machine

TCP_sender

TCP_receiver
Link 1 Link 3 Link 5

Link 2 Link 4 . Link 6 4

1.1.6. 1.1.6.1 link 1
1.1.6 1.1.6.3 link3
L.16. 1.1.6.4 link5
o 1.1.6.2 myself 1.1.6.2 IIlySle
. e Routing table L4 °
® °
° ° ° :

Fig. 3. (a) A simple multi-hop network to be simulated. (b) A simulation using the opaque network cloud simulation model. (c) A
simulation using the transparent network cloud simulation model. (d) The IP address re-mappings occurred in the simulation. Notice
that for presentation simplicity, links 6, 4 and 2 are not shown in (b) and (c).

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 263

into the correct output port’s queue). (This routing
step can be done automatically because any UNIX
host in real life can also function as a router.)
Third, the virtual link object of the next hop pulls
this packet out of the kernel (i.e., fetch it from the
output port’s queue) and then simulates its trans-
mission on the next hop. We call a simulated
network formed this way a “transparent network
cloud”. “Transparent” here means that, as shown
in Fig. 2(b), after a packet is injected into the
network cloud, the packet will go down (enter the
kernel) and go up (leave the kernel) when passing
through each router on the way to its destination
host. Thus the kernel will see the packet when it
traverses through the network cloud.

A network simulator that uses the transparent
network cloud model has many advantages over
one that uses the opaque model. First, since the
real-life working protocol stack is used in routing
and forwarding a packet, there is no need to
spend time and effort on porting the in-kernel
routing protocol stack to a user-level program to
simulate routers. Second, because the unmodified
real-life UNIX routing protocol stack is used,
simulation results are more credible than those
generated otherwise. Third, the standard UNIX
system call interface (API) is exposed and sup-
ported on every node. All real application pro-
grams that can run on hosts can now run on
routers as well.

Figs. 3(b) and (c) illustrate the differences be-
tween two simulated networks that are based on
the opaque and transparent network cloud simu-
lation models, respectively. Both of them are
constructed to simulate the same network in (a).

4. Design

This section presents our addressing, routing,
and address-remapping schemes that are designed
to support the transparent network cloud simula-
tion model. As described earlier, the single simu-
lation machine will act as both hosts and routers
during a simulation. Using the network of Fig.
3(a) as an example, we illustrate the operations
occurred on the simulation machine when a packet
is sent across the network from node 1 to node 2.

Link 1

Link 2

Link 3

Fig. 4. Routing a packet along a route in the simulated net-
work of Fig. 3(c) is a sequence of leaving and entering the
kernel operations applied to the simulation machine.

As depicted in Fig. 4, the operations involve a
sequence of leaving and entering the kernel oper-
ations. That is, to forward a packet along the path
from the TCP sender to the TCP receiver in Fig.
3(a), the packet will leave the kernel along link 1
and then re-enter it, leave the kernel along link 3
and then re-enter it, and finally, leave the kernel
along link 5 and then re-enter it.

To route packets, the simulation machine needs
to maintain a routing table. Since the simulation
machine simulates all the routers and hosts in a
simulated network, by using the union of the
routing tables in all of the nodes, one may think
that the simulation machine should be able to
route packets correctly. However, when unified
together, these routing tables contain conflicting
information. For example, in the network of Fig.
3(a), when forwarding a packet destined to host 2,
host 1 will choose link 1 as its next hop, router 1
will choose link 3 as its next hop, and router 2 will
choose link 5 as its next hop. If all these conflicting
(destination IP address, next hop) pairs are stored
in the single simulation machine’s routing table,
the kernel cannot choose the correct next hop for
forwarding a packet.

One solution to this problem is to have a sep-
arate routing table in the kernel for every node in
the simulated network. Each packet re-entering
the kernel then tells the kernel which node it
should simulate at this time. For example, when
passing through router 2, the packet will tell the
kernel that now the kernel should simulate router
2. The kernel then uses this information to look up

264 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

the corresponding routing table to retrieve the
correct routing entry.

Although the above method can solve the route
conflict problem, it is not our preferred solution
for the following reasons. First, maintaining a
separate routing table in the kernel for every node
of a simulated network is not the standard mech-
anism used by an UNIX machine. In order to
work around the route conflict problem, we will
need to extensively modify the kernel code that is
related to routing and forwarding. This violates
our goal of minimizing modification to a real-life
network protocol stack. Second, using a different
routing mechanism means that we no longer can
use many existing utilities, such as “route”, to
configure routes. Many new utility programs
would have to be developed to adapt to the
changes.

Our preferred solution is to use a special ad-
dress-remapping and route-setup scheme so that
using the default kernel routing table does not
result in the route conflict problem. The basic idea
is to re-map the destination IP address of a packet
to a new one before it arrives at and is forwarded
by a router. We call the mapped version of an IP
address on node 7 as this IP address’s ““As-Seen-
By-Node(i)” address. Because our address-
remapping scheme guarantees that none of these
“As-Seen-By-Node(i)”” addresses will be the same,
the route conflict problem will not happen. Fig.
3(d) illustrates the address-remapping idea. In the
following sections, we will explain our addressing,
address-remapping, and routing schemes in detail.

4.1. Use a private address scheme for a node’s
(normal) IP address(es)

Like the usual practice over the Internet that
each node has one IP address associated with each
of its network interfaces, we assign one IP address
to each network interface of a node. These ad-
dresses are called ““‘normal” in the rest of the paper
to distinguish them from the ““As-Seen-By-Node(i)”
addresses, which will be defined in Section 4.3.
Because one-way simplex links are supported in a
simulated network, some IP addresses of a node
may be associated with the node’s incoming in-
terfaces while the others associated with its out-

going interfaces. In our scheme, only those IP
addresses that are associated with outgoing inter-
faces are used to reference nodes. For example,
when we want to send a packet to a node j, we will
use one IP address of node j that is associated with
one of node j’s outgoing interface to be the pack-
et’s destination address. We will not use an IP
address that is associated with an incoming inter-
face to reference a node.

The network address of a simulated network in
our system is “192.168.0.0”. “192.168.” was cho-
sen because it is within the experimental address
space defined in RFC 1918. Using it assures that
the simulation machine can still be connected to
a real network without interfering with other
networks during the simulation. For simplicity,
however, in the rest of this paper, we will use
“1.1.0.0” as the network address of a simulated
network. Every simplex link is defined as a subnet
in the simulated network and has “1.1.Link_ID.0”
as its sub-network address, where Link_ID is its
link identity.

Consider a simplex link from node 4 to node B.
We define the IP address of node A4 on this link as
“1.1.Link_ID.NodeA_ID”’, where NodeA_ID is
the identity of node A4 in the simulated network.
Although the IP address of node B on this link will
not be used in the simulation (because this link is
node Bs incoming link), due to the requirement
that we must specify a local and a remote address
when configuring a tunnel network interface, we
still define node B’s address as “1.1.Link _ID.254”.
Arbitrarily chosen, “254” will hereafter remind us
that an IP address ending with “254” should not
be used to reference a node. The IP addresses of all
nodes on all links in a simulated network are as-
signed using the same scheme described here. As
explained earlier, if a node has multiple links, only
its TP addresses that are associated with its out-
going simplex links are used. Therefore, IP ad-
dresses in the form of “l1.1.Link_ID.254” will
never be used to reference a node. For example,
host 1 in Fig. 3(a) will have two IP addresses. The
first address, “1.1.1.17, will be used while the
second, ““1.1.2.254”°, will not be used. For the same
reason, router 1 in Fig. 3(a) will have four IP ad-
dresses, but only “1.1.3.3” and “1.1.2.3” will be
used to reference it.

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 265

4.2. Construct the virtual simulated network

We then use these defined IP addresses to con-
figure tunnel network interfaces on the simulation
machine to construct a virtual simulated network.
The way we configure a simulated network is ex-
actly the same way a person configures a real
network composed of nodes and point-to-point
links. A tunnel network interface, which is just like
a SLIP or PPP network interface for a point-to-
point link, is used for a one-way simplex link in the
simulated network. We associate tunnel network
interface i with link 7 so that its local TP address
and its remote IP address are “l.l1.i.Source-
Node_ID” and “1.1.i.254”, respectively, where
SourceNode_ID is the node identity of simplex
link /’s source node.

4.3. Define a node’s IP address(es) seen from other
nodes

Although we have defined a node’s (normal) IP
address(es), these addresses are only useful in
helping us construct a virtual simulated network
and reference nodes. To solve the route conflict
problem discussed in Section 4, we need to define
and introduce the concept of the ‘“As-Seen-by-
Node(?)”” IP address of a node’s IP address, where i
is an index variable. The “As-Seen-by-Node(i)”’ IP
address of node ;°s IP address is the address that
node i should use when sending a packet to node j.
In our methodology, we define a node’s “As-Seen-
by-Node(i)” IP address, where i is the node iden-
tity of any other node in the simulated network, as
follows:

Suppose "l1.1.Link_ID.Node_ID" is
one of a node's IP addresses as de-
fined in Section 4.1, then the "As-
Seen-by-Node (i)" IP address of this
address is "1.1.Link ID.i".

As defined above, a node, in addition to its
(normal) TP address(es), has a unique ‘““As-Seen-
by-Node(i)” IP address for node i in the simulated
network. For example, in Fig. 3(a), node 2’s “As-
Seen-by-Node(1)”” IP address is “1.1.6.17°, its ““As-
Seen-by-Node(3)” IP address “1.1.6.3” and its

“As-Seen-by-Node(4)” TP address “1.1.6.4”. In
our methodology, if node i wants to send a packet
to node j, it uses node j’s “As-Seen-by-Node(i)” IP
address as its packet’s destination IP address so
that its packet can be correctly routed in the sim-
ulated network. The next session explains how this
scheme works.

4.4. Use “‘As-seen-by-node(i)” IP addresses to
route packets

Using “As-Seen-by-Node(i)”” IP addresses en-
ables us to correctly route packets without the
route conflict problem discussed in Section 4. This
is achieved because even if there are multiple
sending nodes that all want to send packets to the
same destination node j, these packets’ destination
IP addresses will be different from each other. In
fact, these sending nodes will all use node j’s “As-
Seen-by-Node(i)”” IP addresses, and i will be dif-
ferent for different sending nodes. Since we no
longer can find two routing entries in the simula-
tion machine’s routing table that have the same
destination IP address but different next hops to
forward a packet, the route conflict problem is
solved.

To set up routes for every pair of nodes, the
routes for all possible “As-Seen-by-Node(i)” IP
addresses in a simulated network should be set up.
This can be easily accomplished by using the ex-
isting user-level ‘“‘route” utility provided on a
UNIX machine.

If node i has only one link (i.e., it is a host),
setting its routes to all other nodes’ ““As-Seen-by-
Node(i)” IP addresses is simple. We only need to
set its outgoing link (thus the link’s associated
tunnel network interface) as the next hop for these
IP addresses. If node i has multiple links con-
necting it to the rest of the network (i.e., it is a
router), the selection of the next hop for a “As-
Seen-by-Node(i)”” IP address actually depends on
the desired routing algorithm. For example, we
can use routes generated by a shortest-distance-
vector or policy routing algorithm to configure the
routes for the entire simulated network.

Using “As-Seen-by-Node(i)” IP addresses and
setting routes for these IP addresses effectively
achieve the following two functions—storing each

266 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

node’s routing table separately in the kernel and
forwarding packets using their own correct routing
tables. The reason is that when we set the next hop
for node j’s “As-Seen-by-Node(i)”” IP address, we
are essentially adding a route from node i to node j
into node i’s own routing table.

4.5. Modify a packet’s ““As-seen-by-node(i)” desti-
nation and source addresses on every hop along its
path

Suppose that before a packet arrives at its final
destination node j, it arrives at node i. In our
methodology, the kernel can forward the packet to
the correct next hop (link) if the packet’s destina-
tion IP address has been set to the “As-Seen-by-
Node(i)” address of node ;’s IP address. In order
to continuously route a packet across multiple
nodes toward its destination node, this packet’s
destination IP address must be modified on every
hop along its path.

More specifically, before a packet arrives at
node i, we must change its destination IP address
from its current one to the “As-Seen-by-Node(i)”
address of its final destination node’s IP address.
This change can be easily done because we only
need to change the least significant byte of this
packet’s destination IP address to i. For example,
in Fig. 3(d), when a packet is routed from node 1,
via node 3 and node 4, to node 2, its destination
IP address in the IP header will be “1.1.6.17,
“1.1.6.37, “1.1.6.4” and “1.1.6.2”, respectively.
Note that by using this scheme, when a packet
arrives at its final destination node, the destina-
tion address in its IP header is the same as its
destination node’s (normal) IP address. This
property is important because it enables the ker-
nel to decide when to stop forwarding the packet.
In Section 6.2, we will explain this property in
detail.

Sometimes a node j in a simulated network may
want to send reply packets back to node i after
having received a packet from node i. For exam-
ple, during a TCP connection’s connection estab-
lishment phase, when a server receives a SYN
packet from a client, it will reply with a SYN +
ACK packet to that client to continue the three-
way handshaking procedure. Also, in an ICMP

application (e.g., traceroute), a node in the simu-
lated network may want to send an error message
(e.g., TTL expired) back to a packet’s source node.
Therefore, in order for a node to directly use the
source IP address in a received packet’s header to
send back a reply packet, before this packet arrives
at node i, both its destination and source IP ad-
dresses should be changed to their corresponding
“As-Seen-by-Node(i)” addresses.

Since before a packet arrives at a node, it is
transmitted on a link, it is natural for virtual link
objects in the simulated network to modify the
source and destination address. In our methodol-
ogy, when a virtual link object is created to sim-
ulate a one-way simplex link, the parameters
associated with it, besides standard ones such as
bandwidth and delay, contain the identity (assume
i for the following discussion) of this link’s desti-
nation node. With this information, when receiv-
ing a packet, this link can change the least
significant bytes of the packet’s source and desti-
nation IP addresses to i before delivering it to the
link’s destination node.

5. Implementation
5.1. User-level event scheduler

Our system only needs to simulate one kind of
object—the virtual link objects that simulate links.
Hosts and routers need not be simulated because
the simulation machine acts as them in a simula-
tion. Due to this property, our TCP/IP network
simulator is just a user-level event scheduler.
(Section 7.1 presents the implementation of an in-
kernel version, which greatly speeds up simula-
tion.) This event scheduler simulates links simply
by scheduling a time for a link to read a packet
from the link’s source node (in order to simulate
the previous packet’s transmission time) and a
time for a link to deliver a packet to the link’s
destination node (in order to simulate the link
propagation delay).

Another task of the event scheduler is to pass
the simulated network’s virtual time down into the
kernel so that the timers of TCP connections in the
simulated network can be triggered by the virtual

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 267

time rather than by the real time. The virtual time
in the event scheduler is maintained by a counter.
The time unit represented by one tick of the
counter can be set to any value as small as we
would like (e.g., one nanosecond) to simulate high
speed links. The current virtual time thus is the
current value of the counter times the used time
unit. During simulation, the counter is periodically
advanced by one as soon as all events that need to
be processed at current virtual time have been
processed.

Events are generated in many situations. One
situation is that it is time for the first packet in a
tunnel interface’s output queue to enter the simu-
lated network. When it is time for a packet in a
tunnel interface to enter the simulated network, an
event is generated and immediately executed. Ex-
ecuting this event will remove this packet from
that tunnel interface’s output queue and generate
more events to be executed in the future. One of
these events is used to simulate the link propaga-
tion delay that this packet should experience be-
fore reaching the other end of the link. Another
event is used to simulate the packet’s transmission
time so that during this period of time the same
tunnel interface cannot inject any more packet into
the simulated network.

An event is triggered when the current virtual
time becomes greater than its timestamp. All
events are precisely scheduled and triggered based
on the virtual time of the simulated network. For
this reason, simulation results are not affected by
other activities on the simulation machine (e.g.,
disk I/O and network I/O).

5.2. Kernel

Some parts of the kernel need to be modified to
support our simulator.

5.2.1. IP and UDPITCP checksum tests

Because in simulation the source and destina-
tion IP addresses of a packet will change on every
hop (see Section 4.5), the checksums in the IP and
UDP/TCP headers of the packet will be incorrect
and should not be checked. Skipping these
checksum tests will not affect the data integrity of
packets in our simulator because all packets in our

simulated network, in fact, never leave the simu-
lation machine. For situations where we need to
simulate a corrupted packet, we can simply set a
flag in its IP header to indicate it. Nodes in the
simulated network can then detect the corruption
and discard the packet.

5.2.2. TCP timers

TCP slow and fast timers should be modified
so that they are triggered based on the virtual
time of the simulated network rather than the real
time. If we would use the real time, a TCP con-
nection’s re-transmit (slow) timer would prema-
turely expire k times earlier than when it should
do, if a simulated network is k times slower than
the real network.

5.2.3. Virtual clocks

In the real world, each machine’s clock may be
different from others’ due to clock drift and skew.
We should simulate this phenomenon to avoid
multiple TCP connections to drop packets, time
out, and “‘slow-start” in a lock-step manner. For
this purpose, we maintain a separate virtual clock
for each node in a simulated network. These vir-
tual clocks are offset by some random time.

5.2.4. Process scheduler

The default UNIX process scheduler is modi-
fied so that the processes of the event scheduler
and all launched traffic generators are scheduled in
a controlled way. The default UNIX process
scheduler uses a priority-based dynamic scheme to
schedule runnable processes. As such, the order in
which the event scheduler and traffic generator
processes are scheduled cannot be precisely con-
trolled. Also, the CPU cycles allocated for each of
these processes cannot be guaranteed. This may
result in potential problems. For example, after
getting the control of CPU, the event scheduler
may use the CPU too long before releasing it to
traffic generators. Because the event scheduler
advances the virtual time while it is executing, if it
monopolizes the CPU too long, no network traffic
can be generated during this long period of time,
which should not occur. To avoid this potential
problem, we modified the default UNIX process
scheduler so that the event scheduler process and

268 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

all runnable traffic generator processes are sched-
uled explicitly in a round-robin manner.

5.3. Application

With our run-time system and kernel support,
an application program can work with our simu-
lator without any modification.

5.3.1. Associate an application’s TCP socket(s)
with the ID of the node on which it runs

If a TCP application program runs on node i,
its TCP timers should be triggered based on node
’s virtual clock. We achieve this requirement by
modifying the kernel and using a run-time system.
In our simulator, launching an application pro-
gram must be performed by our run-time system.
After obtaining the process ID of the just launched
application program, the run-time system imme-
diately calls a system call to pass the node_ID in-
formation to the kernel. Inside the system call, the
node_ID information will be stored in the pro-
cess’s process control block. This information will
later be used when a TCP control block (socket) is
created for this process.

5.3.2. Use the simulated network’s virtual time

When an application program reports data re-
lated to time, it should use the simulated network’s
virtual time, rather than the real time. Examples
include “ping”, which reports a packet’s round-
trip time, and “ftp”, which reports the throughput
of a file transfer. Another example is an applica-
tion program (traffic generator) that uses time in-
formation to generate a particular traffic pattern
(e.g., constant-bit-rate or Poisson arrival). This
requirement can be easily handled because our
run-time system has the process IDs of all laun-
ched application programs and will pass these
process IDs into the kernel. The kernel’s imple-
mentation of time-related system calls such as
(gettimeofday(), sleep(), alarm(), etc.) is modified
so that each of these system calls will check whe-
ther the process that issues this system call is one
of these launched processes. If so, it returns the
current virtual time. Otherwise, it returns the de-
fault current real time.

6. Configuration and usage examples

We use the example network depicted in Fig.
3(a) to illustrate the configuration and usage of
our simulator. The example considers a TCP sen-
der and a TCP receiver connected through a cas-
cade of routers. In Appendix A, we consider a
more complex network topology (Fig. A.1).

6.1. Network configuration

All links in the network of Fig. 3(a) are 10
Mbps links. The propagation delay of link i is set
to i ms. This configuration allows us to easily test
whether our simulator can correctly simulate links
with various delays.

6.2. Tunnel network interface configuration

The commands used to configure the six tunnel
network interfaces for link 1-6, respectively, are
shown as follows:

ifconfig tunl 1.1.1.11.1.1.254
netmask Oxffff££f00
ifconfig tun21.1.2.31.1.2.254
netmask Oxffffff00
ifconfig tun31.1.3.31.1.3.254
netmask Oxffffff00
ifconfig tund4 1.1.4.41.1.4.254
netmask Oxffff£f00
ifconfig tunb 1.1.5.41.1.5.254
netmask Oxffffff00
ifconfig tun6 1.1.6.2 1.1.6.254
netmask Oxfffff£f00

A tunnel network interface resembles a SLIP or
PPP network interface because both are used for
a point-to-point link. What the first “ifconfig”
command states is that tunnel network interface 1
(“tunl”’) will be used for a link whose local IP
address is “1.1.1.1” and whose foreign address is
“1.1.1.254”. After executing these commands on
an UNIX machine, host 1’s (normal) IP address in
the simulated network is “1.1.1.1”, host 2’s (nor-
mal) IP address is ““1.1.6.2”, router 1’s (normal) IP
addresses are “1.1.2.3” and “1.1.3.3”, and finally
router 2’s (normal) IP addresses are ““1.1.4.4” and
“1.1.54”.

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 269

To save a user’s time and effort, our simulator
provides a program that reads in the network
configuration file and automatically generates
the required tunnel interface configuration com-
mands.

Note that because the single simulation ma-
chine acts as both routers and hosts in the simu-
lated network, it is important for our simulator
to know when to forward and when to stop for-
warding a packet. Together, the following three
properties enable the kernel to know when to stop
forwarding a packet:

o First, as stated in Section 4.5, when a packet ar-
rives at its destination node, the destination ad-
dress in its IP header, although it may have been
changed several times, will be its destination no-
de’s (normal) IP address.

e Second, a node’s (normal) IP address is the local
address of one configured tunnel network inter-
face.

e Third, the local address of any configured tunnel
interface is one of the simulation machine’s IP
addresses that can be used in the real world.
Other machines in a real-world network can
use any of these configured tunnel interfaces’ lo-
cal addresses to send a packet to this simulation
machine. For this reason, when a packet is re-
ceived, whether from a physical network or
from a simulated network, if its destination ad-
dress is one of these tunnel interfaces’ local ad-
dresses, the kernel will think that this packet is
destined for itself and thus will stop forwarding
the packet. The kernel then delivers the packet
through the TCP/IP protocol stack to an appli-
cation program.

6.3. Route configuration

The commands used to configure the routes for
the simulated network are as follows:

route add 1.1.2.1 -interface tunl
route add 1.1.3.1 -interface tunl
routeadd 1.1.4.1 -interface tunl
route add 1.1.5.1 -interface tunl
route add 1.1.6.1 -interface tunl

routeadd 1.1.1.2 -interface tuné
route add 1.1.2.2 -interface tuné
route add 1.1.3.2 -interface tuné
route add 1.1.4.2 -interface tuné
route add 1.1.5.2 -interface tuné
route add 1.1.1.3 -interface tun2
route add 1.1.4.3 -interface tund
route add 1.1.5.3 -interface tund
route add 1.1.6.3 -interface tund
route add 1.1.1.4 -interface tun4
route add 1.1.2.4 -interface tun4
route add 1.1. 3.4 -interface tund
route add 1.1.6.4 -interface tunb

The purpose of the first block of these com-
mands is to set routes for host 1. What the first
“route” command states is that any packet whose
destination IP address is ““1.1.2.1” should be sent
out through tunnel network interface 1 (“tunl”).
The second block is for setting routes for host 2.
The third block is for setting routes for router
1. The last block is for setting routes for router 2.
Clearly, configuring routes for host i follows a
simple and regular pattern. Let’s assume that host
i uses link j (tunnel network interface j) as its
outgoing link to the rest of the simulated network.
The route configurations for host i are as follows:

For each 1link in the simulated net-
work, do
let k be the identity of the 1link
if (k!'= j) do
route add 1.1.k.1
tun(j)

-interface

For a large network, the number of routing
entries to be generated and set up can be large. To
save a user’s time and effort, our simulator pro-
vides a program that reads in the network con-
figuration file and automatically generates the
needed routing entries. In addition, the routing
daemons provided on UNIX (e.g., routed and
gated which implement RIP and OSPF routing
protocols respectively) can be run on nodes in a
simulated network to cooperatively and dynami-
cally generate and set up routing entries.

270 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

6.4. Link configuration

The simulator reads in a link configuration file
to simulate a link’s bandwidth and delay. The
format of a line for a link in this file is (Link_ID,
Destination_Node_ID, Bandwidth, Delay). Be-
cause we associate link 7 with tunnel network
interface i when we configure tunnel network
interfaces, as performed in Section 4.2, each virtual
link object knows from which tunnel network in-
terface to read packets. For a link, if it wants to
deliver a packet to its destination node, after
simulating the link’s propagation delay and the
packet’s transmission time, it can use the same
tunnel network interface from which it reads
packets to write packets into the kernel. Actually,
it does not matter which tunnel network interface
a virtual link object should use to write packets
into the kernel. The result will be the same. This is
because, as in a real network, no matter from
which network interface a packet is received, the
kernel can still correctly forward the packet or
deliver it to an application program. The following
six lines are for links 1-6:

1link ID next_Node ID BW

6.5. Example application programs

Any existing real-world application program
(e.g., the Netscape web browser and the Apache
web server) can readily run on any node in our
simulated network The following are just a few
application examples that our simulator has used.
We illustrate them using the network of Fig. 3(a).

6.5.1. “Ping” reports round-trip time

“Ping” 1s a useful tool to test whether our
simulator can correctly simulate links with various
delays and bandwidths. Usually, in a real-world
network, “ping” can only be executed on a host.

This means that only the round-trip time between
an edge host and a node (either an edge host or a
router) can be reported. In contrast, in our simu-
lator, “ping” can report a packet’s round-trip time
between any two nodes. The following example
demonstrates that we can use “ping” to estimate
the round-trip time between router 1 (node 3) and
router 2 (node 4) of Fig. 3(a), neither of which is
an edge host.

ping 1.1.4.3

PING1.1.4.3 (1.1.4.3):56 data bytes
64 bytes from1l.1.4.3:icmp_seq=0
tt1 =255 time ="7. 000 ms

64 bytes from1l.1.4.3:icmp_seq=1
tt1 =255 time="7. 000 ms

C

---1.1.4.3 ping statistics - - -

2 packets transmitted, 2 packets re-
ceived, O packet loss

round-trip min/avg/max = 7.000/
7.000/7.000 ms

6.5.2. “Traceroute” shows the routing path

“Traceroute” can test whether routes are cor-
rectly set up in our simulator. Being able to use
“traceroute” to show the routing path between
any two nodes, our simulator has been helpful in
debugging routing protocols. In the following ex-
ample, “traceroute’ outputs the routing path from
host 2 to host 1 of Fig. 3(a).

traceroute 1.1.1.2
traceroute to1.1.1.2 (1.1.1.2),
30 hops max, 40 byte packets
1 1.1.6.2

11. 000 ms

11. 000 ms

11.000 ms

2 1.1.4.2
19. 000 ms
18. 000 ms
18. 000 ms

3 1.1.1.2
21. 000 ms
21.000 ms
22. 000 ms

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 271

Because the links used in the simulator are
simplex links, the output of ‘“‘traceroute” in our
simulator is somewhat different from its normal
output. To understand its output in our simulator,
we need to look at the Link_ID field (the second
least significant byte) of the IP addresses reported
by “traceroute”. In general, the sequence of these
Link_ID values shows us how a packet is routed
along these links. The only exception occurs on the
last hop of the reported routing path, where the
reported Link_ID gives us the reverse direction of
the actual link that is used to transmit packets to
the destination node. For example, in the above
output, “traceroute” shows that a packet is first
sent on link 6, then on link 4, and finally on link 2.
(Although it reports that link 1 is the last hop,
according to our explanation, we know it means
link 2.) This anomaly is caused by UNIX’s differ-
ent processing of choosing the source IP address to
be included in the error-reporting packet. On every
hop, except the last hop, where the error-causing
packet has not yet reached its destination node, the
chosen source IP address is the error-causing
packet’s incoming interface’s address. However,
on the last hop, where the error-causing packet has
reached its destination, it is the error-reporting
packet’s outgoing interface’s address. Since an
Ethernet’s incoming and outgoing interfaces use
the same IP address, this anomaly does not happen
in a real network that uses Ethernet interfaces.

6.5.3. “Ftp” client and server on any node

“Ftp” clients and servers can readily work on
our simulation machine. Since ftp clients can ac-
cept scripts to “get” and “put” files automatically,
we can use them to generate network traffic in
different directions automatically. The following
example illustrates the use of “ftp” to “put” a file
to /dev/null on a remote node. (/dev/null is a sink
device on an UNIX machine. It sinks all data
without writing it to disks, thus eliminating un-
necessary disk I/O operations on the simulation
machine.)

ftp1.1.4.3

Connected to 1.1.4. 3.

220 nsl. csie.nctu. edu. tw FTP server
ftp> 1s

200 PORT command successful.

150 Opening ASCII mode data
connection for ’ /bin/1s’.

total 73408

-rw-rw-r- - 1 root wheel 2383872
Aug 8 23: 53 filel 226 Transfer complete.
ftp> put filel /dev/null

local: filel remote: /dev/null

200 PORT command successful.

150 Opening BINARY mode data
connection for ¢/dev/null’.

226 Transfer complete.

2383872 bytes sent in 2. 29 seconds
(1017.04 Kbytes/s)

The above throughput report confirms that our
simulator can correctly simulate 10 Mbps links.
After removing the bandwidth consumed by the IP
and TCP header overhead, the achieved through-
put of 1017.04 KB/s is roughly the throughput that
can be achieved on 10 Mbps links with an MTU of
576 bytes.

Notice that the ftp server in the above example
is on router 2 (node 4) in the simulated network,
not on an edge host. Moreover, the ftp client is
running on router 1 (node 3), also not on an edge
host. Actually, in our simulator, a real application
program can run on any node in a simulated net-
work. This capability allows network traffic to be
generated deep inside a simulated network.

By using ‘““inetd” [16], the internet ‘“‘super-
server” on an UNIX machine, a ftp server on a
node can be dynamically and automatically laun-
ched by “inetd” only when the ftp server is really
needed. Therefore, providing a ftp server on every
node in a simulated network is very resource-effi-
cient, and invoking a ftp server on a node does not
need any human effort.

6.5.4. “Tcpdump’ monitors packets on any link
“Tcpdump™ is a useful tool for monitoring and
scrutinizing packets transmitted on a link (e.g., an
Ethernet). Since “tcpdump’ opens a network in-
terface to monitor a network’s traffic and since,
from the kernel’s point of view, a tunnel network
interface is no different from a normal network
interface, we can readily use “tcpdump” to moni-
tor network traffic on any link (tunnel network

272 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

interface) in a simulated network. This means that
we can directly use many useful “tcpdump” scripts
(e.g., [17]) to analyze network traffic. For example,
the following shows the use of tcpdump on link 3
of Fig. 3(a) to trace packets transmitted on the link
from node 3 to node 4:

tcpdump-i tun3
22:10:01.034208 1.1. 3.3.2882 >
1.1.4.3.8000:

38232:39692(1460) ack 97 win 8192
(ttl 27, id 39326)

6.5.5. “Trpt” traces any TCP connection

If compiled with the TCPDEBUG option, the
UNIX kernel will automatically trace the state and
variables associated with a TCP connection when-
ever certain events occur (e.g., just sent out a packet,
just received a packet, and a timer just expired). The
information recorded include values of many im-
portant variables, such as the current timestamp,
sequence numbers, congestion window size, slow
start threshold, and timers’ information. This in-
formation is beyond what “tcpdump” can observe.
“Trpt” [18] is a tool on an UNIX machine that can
extract a TCP connection’s information from the
kernel to the user level for analysis. The following
is a line of “trpt’”’s output that contains send and
receive sequence numbers, sending window size,
and timer (retransmit and keep alive) information:

trpt

631 ESTABLISHED: output
(src=1.1.3.3,3195,
dst=1.1.4.3,8000)
[75219d1..7521f85)@8e7 54 (win=28052)
<ACK> -> ESTABLISHED rcv_nxt 8e754
rcv_wnd 100a4 snd_una 7512a49 snd_nxt
752185 snd_max 752185 snd_wll 8e754
snd_wl2 74bf3cl snd_wnd 10000

REXMT =3 (t_ rxtshft=0), KEEP=14400

6.5.6. Mobile IP simulation is easy

Our simulator has been used to study the per-
formance of mobile IP [19]. Fig. 5 illustrates how
this simulator’s architecture allows us to easily
implement a home agent. The home agent needs to
intercept arriving packets destined for a mobile

(a) Arriving packets destined for the mobile station are
transmitted on tun2 link when the mobile station

is in its home network.
HA: home agent

MS: mobile station

MS @ FA: foreign agent
Z
packets

network

(b) When the mobile station is away from its home
network, arriving packets are forwarded along
tun_redirect.
MSt 1) &Y
1.1.1.1 /\,“

I
raw socket ! : socket
|
B 4

Fig. 5. Simulating mobile IP. By changing a routing entry on
node 3 from [1.1.1.3 -> tun2] to [1.1.1.3 -> tun_redirect], the
home agent can intercept arriving packets destined for the mobile
station. It then reads these raw packets from tun_redirect and
sends them to the foreign agent via a normal datagram socket.

station that is not currently in its home network,
encapsulate them, and then send them to the mo-
bile station’s current foreign agent. To intercept a
mobile station’s packets, we simply redirect them
to a special tunnel network interface (tun_redirect
in this example) by changing an entry in the routing
table. For example, in Fig. 5, we change [1.1.1.3 ->
tun2] to [1.1.1.3 -> tun_redirect]. The home agent
then can read redirected raw packets from this
special tunnel network interface in the same way as
a virtual link object reads raw packets from its
associated tunnel network interface. To encapsu-

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 273

late and tunnel these packets to the foreign agent,
the home agent need only treat these raw packets as
normal data and send them to the mobile station’s
foreign agent via a normal datagram socket.

Implementing a foreign agent on top of this
simulator is equally easy. Since a mobile station’s
tunneled packets are received by its foreign agent
via a normal datagram socket, when they are de-
livered to the foreign agent at the user level, the
packets have been automatically decapsulated in
the kernel. The foreign agent uses a raw socket to
send the received raw packets to the kernel, which
then sends the packets on a tunnel link that is
directly connected to the mobile station. A raw
socket instead of a normal socket is used because
the received raw packet already has its own TCP/
IP headers and thus should bypass the normal
TCP/IP protocol stack processing. Our imple-
mentations for the home and foreign agents con-
tain only about 20 lines of C code for intercepting,
encapsulating, tunneling, and decapsulating traffic.
This would be hard to achieve if we would use a
traditional simulator for this task.

7. Improvement and extension
7.1. Improve simulation speed

To speed up simulations, we move the user-level
event scheduler down into the kernel. Running a
simulation in the kernel is implemented as a never-
return system call. In the original implementation,
when a packet goes through many nodes along its
path, it needs to be copied out and into the kernel
multiple times before reaching its destination, as
shown in Fig. 3(c). Because the data volume that
needs to be copied is large and the frequency of
these copy operations is high, a lot of simulation
time is spent on these copy operations and simu-
lations are slow. In the new in-kernel implemen-
tation, because a packet now can always stay in
the kernel on its way to its destination node, copy
operations can be eliminated and replaced with
cheap operations of moving pointers from one
tunnel interface directly to another in the kernel.
Compared to the cost of copying a whole packet
out and into the kernel, the cost of moving a

pointer is minimal. Since the reduction of the
required CPU time is so great and it is on the
performance critical path, the new in-kernel sim-
ulator runs about 500% faster than its original
user-level implementation. As a consequence of
eliminating packet copy cost, now sending real
data in our simulator is no longer a performance
burden, but an asset without any overhead. (In
order to run faster, some other TCP/IP simulators
only send “fake” or “null” data in packets.)

7.2. Support a variety of scheduling and queueing
disciplines

Sometimes in a network to be simulated, output
links may use a variety of packet scheduling
methods (e.g., FIFO and round-robin) and/or
queueing disciplines (e.g., drop-tail and RED [20]).
But normally a UNIX kernel supports only FIFO
and drop-tail. Thus a TCP/IP network simulator
constructed using UNIX and based on our meth-
odology cannot simulate this kind of network. To
solve this problem, the ALTQ tool [21], which
allows a network interface to use a different packet
scheduling method and/or queueing discipline in a
UNIX kernel, can be installed on the simulation
machine. It is easy to change buffer size in ALTQ.

7.3. Emulation and distributed simulation

Our simulator can easily be used as an emulator
to intercept live packets, let them traverse in a
simulated network, and then transmit them onto a
real network again. Interfacing a simulated and
real network is easy for our simulator. This is be-
cause our simulator uses tunnel interfaces to con-
struct a virtual simulated network and tunnel
interfaces can also be used in the real world to
construct a real network. By properly configuring
tunnel interfaces and route entries on the simula-
tion machine, live packets from a real network
can be first received on an Ethernet interface and
then automatically forwarded to a tunnel inter-
face. From now on, a live packet can traverse in a
simulated network until it needs to be transmitted
onto a real network again. At this time, it can be
automatically forwarded from a tunnel interface to
an Ethernet interface for transmission. For the

274 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

same reason, in a distributed simulation, packets
can be easily exchanged among the partitioned
subnetworks of a simulated network.

8. Scalability discussions

Because in our scheme a single UNIX machine
is used to simulate a whole network (including
nodes’ protocol stacks, traffic generators, etc.), the
scalability of our simulator is a concern. In the
following, we will study several scalability issues.

8.1. Number of nodes

Because our scheme uses the kernel re-entering
technique to simulate multiple nodes, there is no
limitation on the maximum number of nodes that
can be simulated.

8.2. Number of links

In our scheme, because each simulated link uses
a tunnel interface, the maximum number of links
that can be simulated is limited by the maximum
number of tunnel interfaces that a BSD UNIX
system can support, which currently is 256. If
needed, this number can be increased by modifying
the kernel device deriver subsystem.

8.3. Number of routing entries

Since in our scheme the kernel routing table can
be viewed as an union of each simulated node’s
routing table, the size (the number of routing en-
tries) of the kernel routing table will increase as the
number of simulated nodes increases. For a net-
work simulation, suppose that the number of nodes
to be simulated is N and the number of (tunnel)
interfaces used by these nodes is 7, then the total
number of routing entries that need to be stored in
the kernel routing table will be N x 7. This is be-
cause in our scheme, each tunnel interface defines
an IP address and each of these IP addresses has
a different “As-Seen-By-Node(i)”” address for each
different node.

Note that a simulated node uses at least one
interface to connect to a simulated network.

Therefore, T should be greater than or equal to N.
The size of the kernel routing table required thus is
between [N?, T%]. As noted above, on current BSD
UNIX systems, T cannot be greater than 256.
Thus, the size of the kernel routing table required
is less than 65,536 (256 x 256). We have tested
several network configurations that need to store
over 60,000 routing entries in the kernel routing
table. We found that because the BSD UNIX
systems use the radix tree [22] to efficiently store
and look up routing entries, using a large number
of routing entries in a simulation is feasible and
does not slow down simulation speed much.

8.4. Number of application programs

Since application programs running on an
UNIX simulation machine are all real indepen-
dent programs, the simulation machine’s physical
memory requirement is roughly proportional to the
number of application programs running on top
of it. Although, at first glance, this requirement
may seem severe and may greatly limit the maxi-
mum number of application programs that can si-
multaneously run on an UNIX machine, we found
that the virtual memory mechanism provided on an
UNIX machine together with the “working set”
property of a running program greatly alleviate the
problem. The reason is that, when an application
program is running, only a small portion of its code
related to network processing will need to be pre-
sent in the physical memory. In addition, because
UNIX machines support the uses of shared li-
braries and shared virtual memory pages, the
required memory space for running the same ap-
plication program multiple times can be greatly
reduced. For example, on a PC with 512 MB
physical memory, we can support up to 1000 TCP
connections used by 2000 ftp and ftpd programs
without any page in and page out activities.

8.5. Simulation speed

A simulator often runs slower and slower when
the size of the simulated network increases and/or
the network load becomes heavier. The size of a
simulated network generally is measured by its
numbers of nodes and links, and the offered

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 275

network load generally is measured by the number
of packets that need to be exchanged through a
simulated network per second.

To see how our simulator’s speed changes
under various network sizes, we performed a se-
ries of tests using the in-kernel implementation of
our simulator. We found that large network sizes
do not slow down simulations much. The simu-
lator’s speed is relatively fixed under various
network sizes. We used the chain topology as the
simulated network’s topology (like the one de-
picted in Fig. 3(a)) and varied the length of the
chain (the number of nodes and links) from 1 to
250. The traffic imposed on the simulated net-
work is a greedy UDP flow originating on the
first node and ending on the last node. We found
that as the network size increases, the required
simulation time only slightly increases. As an
evidence, our results show that the simulation
time for the 250-node case is only 1.8 times of the
simulation time for the 2-node case. We attribute
this scalability to the in-kernel implementation of
our simulator. This is because, as explained in
Section 7.1, the packet copy operation overhead
on the intermediate forwarding nodes can be
eliminated.

To see how our simulator’s speed changes under
various network loads, we used a 10-node chain
network and varied the bandwidth of its links from
10 to 100 Mbps. Because the traffic imposed on
the simulated network is a greedy UDP flow, the
network load will increase when we increase
the link bandwidth. We found that increasing
network load from 10 to 100 Mbps had a more
significant effect than increasing network sizes on
slowing down simulations. The slow down factor
is 3.5 when the network load was varied from 10 to
100 Mbps. We attribute this slow down to the
increased number of events that our simulator
needs to process per second in virtual time.

9. Limitation

Since only a single UNIX machine (with its own
protocol stack) is used to simulate multiple nodes,
our simulator has a limitation that it allows only
one version of TCP/IP protocol stack in a simu-

lated network. Studying interactions between dif-
ferent TCP versions (e.g., TCP tahoe and TCP
reno) or between different TCP implementations
(e.g., FreeBSD and Linux) thus cannot be done by
using our simulator as is. One way to overcome
this limitation is to use a distributed simulation
approach discussed in Section 7.3. In such a dis-
tributed environment, a UNIX machine with a
particular protocol stack can be used to simulate
nodes using the same stack, while other UNIX
machines with different stacks may be used to
simulate nodes using different stacks.

Furthermore, we note that if a simulation study
requires modification of in-kernel protocols, the
kernel will need to be modified and recompiled
before our simulation methodology can be used.
Modifying and recompiling the kernel, however,
may represent a challenge for some users.

10. Conclusions

We have described a methodology for easily
constructing extensible and high-fidelity TCP/IP
network simulators. Due to its unique architec-
ture, a simulator constructed under our method-
ology has many important advantages that are
hard to achieve by traditional network simulators.
First, the simulator uses the real-life TCP/IP pro-
tocol stack of the simulation machine. As such, its
simulation results are more accurate than those
generated by a traditional simulator that abstracts
a lot away from the real-life implementation.
Second, since the standard UNIX system call
API is provided on every node in a simulated
network, any existing or future real application
program can run on any node in a simulated net-
work. In addition, because the simulation imple-
mentation of a developed application program on
our simulator can be directly used as the pro-
gram’s real implementation, much time and effort
can be saved.

The proposed methodology is general and not
specific to a particular platform. Although our
simulator is based on FreeBSD, this methodology
actually can be applied to any machine that has a
TCP/IP protocol stack and supports tunnel inter-
faces.

276 S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

Acknowledgements

We would like to thank the anonymous review-
ers for their valuable comments.

For S.Y. Wang, this research was supported in
part by MOE Program of Excellence Research
under contract 89-E-FA04-4, the Lee and MTI
Center for Networking Research, NCTU, and the
Institute of Applied Science and Engineering Re-
search, Academia Sinica, Taiwan.

For H.T. Kung, this research was supported in
part by NSF grant ANI-9710567, Air Force Office
of Scientific Research Multidisciplinary University
Research Initiative Grant F49620-97-1-0382, and
grants from Microsoft Research and Nortel Net-
works.

Appendix A

In this appendix we illustrate the configuration
of the network simulator for a network topology
that is more complex than the simple one used in
Sections 6.1-6.3. Fig. A.1 depicts the mesh topol-
ogy considered in this appendix.

A.1. Tunnel network interface configuration

The commands used to configure the twelve
tunnel network interfaces for link 1, 2,..., and 12
of Fig. A.1 are shown as follows:

@

N o2
L2 L7 L4
4 < > (o)

L8

L12 L10
L11 L9

©
L6 H L5
@

Fig. A.1 A mesh network topology to illustrate configuration
of the network simulator.

®

ifconfig tunl 1.1.1.11.1.1.254
netmask Oxffff£f00

ifconfigtun2 1.1.2.41.1.2.254
netmask Oxffffff00

ifconfig tun31.1.3.31.1.3.2564
netmask Oxffffff00

ifconfig tund4 1.1.4.61.1.4.254
netmask Oxffff££00

ifconfig tunb 1.1.5.21.1.5.254
netmask Oxffffff00

ifconfig tun6 1.1.6.51.1.6.254
netmask Oxffff£f00

ifconfig tun7 1.1.7.41.1.7.254
netmask Oxffff££00

ifconfig tun81.1.8.61.1.8.254
netmask Oxffffff00

ifconfig tun9 1.1.9.6 1.1.9.2564
netmask Oxffff£f00

ifconfig tunl0 1.1.10.51.1.10.254
netmask Oxffffff00

ifconfig tunll 1.1.11.51.1.11.254
netmask Oxffffff00

ifconfig tunl2 1.1.12.41.1.12.254
netmask Oxfff£££00

A.2. Route configuration

The commands used to configure the routes for
the simulated network of Fig. A.1 are shown as
follows:

route add 1.1.2.1 -interface tunl
route add 1.1.3.1 -interface tunl
route add 1.1.4.1 -interface tunl
route add 1.1.5.1 -interface tunl
route add 1.1.6.1 -interface tunl
route add 1.1.7.1 -interface tunl
route add 1.1.8.1 -interface tunl
route add 1.1.9.1 -interface tunl
route add 1.1.10.1 -interface tunl
route add 1.1.11.1 -interface tunl
route add 1.1.12.1 -interface tunl
route add 1.1.1.2 -interface tunb
route add 1.1.2.2 -interface tunb
route add 1.1.3.2 -interface tunb
route add 1.1.4.2 -interface tunb
route add 1.1.6.2 -interface tunb

route
route
route
route
route
route

route
route
route
route
route
route
route
route
route
route
route

route
route
route
route
route
route
route
route
route

route
route
route
route
route
route
route
route
route

route
route
route
route
route
route
route
route
route

add 1.
add 1.
add 1.
add 1.
add 1.
add 1.

add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.

add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.

add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.

add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.
add 1.

e

HHHFRFRRRRB &

HHHHFHFHEHERERE HHEBRRRBBB

H O 0020 b X0 H

HoH

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278 277

.7.2 -interface tunb
.8.2 -interface tunb
.9.2 -interface tunb
.10.2 -interface tunb
.11.2 -interface tunb
.12.2 -interface tunb

b5 -interface tund
5 -interface tund
3 -interface tun3
3 -interface tund
.3 -interface tuns
5 -interface tund
5 -interface tund
.53 -interface tund
.10.3 -interface tun3
.11.3 -interface tun3
.12.3 -interface tund

O 0 ~2 0o O > H

.4 -interface tun2
.4 -interface tun?
.4 -interface tun?
.4 -interface tunl2
.4 -interface tunl2
.4 -interface tun?
.4 -interface tun?
.10.4 -interface tunl2
.11.4 -interface tunl2

O 0O O NN H

-interface tunll
-interface tunll
-interface tunlO
-interface tunlO
-interface tuné

-interface tunll
-interface tunlO
.5 —-interface tunlO
2.5 -interface tunll

oo o1 o o g a1 O

.6 —interface tun8
.6 —interface tun8
.6 —-interface tun4d
.6 -interface tun9
.6 —-interface tun9
.6 -interface tun8
.10.6 -interface tun9
.11.6 -interface tun9
.12.6 -interface tun8

~ O O X

References

[11 S. McCanne, S. Floyd, ns-LBNL Network Simulator,
Available from http://www-nrg.ee.lbl.gov/ns/.

[2] MIL3 Inc. home page, http://www.mil3.com/products.

[3] T. Magedanz, K. Rothermel, S. Krause, Intelligent agents:
An emerging technology for next generation telecommu-
nications?, in: IEEE INFOCOM 1996, March 24-28, 1996.

[4] C.E. Perkins, Mobile IP: Design Principles and Practices,
Addison-Wesley, Reading, MA, 1998.

[5] H.T. Kung, S.Y. Wang, The behavior of competing TCP
connections on a packet-switched ring: A study using the
harvard TCP/IP network simulator, in: International
Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA’99), June 28-July 1,
1999, Las Vegas, USA.

[6] Harvard TCP/IP network simulator 1.0, Available from
http://www.eecs.harvard.edu/networking/simulator.html.

[7] K. Fall, Network emulation in the Vint/NS simulator, in:
ISCC99, July 1999.

[8] Nist net, Available from http://snad.ncsl.nist.gov/itg/nist-
net.

[9] J.S. Ahn, P. Danzig, Z. Liu, L. Yan, Evaluation of TCP
vegas: emulation and experiment, in: ACM SIG-
COMM’95.

[10] L. Rizzo, Dummynet: a simple approach to the evaluation
of network protocols, Computer Communication Review
27 (1) (1997) 31-41.

[11] S. Keshav, REAL: A network simulator, Technical report
88/472, Department of computer Science, UC Berkeley,
1988.

[12] SSF network module (SSFnet), Available from http:/
www.ssfnet.org.

[13] PARSEC and GloMoSim, Available from http://pcl.cs.
ucla.edu/projects/parsec.

[14] X.W. Huang, R. Sharma, S. Keshav, The ENTRAPID
protocol development environment, in: IEEE INFO-
COM’99, March 21-25, 1999, New York, USA.

[15] A. Meyer, L.H. Seawright, A virtual machine time-sharing
system, IBM Systems Journal 9 (3) (1970) 199-218.

[16] Inetd, UNIX manual, p. 8.

[17] Software available in the Internet Traffic Archive, Avail-
able from http://ita.ee.lbl.gov/html/software.html.

[18] Trpt, UNIX manual, p. 8.

[19] R. Ramjee, T. La Porta, S. Thuel, K. Vardhan, S.Y. Wang,
HAWAIIL: A domain-based approach for supporting mo-
bility in wide-area wireless networks, in: IEEE ICNP’99,
October 31-November 3, 1999, Toronto, Canada; IEEE/
ACM Transactions on Networking, in press.

[20] S. Floyd, V. Jacobson, Random early detection gateways
for congestion avoidance, IEEE/ACM Transactions on
Networking 1 (4) (1993) 397-413.

[21] K. Cho, A framework for alternate queueing: towards
traffic management by PC-UNIX based routers, in: USE-
NIX’98 Annual Technical Conference, June 1998.

[22] G.R. Wright, W.R. Stevens, in: TCP/IP Illustrated, vol. 2,
Addison-Wesley, Reading, MA, 1995.

http://www-nrg.ee.lbl.gov/ns/
http://www.mil3.com/products
http://www.eecs.harvard.edu/networking/simulator.html
http://snad.ncsl.nist.gov/itg/nistnet
http://snad.ncsl.nist.gov/itg/nistnet
http://www.ssfnet.org
http://www.ssfnet.org
http://pcl.cs.ucla.edu/projects/parsec
http://ita.ee.lbl.gov/html/software.html

278

S.Y. Wang, H.T. Kung | Computer Networks 40 (2002) 257-278

S.Y. Wang is an Assistant Professor of
the Department of Computer Science
and Information Engineering at Na-
tional Chiao Tung University, Taiwan.
He received his Ph.D. degree in com-
puter science from Harvard University
in 1999. His research interests include
computer networks, operating sys-
tems, and Internet technologies. He is
the author of the Harvard network
simulator and the NCTUns 1.0 net-
work simulator. More information is
available from http://www.csie.nctu.
edu.tw/~shieyuan.

H.T. Kung is William H. Gates Pro-
fessor of Computer Science and Elec-
trical Engineering at Harvard. He
received his Ph.D. from Carnegie
Mellon and served on their faculty
before joining Harvard in 1992. Over
the last 25 years, he has pursued a
variety of interests: algorithms and
complexity, database systems, VLSI
architectures, parallel computing, mo-
bile computing, and computer net-
works.

http://www.csie.nctu.edu.tw/~shieyuan

	A new methodology for easily constructing extensible and high-fidelity TCP/IP network simulators
	Introduction
	Related work
	Simulator architecture
	Tunnel network interface
	Opaque and transparent network cloud simulation models

	Design
	Use a private address scheme for a node's (normal) IP address(es)
	Construct the virtual simulated network
	Define a node's IP address(es) seen from other nodes
	Use ``As-seen-by-node(i)'' IP addresses to route packets
	Modify a packet's ``As-seen-by-node(i)'' destination and source addresses on every hop along its path

	Implementation
	User-level event scheduler
	Kernel
	IP and UDP/TCP checksum tests
	TCP timers
	Virtual clocks
	Process scheduler

	Application
	Associate an application's TCP socket(s) with the ID of the node on which it runs
	Use the simulated network's virtual time

	Configuration and usage examples
	Network configuration
	Tunnel network interface configuration
	Route configuration
	Link configuration
	Example application programs
	``Ping'' reports round-trip time
	``Traceroute'' shows the routing path
	``Ftp'' client and server on any node
	``Tcpdump'' monitors packets on any link
	``Trpt'' traces any TCP connection
	Mobile IP simulation is easy

	Improvement and extension
	Improve simulation speed
	Support a variety of scheduling and queueing disciplines
	Emulation and distributed simulation

	Scalability discussions
	Number of nodes
	Number of links
	Number of routing entries
	Number of application programs
	Simulation speed

	Limitation
	Conclusions
	Acknowledgements
	Appendix A
	Tunnel network interface configuration
	Route configuration

	References

